
© 2007 Carnegie Mellon University

From PIMs to PSMs

Peter H Feiler, Dio DeNiz
Software Engineering Institute
Bruce Lewis
US Army
Chris Raistrick
Kennedy-Carter

UML/AADL Workshop
July 2007

© 2007 Carnegie Mellon University

Outline

MDA, xUML, and AADL

Domain Models and Bridges

xUML to AADL Translation

AADL Model Optimization

K E N N E D Y C A R T E R3

Important Abbreviations

The presentation describes:

A process for system development, known as

Model Driven Architecture (MDA)Model Driven Architecture (MDA)

which involves building

PlatformPlatform--Independent Models (PIMs)Independent Models (PIMs)

from which we derive

PlatformPlatform--Specific Models (PSMs)Specific Models (PSMs)

and/or

PlatformPlatform--Specific Implementations (PSIs).Specific Implementations (PSIs).

The models are represented using the notation known as the

Unified Modeling Language (UML).Unified Modeling Language (UML).

Both the MDA process and the UML notation

are owned by the non-profit consortium known as the

Object Management Group (OMG).Object Management Group (OMG).

see
omg.org/mda

K E N N E D Y C A R T E R4

Platform Independent Model

A Platform Independent Model (PIM) is a technology agnostic model of
some aspect of the system under study.

A PIM contains no information about any of the following:

Hardware Architecture

Operating System

Programming Language

Database Technology

Internal Communication Technology

It is therefore much simpler than a Platform-Specific Model (PSM)

Use of Executable UML (xUML) allows construction of PIMs that are:

Precise

Complete

PIMs built using xUML can be:

Executed to demonstrate compliance with functional requirements

Automatically translated into a complete Platform Specific
Implementation using a suitable model translator

Used as executable specifications, forming the basis for contract-
based procurement

K E N N E D Y C A R T E R5

Construct the system from large,
reusable components

Build precise,
predictive models

Subject the models to
rigorous testing before

implementation
To build this

Establish a well-
defined and
automated
construction process

Overview of the MDA Process

The MDA process can be
summarized as: SPECIFY DOMAINS

Identify new/reused domains

Model system use cases

VALIDATE PIMS

Execute domain use cases

Execute system use cases

BUILD PLATFORM-INDEPENDENT MODELS
(PIMS)

Model domain use cases

Build Static Model - Class Diagram
Build Behavioural Model - State Charts & Operations

Build Action Model - State Actions & Methods

Compile and debug PIMS

SPECIFY SYSTEM
CONSTRUCTION PROCESS

Define/Buy PIM To PSI Mapping Rules

Build/Buy PIM compiler

GENERATE SYSTEM

Apply PIM to PSI Mapping Rules
(Execute PIM Compiler)

Perform target testing

K E N N E D Y C A R T E R6

What is AADL?

The SAE Architecture Analysis and Design Language (AADL) is an
international standard for predictable model-based engineering of real- time
and embedded computer systems.

Intended fields of application are automotive systems, avionics and space
applications, medical devices, and industrial process control equipment.

The SAE AADL international standard consists of

a textual and graphical language with precise execution semantics for
modeling the architecture of embedded software systems and their
target platform;

a UML 2.0 profile for AADL that adds real-time embedded systems
semantics of AADL to UML;

AADL can be used to:

Represent embedded systems as component-based system
architecture

Model component interactions as flows, service calls, and shared
access

Model task execution and communication with precise timing
semantics

Accommodate analyses such as reliability &safety- criticality through
extensions Ref: http://www.aadl.info/

K E N N E D Y C A R T E R7

xUML and AADL in the MDA Process

xUML focuses on:

Service layers (domains)

Provided and Required services

Data structure (classes and
attributes)

Processing (state machines and
operations)

Interactions (signals and
invocations)

AADL focuses on:

Processors

Processes

Threads

Devices

Buses

Ports

Memory blocks

xUML is strongly oriented towards

Platform Independent Models…

…that can be executed and analysed to
assess functional capabilities…

…and used to generate several
platform specific models, expressed
using an appropriate language, for
different aircraft types

AADL is strongly oriented towards
Platform Specific Models…

…that can be executed and
analysed to assess aircraft-specific
performance characteristics…

…and used as the basis for
platform-specific implementations

K E N N E D Y C A R T E R8

E2

JSF

An xUML-AADL Process

Automatically
Generate AADL
from xUML PIM

F16
AADL

Specification

Analyse AADL
Specification

AADL Analysis
Results

Target Code

Identify
Problems in

AADL

AADL Problems

Requirements
Platform

Independent
xUML Model

Build Platform
Independent
xUML Model

Refine
xUML Model

Automatically
Generate

Target Code

E2

JSF

F16
Aircraft Platform

Specification

xUML Tool

Model Translator

AADL Tool

K E N N E D Y C A R T E R9

Configure the AADL Model for the Hardware Components

The AADL model is
configured with data to

capture the aircraft
platform hardware

architecture

Aircraft hardware architecture

Platform
Independent

xUML API Model

Automatically

Generate AADL
from xUML PIM

AADL
Specification

Aircraft Platform

Specification

K E N N E D Y C A R T E R10

Populate the AADL Metamodel with Software Components

Platform
Independent

xUML API Model

Automatically
Generate AADL
from xUML PIM

AADL

Specification

Aircraft Platform
Specification

xUML Aircraft Model

K E N N E D Y C A R T E R11

Outline

MDA, xUML, and AADL

Domain Models and Bridges

xUML to AADL Translation

AADL Model Optimization

K E N N E D Y C A R T E R12

The Primary xUML Models

Domains

States

Actions

Classes

K E N N E D Y C A R T E R13

The Four Domain Layers

Service domains
provide capabilities to

support the
application

The application
domain represents the
purpose of the system

from the users’ point
of view

The PIM-PSI Mappings domain
provides a virtual xUML machine to

translation and execution of
application and service domains

Implementation domains represent
pre-existing software components

K E N N E D Y C A R T E R14

Target HardwareTarget Hardware

Software SystemSoftware System

Use Domains to Isolate Areas of Change (or Platforms)

WeaponsWeapons

SensorsSensors

Other Hardware
Devices

Other Hardware
Devices

Software Architecture Domain
(GOA based)

Application
Domains

Application
Domains

Hardware
Interface
Domain

User
Interface
Domain

Generic Stores

Generic
Weapons

Generic
Sensors

A-A A-SPassive Active

S
id

e
w

in
d

e
r

A
M

R
A

A
M

H
A

R
M

A
W

P
B

R
E

C
C

E

E
S

M

C
A

P
T

O
R

L
a
s
e
r

GUIs/HUDs/HDDsGUIs/HUDs/HDDs

ButtonsButtons

Other UI
Devices

Other UI
Devices

Target Execution Environment

(Processors / Operating System / Language)

Comms
(GASIF network protocols)

MIL-STD-1553MIL-STD 1760

Achieves
execution
platform
independence

Achieves
store type
independence

Achieves
aircraft
platform
independence

K E N N E D Y C A R T E R15

Domain Architecture for Platform Independence

Platform Independent Domains

Execution Platform Mapping Domain

Vehicle Platform Mapping Domains Vehicle Platforms

We need to achieve
independence of the
vehicle platform…

Hardware Platform Software Platform …and
independence of

the execution
platform…

K E N N E D Y C A R T E R16

Elements of a Domain’s Interfaces

Each domain can be thought of as an “integrated circuit” of classes (the
black box)…
…with a set of provided and required operationsprovided and required operations (the pins)…
…that can be connected together into a system (the wiring)

Air

Traffic

Control

required
operations

User

Interface

provided
operations

bridge
operations

K E N N E D Y C A R T E R17

The Terminator Classes Provide the Placeholders…

The <<terminator>> classes represent placeholders for the required
operations for the domain to which they belong…

…and show which provided operations are invoked by other domains

Air Traffic Control Domain

<<terminator>
>

Air Traffic
Controller

Aircraft

requestPermission
ToTaxi

required
operation

This terminator class specifies the
Air Traffic Control domain’s

required operation
“requestPermissionToTaxi”

User Interface Domain

Icon
<<terminator>

>
Client

makeIcon
Flash

provided
operation

This terminator class shows that
one or more other (anonymous)

domains invokes the User Interface
domain’s object-scoped provided

service “makeIconFlash”

The <<terminator>> classes are constrained such that they can only have they can only have
operationsoperations. They cannot have attributes, associations, methods, state
machine.

K E N N E D Y C A R T E R18

Air Traffic Control Domain {kl=ATC
(part of) Class Collaboration Model

<<terminator>
>

Air Traffic
Controller

Aircraft

requestPermission
ToTaxi

required
operation

User Interface Domain {kl=UI}
(part of) Class Collaboration Model

Icon
{kl=ICN}

<<terminator>
>

Client

makeIconFlash

provided
operation

The “Wiring” Is Specified in a Build Set…

Air Traffic Control System Build Set

bridge :requestPermissionToTaxi

counterpartIcon = this -> CPR1

$USE UI

[] = makeIconFlash[] on counterpartIcon

$ENDUSE

CPR1

Bridge
operation

counterpart
association

Note:

UML 2.0 refers to
the bridge as a

“connector”

UML/AADL Workshop
July 2007

© 2007 Carnegie Mellon University

Outline

MDA, xUML, and AADL

Domain Models and Bridges

xUML to AADL Translation

AADL Model Optimization

UML/AADL Workshop
July 2007

© 2007 Carnegie Mellon University

Purpose of Translation

Analyze the runtime characteristics of a model expressed in xUML

Improve runtime structure

Options:

• Active object == thread (logical thread) & thread optimization to OS
threads

• Define task architecture (OS threads) & active object -> thread mapping

UML/AADL Workshop
July 2007

© 2007 Carnegie Mellon University

Sample

Domain

Bridge

UML/AADL Workshop
July 2007

© 2007 Carnegie Mellon University

Mapping Domains

Domains are mapped to packages in AADL

Every definition in the public section

package xUMLBasicTypes

public

...

end xUMLBasicTypes;

package SensorDataProcessingDomain

public

...

end SensorDataProcessingDomain;

package TrackManagementDomain

public

...

end TrackManagementDomain;

UML/AADL Workshop
July 2007

© 2007 Carnegie Mellon University

Finding xUML Threads

Two Sources

• External Device Stimuli

• State Machines

In Our Example

• Active Sensor Hardware

• AirTrack State Machine

UML/AADL Workshop
July 2007

© 2007 Carnegie Mellon University

Translation of Message Semantics

xUML Semantics

• Closed Blocking. This represents a
function call where the caller can
send data and expects and waits
for an answer from the callee
before continuing its execution.

• Closed Non-Blocking. In this case
the caller also expects an answer
but it will not wait to get it before
continuing its execution. Instead it
queries for the answer at a later
time.

• Open. This involves a transfer of
data from the caller to the callee.
The caller does not wait for the
completion of the callee neither
expects any answer from it.

AADL Semantics

• Closed Blocking. In this case the
callee is a subprogram and the
message from the caller to the
callee a subprogram call.

• Closed Non-Blocking. In this case
the callee is a thread (and hence
the caller is another thread). The
message is a data port connection
from caller to callee and an event
port connection from the callee to
the caller to notify the completion
of the execution.

• Open. In this case the caller and
the callee are both thread and the
message is only a event data port
connection from the caller to the
callee

UML/AADL Workshop
July 2007

© 2007 Carnegie Mellon University

AADL Threads for Example

thread ActiveSensorThread

features

createActiveSensorTrackReport: in event data port CreateActiveSensorTrackEvent;

initializeAirTrack: out event data port
TrackManagementDomain::InitializeAirTrackEvent;

updateAirTrack: out event data port TrackManagementDomain::UpdateAirTrackEvent;

deleteAirTrack: out event data port TrackManagementDomain::DeleteAirTrackEvent;

end ActiveSensorThread;

thread AirTrackThread

features

initializeAirTrack: in event data port InitializeAirTrackEvent;

updateAirTrack: in event data port UpdateAirTrackEvent;

deleteAirTrack: in event data port DeleteAirTrackEvent;

end AirTrackThread;

UML/AADL Workshop
July 2007

© 2007 Carnegie Mellon University

Implicit Object Management

Objects are assumed to be managed by its class in xUML

• Find objects

• Manage object memory for creation/deletion

Need to be explicit in AADL

• In the form of “Collection”

UML/AADL Workshop
July 2007

© 2007 Carnegie Mellon University

Sample Collection

data ActiveSensorTrackReport

features

initialize: subprogram InitializeActiveSensorTrackReportInstance;

update: subprogram UpdateActiveSensorTrackReportInstance;

delete: subprogram DeleteActiveSensorTrackReportInstance;

end ActiveSensorTrackReport;

data ActiveSensorTrackReportCollection

features

find : subprogram FindActiveSensorTrackReportCollection;

create: subprogram CreateActiveSensorTrackReportCollection;

delete: subprogram DeleteActiveSensorTrackReportCollection;

update: subprogram UpdateActiveSensorTrackReportCollection;

end ActiveSensorTrackReportCollection;

UML/AADL Workshop
July 2007

© 2007 Carnegie Mellon University

Call Sequences

thread implementation ActiveSensorThread.Impl

subcomponents

reportCollection: data ActiveSensorTrackReportCollection;

activeSensorTrackCollection: data ActiveSensorTrackCollection;

airTrackCollection: data AirTrackCollection;

calls

createReport: { find1: subprogram ActiveSensorTrackReportCollection.find;

create1: subprogram ActiveSensorTrackReportCollection.create;};

updateReport: { find2: subprogram ActiveSensorTrackReportCollection.find;

update1: subprogram ActiveSensorTrackReportCollection.update;};

deleteReport: { find3: subprogram ActiveSensorTrackReportCollection.find;

delete1: subprogram ActiveSensorTrackReportCollection.delete;};

connections

c1: event data port create1.initializeAirTrack->initializeAirTrack;

c2: event data port update1.updateAirTrack->updateAirTrack;

c3: event data port delete1.deleteAirTrack->deleteAirTrack;

p1: parameter createActiveSensorTrackReport->find1.report;

p2: parameter createActiveSensorTrackReport->create1.report;

p3: parameter createActiveSensorTrackReport->find2.report;

p4: parameter createActiveSensorTrackReport->update1.report;

p5: parameter createActiveSensorTrackReport->find3.report;

p6: parameter createActiveSensorTrackReport->delete1.report;

end ActiveSensorThread.Impl;

UML/AADL Workshop
July 2007

© 2007 Carnegie Mellon University

Final System

process TrackingProcess

features

createActiveSensorTrackReport : in event data port
SensorDataProcessingDomain::CreateActiveSensorTrackEvent;

end TrackingProcess;

process implementation TrackingProcess.Impl

subcomponents

sensorThread: thread
SensorDataProcessingDomain::ActiveSensorThread;

airTrackThread: thread TrackManagementDomain::AirTrackThread
{xUML::Multiplicity => 100;};

connections

c1: event data port sensorThread.initializeAirTrack-
>airTrackThread.initializeAirTrack {xUML::Connection_Multiplicity =>
OneToOne;};

c2: event data port sensorThread.updateAirTrack-
>airTrackThread.updateAirTrack {xUML::Connection_Multiplicity =>
OneToOne;};

c3: event data port sensorThread.deleteAirTrack-
>airTrackThread.deleteAirTrack {xUML::Connection_Multiplicity =>
OneToOne;};

c4: event data port createActiveSensorTrackReport-
>sensorThread.createActiveSensorTrackReport;

end TrackingProcess.Impl;

device ActiveSensorDevice

features

createActiveSensorTrackReport: out event data port
SensorDataProcessingDomain::CreateActiveSensorTrackEvent;

end ActiveSensorDevice;

processor MyProcessor

end MyProcessor;

system Final

end Final;

system implementation Final.Impl

subcomponents

sensor: device ActiveSensorDevice;

proc: processor MyProcessor;

trackProcess: process TrackingProcess;

connections

c1: event data port sensor.createActiveSensorTrackReport-
>trackProcess.createActiveSensorTrackReport;

end Final.Impl;

UML/AADL Workshop
July 2007

© 2007 Carnegie Mellon University

Performance Analysis

Properties to be added

• End-to-end latency requirements

• Periodicity of events, both external (e.g. sensor interrupts) and internal
(timers – could be extracted from the xUML model)

• Execution time of subprograms

• Processor Speed

• Network Speed

UML/AADL Workshop
July 2007

© 2007 Carnegie Mellon University

Outline

MDA, xUML, and AADL

Domain Models and Bridges

xUML to AADL Translation

AADL Model Optimization

UML/AADL Workshop
July 2007

© 2007 Carnegie Mellon University

Mapping into Operating System Threads

Transformation of logical thread model

• Threads in transformed model represent OS threads

• Logical threads become subprogram calls in OS thread

Thread groups to represent thread mappings

• Assignment by containment grouping

• Rate group optimization

Virtual processor to represent OS thread

• Virtual processor as hierarchical scheduler

• Logical thread binding to virtual processor

• Virtual processor binding or containment

UML/AADL Workshop
July 2007

© 2007 Carnegie Mellon University

Two-Level Thread Binding

RMS RMS

Static

timeline

Virtual processor

Static

timeline

Virtual processor

Thread

100ms

Thread

100ms

Thread

100ms

Thread

100ms

Thread

100ms

Static

timeline

Virtual processor

Processor Processor

UML/AADL Workshop
July 2007

© 2007 Carnegie Mellon University

Predictive Analysis Across Perspectives

Single-Source Model Reduces
Cost of Model Evolution

Security
Intrusion

Integrity

Confidentiality

Availability
& Reliability

MTBF

FMEA

Hazard
analysis

Real-time
Performance

Execution time/
Deadline

Deadlock/starvation

Latency

Resource
Consumption

Bandwidth

CPU time

Power
consumption

Data precision/
accuracy

Temporal
correctness

Confidence

Data
Quality

Architecture Model

In AADL

UML/AADL Workshop
July 2007

© 2007 Carnegie Mellon University

Observations

PSMs require more than UML offers

• AADL is targetedat runtime architecture

• OMG MARTE compatible with AADL

Mapping xUML design patterns

• Active objects, terminators, and bridges

• Functional interface

• connection semantics in bridge patterns

AADL-based runtime architecture model

• Logical thread and OS threads

• Basis of multi-dimensional multi-fidelity analysis of operational
properties

• Generation of application specific runtime system implementation

UML/AADL Workshop
July 2007

© 2007 Carnegie Mellon University

Questions?

Contact info:

Peter H. Feiler

phf@sei.cmu.edu

412-268-7790

