Using AADL in Model Driven Development

Didier Delanote, Stefan Van Baelen, Wouter Joosen and Yolande Berbers
Katholieke Universiteit Leuven
Belgium
Contents

- Introduction
- Overview of AADL
- Usability assessment of AADL
- A general approach to improve usability of AADL using MDD
- Conclusion
Introduction

• Software-intensive embedded systems
• Verification of functional and non-functional properties
• Non-functional properties
 • timeliness
 • performance
 • safety
• Enable verification of properties
 • modeling language
 • Model Driven Development (MDD)
Introduction

• Modeling language
 • UML
 • SysML UML Profile
 • MARTE UML Profile
 • Architecture Description Language (ADL)
 • SAE AADL standard

• Model Driven Development
 • models as primary artifact
 • models with functional and non-functional properties
Contents

- Introduction
- **Overview of AADL**
- Usability assessment of AADL
- A general approach to improve usability of AADL using MDD
- Conclusion
Overview of AADL

- AADL provides **six dimensions** for specifying components
 - component analysis and design
 - analyze existing systems in terms of components
 - design new systems as black box components
 - two separate usages with specific modeling concepts
 - component categories
 - component type and implementation
 - component properties
 - component composition
 - component connection and binding
Overview of AADL

- AADL provides **six dimensions** for specifying components
 - component analysis and design
 - component categories
 - execution platform components
 - application software components
 - composite components
 - component type and implementation
 - component properties
 - component composition
 - component connection and binding
Overview of AADL

- AADL provides **six dimensions** for specifying components
 - component analysis and design
 - component categories
 - component type and implementation
 - component type describes interface
 - component implementation describes contents
 - component properties
 - component composition
 - component connection and binding

AADL provides six dimensions for specifying components

Overview of AADL
Overview of AADL

- AADL provides **six dimensions** for specifying components
 - component analysis and design
 - component categories
 - component type and implementation
 - component properties
 - specific information about modeling concepts
 - functional and non-functional properties
 - component composition
 - component connection and binding
Overview of AADL

- AADL provides **six dimensions** for specifying components
 - component analysis and design
 - component categories
 - component type and implementation
 - component properties
 - component composition
 - legality rules for component composition
 - specific to component category
 - specific to component type and implementation
 - component connection and binding
Overview of AADL

- **AADL provides six dimensions** for specifying components
 - component analysis and design
 - component categories
 - component type and implementation
 - component properties
 - component composition
 - component connection and binding
 - connections for communication of data and events
 - binding application software and execution platform components through properties
Contents

• Introduction
• Overview of AADL
• **Usability assessment of AADL**
• A general approach to improve usability of AADL using MDD
• Conclusion
Usability assessment of AADL

- Navigation control example
Usability assessment of AADL

• Issues in the usability of AADL as a modeling language
 • System versus software level
 • Complex component composition
 • Property ambiguity
Usability assessment of AADL

- System versus software level
 - component-based and object-oriented paradigm share many properties
 - distinction between type and implementation of modeling concepts
 - components are at a higher level of abstraction than classes
 - components can be both hardware and software
 - gap between AADL modeling concepts and implementation concepts
Usability assessment of AADL

- Complex component composition
 - legality rules specific to component category

<table>
<thead>
<tr>
<th>Category</th>
<th>Type</th>
<th>Implementation</th>
</tr>
</thead>
<tbody>
<tr>
<td>device</td>
<td>Features</td>
<td>Subcomponents: none</td>
</tr>
<tr>
<td></td>
<td>port</td>
<td>Subprogram calls: no</td>
</tr>
<tr>
<td></td>
<td>port group</td>
<td>Connections: no</td>
</tr>
<tr>
<td></td>
<td>subprogram</td>
<td>Flows: yes</td>
</tr>
<tr>
<td></td>
<td>requires bus access</td>
<td>Modes: yes</td>
</tr>
<tr>
<td></td>
<td>Flow specifications: yes</td>
<td>Properties: yes</td>
</tr>
<tr>
<td></td>
<td>Properties: yes</td>
<td></td>
</tr>
</tbody>
</table>

- component extension adds complexity to composition
Usability assessment of AADL

- Property ambiguity
 - properties specific to component categories
 - no clearly defined relations between property sets and model analyses
Contents

• Introduction
• Overview of AADL
• Usability assessment of AADL
• A general approach to improve usability of AADL using MDD
• Conclusion
A general approach to improve usability of AADL using MDD

- AADL and runtime environment considered a platform
- Considerable amount of platform-specific (semantic) knowledge
- MDD approach to reduce requirement of this knowledge
A general approach to improve usability of AADL using MDD

- **Models**
 - **AADL PIM**
 - UML model of application
 - annotated with component category stereotypes
 - does not necessarily comply to AADL legality rules
 - **AADL PSM**
 - AADL Ecore model of application
 - components of specific category
 - does comply to AADL legality rules
 - **AADL Analysis Model**
 - AADL Ecore model of application
 - AADL PSM annotated with properties
 - properties have default value
A general approach to improve usability of AADL using MDD

• Steps
 • Obtaining an AADL PIM
 • Model transformations
 • Execute analyses in AADL runtime environment
A general approach to improve usability of AADL using MDD

- Obtaining an AADL PIM
 - design application from scratch, or
 - reverse engineer application and annotate with stereotypes
A general approach to improve usability of AADL using MDD

- **Model transformations**
 - Functional transformations
 - Encapsulate platform specific knowledge of SAE AADL legality rules
 - Transform UML to DSL
 - Transformation rules
 - Transform UML class with "<<component category>>" stereotype to component type of same category
 - Provide component implementation if applicable
 - Transform UML composition links between UML classes into subcomponents
 - Transform directed associations between UML classes into in, out or in out port features and provide connections
 - Transform dependency relations between UML classes into bus access features
A general approach to improve usability of AADL using MDD

- AADL PSM
A general approach to improve usability of AADL using MDD

- Model transformations
 - Non-functional transformations
 - Add set of properties allowing analysis of AADL PSM
 - Towards exactly one non-functional property of system
 - Platform specific knowledge concerning relation between AADL properties and analysis of AADL model built into non-functional transformations
 - Subsequent non-functional transformations possible on same model
 - Transformation rules
 - Add specific set of properties to each component category
 - Provide properties with default value
 - Example of schedulability analysis
A general approach to improve usability of AADL using MDD

- AADL Analysis Model
Contents

• Introduction
• Overview of AADL
• Usability assessment of AADL
• A general approach to improve usability of AADL using MDD
• Conclusion
Conclusion

- Number of issues in usability of AADL
 - System versus software level
 - Complex component composition
 - Property ambiguity
- MDD process to ease these issues
 - Obtaining AADL PIM
 - AADL PIM
 - Functional transformations
 - AADL PSM
 - Non-functional transformations
 - AADL Analysis Model
 - Analysis tool
Conclusion

- Questions?
- Discussion