
UML/AADL July 12, 2007 Realizing the MDE Vision

Model-Driven Engineering:

Realizing the vision

Robert B. France
Dept. of Computer Science
Colorado State University

Fort Collins, Colorado, USA
france@cs.colostate.edu

UML/AADL July 12, 2007 Realizing the MDE Vision

About the author
� Organizer and steering

committee member of the
MODELS conference series

� Founding editor-in-chief,
Software and System
Modeling journal (SoSyM)

� Member of UML 1.X revision
task forces

� Current research focus on
aspect-oriented modeling
(AOM), model composition

UML/AADL July 12, 2007 Realizing the MDE Vision

Diagram provided by Arnor Solberg, SINTEF, Norway

UML/AADL July 12, 2007 Realizing the MDE Vision

The Problem-Implementation

Gap

� A problem-implementation gap exists when
software is implemented using abstractions
that are different than those used to
understand and describe the problem
� when the gap is wide significant effort is

required to implement solutions
� bridging the gap using manual techniques

introduces significant accidental complexities

UML/AADL July 12, 2007 Realizing the MDE Vision

MDE is concerned with …

� reducing accidental complexities associated
with bridging wide problem-implementation
gaps

� through use of technologies that support
systematic transformation of abstractions to
software implementations

MDE is concerned with developing software to
support the work of software developers

UML/AADL July 12, 2007 Realizing the MDE Vision

Why modeling techniques?

Software development is a modeling activity

How can we better leverage modeling
techniques?

Programmers build and evolve (mentally-
held) models of problems and solutions as
they develop code

Programmers express solutions in terms of
abstractions provided by a programming
language

UML/AADL July 12, 2007 Realizing the MDE Vision

What is a model?

A description of an aspect of a
software-based system that may or
may not exist. A model is created to
serve particular purposes.

MDE ≠ use of UML

UML/AADL July 12, 2007 Realizing the MDE Vision

2 broad classes of models

� Development models
� Models produced and used during the development of

software systems
� Focus on models that describe systems above the code

level of abstraction
� Current focus of MDE researchers

� Runtime models
� Models produced or used during system runtime
� Models describe some aspect of an executing system
� Small, but growing community of MDE researchers

UML/AADL July 12, 2007 Realizing the MDE Vision

Where are we now?
� Generation 1 (Informal Models): Models as

documentation/communication artifacts (informal
camp)
� a.k.a the Computer Aided Software Engineering (CASE)

generation
� Generation 1 (Formal Models): Models as analysis

mechanisms (formal camp)
� Use of mathematically-base specification languages: VDM,

Z, algebraic specs
� Generation 2: Models as artifacts for generating

implementation and deployment artifacts
� Exemplified by OMG’s work on MDA/MDD
� Emphasis on separation of platform independent concerns

from platform specific concerns

UML/AADL July 12, 2007 Realizing the MDE Vision

Is it enough to just create languages that

raise the level of abstraction?

� Each successful attempt at raising the level
of abstraction triggers concerted effort to
develop even more complex software
� New technologies also give rise to new software

opportunities that are acted upon

� Result is a new generation of software that
gives rise to a new breed of software
development problems

� The gap widens

UML/AADL July 12, 2007 Realizing the MDE Vision

The abstraction-raising dilemma
� The growing complexity of the problem and solution spaces

overwhelms the abstractions provided by current implementation
languages
� Leads to ad-hoc development of technology layers that extend

current languages in an attempt to provide needed abstractions
(some gap contraction)

� Complexity of technology-based abstraction layers leads to
reliance on expert software developers (gap widening)

� Eventually, complexity overwhelms even the experts
(accelerated gap widening)

� Need for raising the “level of abstraction” is painfully apparent – a
“software crisis” is declared …

The nature of the “software crisis” evolves

UML/AADL July 12, 2007 Realizing the MDE Vision

MDE research questions

How can modeling techniques be used to tame
the complexity of bridging the gap between
the problem domain and the software
implementation domain?

How can MDE be used to manage the rate at
which the gap is widening?

UML/AADL July 12, 2007 Realizing the MDE Vision

Where are we going?

� Providing support for engineering domain-specific
languages and associated tool sets

� A MDE framework provides concepts and tools that
developers can use to build domain-specific
development environments
� Can be based on a family of languages (e.g., the UML)
� or on meta-metamodel facilities

� Jack Greenfield, Keith Short, Steve Cook, Stuart Kent,
“Software Factories, Assembling Applications with Patterns,
Models, Frameworks and Tools. Wiley, 2004

� Jean Bézivin, Reiko Heckel (Eds.) “Language Engineering for
Model-Driven Software Development”, Dagstuhl Seminar
Proceedings, 2005

UML/AADL July 12, 2007 Realizing the MDE Vision

Getting there

� Requires deep understanding of gap-bridging
activity
� Understanding can only be gained through development of

solutions, costly experimentation, and systematic
accumulation and examination of modeling and software
development experience

� … development frameworks that realize the MDE vision are
not likely to appear in the near future

� Development has to be incremental and iterative
� Each new generation of MDE tools should address the

accidental complexities of past generations and thus move
us closer to better approximations of the MDE vision

UML/AADL July 12, 2007 Realizing the MDE Vision

Next steps

� Generation 3:
� MDE frameworks that support creation of

DSML editors and some code generation
facilities

� Generation 4:
� MDE frameworks with support for mega-

modeling
� Rudimentary support for models@run.time

UML/AADL July 12, 2007 Realizing the MDE Vision

MDE challenges

� Modeling languages
� Providing support for creating and using appropriate

abstractions

� Separation of concerns
� Providing support for modeling and analyzing views

possibly expressed in different languages

� Model Manipulation and Management
� Providing support for model transformation, composition,

evolution, analysis, roundtrip engineering, …

UML/AADL July 12, 2007 Realizing the MDE Vision

Modeling Languages

UML/AADL July 12, 2007 Realizing the MDE Vision

Tackling the abstraction challenge

Two schools of thought

� The extensible general-purpose
modeling language (GPML) school
� UML with semantic variation points

and profiles

� The domain-specific language
(DSML) school
� Software factories, GME

Finding the “right”
abstractions

UML/AADL July 12, 2007 Realizing the MDE Vision

What about the UML?

“It is easier to perceive error than to
find truth, for the former lies on the
surface and is easily seen, while
the latter lies in the depth, where
few are willing to search for it.”

Johann Wolfgang von Goethe

B. Henderson-Sellers, S. Cook, S.
Mellor, J. Miller, B. Selic,
UML – the Good, the Bad or the
Ugly? Perspectives from a panel
of experts , Software and Systems
Modeling 4(1), 2005.

R. France, S. Ghosh, T. Dinh-
Trong, A. Solberg,
Model-Driven Development
Using UML 2.0: Promises and
Pitfalls ,
IEEE Computer, Vol. 39, No. 2,
February 2006, 59-66

UML/AADL July 12, 2007 Realizing the MDE Vision

Learning from the UML experience:

Avoiding bloat

� Difficulty of identifying a small base set
of modeling concepts that can be used
to express a broad range of
abstractions

� Result: UML 2.0 provides support for
many types of abstractions but the
language definition is not well-structured
� Gives rise to “meta-muddles”

UML/AADL July 12, 2007 Realizing the MDE Vision

Navigating the “meta-muddle”

What relationship does a message end have
with a lifeline?

UML/AADL July 12, 2007 Realizing the MDE Vision

Lifeline (from UML 2.0 metamodel)

UML/AADL July 12, 2007 Realizing the MDE Vision

Messages (from the UML 2.0 specification)

UML/AADL July 12, 2007 Realizing the MDE Vision

NamedElement

name :String
visibility :VisibilityKind

Lifeline

TypedElement Type

ConnectableElement

+type

0..1

+ represents
0..1

*

ConnectorEnd

Connector

*

2..*

Message

/messageKind :MessageKind
messageSort :MessageSort

0..1*

MessageEnd

+ sendEvent
+recieveEvent

0..1

0..1

0..1

0..1

OccurenceSpesi
ficatoin

0
..

1

MessageOccure
nceSpecification

*

ExecutionOccurence
Specification

ExecutionSpecif
ication

+/ signatur

Operation Signal

ValueSpecification +argument
*

+start
+finnish

UML/AADL July 12, 2007 Realizing the MDE Vision

Learning from the UML experience:

Avoiding “meta-muddles”

� UML abstract syntax described by a complex
meta-model
� Complexity problematic for application

developers, modeling tool developers, and for
language standards committees

� Need tools for navigating and for extracting
views from meta-models

� Reflects need for research on engineering
modeling languages

UML/AADL July 12, 2007 Realizing the MDE Vision

DSML challenges - 1

� Creating and evolving languages and their
toolsets
� Need facilities for engineering languages quickly

� Composing language units

� Domains evolve and thus languages and
supporting tools must evolve

� Tool challenge: Need to provide a foundation for
building meta-toolsets

� Language challenge: Need to provide support for
language versioning and migration

UML/AADL July 12, 2007 Realizing the MDE Vision

DSML challenges - 2

� Avoiding the “DSL-Babel”
� A project may use many DSMLs and thus

language interoperability is a concern
� Need to relate concepts across different DSLs

and provide support for maintaining consistency of
concept representations across the languages

UML/AADL July 12, 2007 Realizing the MDE Vision

Tackling the formality challenge: Why not

just use formal methods?

� Does formal methods research subsume
MDE research?

� Not likely
� MDE research provides a context for FST

research
� Current formal techniques are applicable in specific

views of a system
� MDE concerns go beyond describing and analyzing

systems using a limited set of viewpoints

UML/AADL July 12, 2007 Realizing the MDE Vision

Integrated Methods

Rigorous Analysis
•static analysis

•dynamic analysis

UML Metamodel Formal Language

Metamodel

Formalization

based on

Formal Model

conforms to

UML Model

conforms to

UML/AADL July 12, 2007 Realizing the MDE Vision

Pitfalls

� Many UML to formal X notation approaches
� Most force users to be familiar with both UML and formal

notation
� Not aware of any that express formal analysis results in

terms of UML

� Assumption that a single semantics for the UML will
suffice
� UML is a family of languages
� BUT a semantic core for some models may be useful

� Formalizing class model concepts (Evans, France, Bruel, …)
� Formalizing interaction diagrams (Engels, Knapp, …)

UML/AADL July 12, 2007 Realizing the MDE Vision

Integrated Methods

UML Model
Formal ModelFormalization

Rigorous Analysis
•static analysis

•dynamic analysis

feedback

feedbackfeedback

UML Metamodel Formal Language

Metamodel

based on conforms to

conforms to

UML/AADL July 12, 2007 Realizing the MDE Vision

Separating Concerns

UML/AADL July 12, 2007 Realizing the MDE Vision

Developers of mission-critical open distributed software
systems need to balance multiple, interdependent design
concerns such as availability, performance, survivability,
fault tolerance, and security.

Security, safety,

robustness concerns

Quality assurance

concernsBusiness value

concerns

Regulatory

concerns

UML/AADL July 12, 2007 Realizing the MDE Vision

Supporting separation of concerns

� UML 2.0: Supports modeling of artifacts using
13 diagram types

� OMG’s MDA: advocates modeling systems
using a fixed set of viewpoints (CIM, PIM,
PSM)

� Challenge: Providing support for more flexible
separation of concerns
� Aspect Oriented Modeling

UML/AADL July 12, 2007 Realizing the MDE Vision

An AOM Example

Role-based access
control aspect

(RBAC)

Banking RBAC view

instantiate

Banking with RBAC feature

composition

Basic Banking view

UML/AADL July 12, 2007 Realizing the MDE Vision

access control aspect

a b c

primary model

Aspect-Oriented Modeling

UML/AADL July 12, 2007 Realizing the MDE Vision

Aspect-Oriented Modeling

ba c

access control aspect

a b c

primary model

composed model

compose with

to produce

UML/AADL July 12, 2007 Realizing the MDE Vision

Aspect-Oriented Modeling

error recovery aspect

ba c d

composed model

ba c

composed model

compose with

to produce

UML/AADL July 12, 2007 Realizing the MDE Vision

Aspect-Oriented Modeling

ba c d

composed model

misuse model

compose misuse

UML/AADL July 12, 2007 Realizing the MDE Vision

Aspect-Oriented Modeling

Error recovery aspect

ba c d

composed model

misuse model

compose misuse

ba c

access control aspect

a b c

primary model

composed model

compose with

to producecompose with

to produce

UML/AADL July 12, 2007 Realizing the MDE Vision

Separation of concerns challenges

� Supporting verifiable integration of views
� Property preservation
� Establishing presence or absence of emergent properties

� Use of aspect contracts
� Supporting evolution of models consisting of multiple

overlapping views

Research in the viewpoint analysis and feature
interactions domains should be leveraged

UML/AADL July 12, 2007 Realizing the MDE Vision

Model Manipulation and

Management

“A model is something you can play with. You can
change it, see how it responds, and in many other
ways experiment with it.”
(from a slide show produced by Pille Bunnell, Douglas
Tait, Inst. of Animal Resource Ecology, University of
British Columbia)

UML/AADL July 12, 2007 Realizing the MDE Vision

Challenges
� Supporting model analysis

� What is a “good” model?
� Analyzing functional properties and system attributes using

models
� Supporting model transformations, evolution, roundtrip

engineering
� Traceability
� Model versioning
� Integrating generated code and legacy systems
� Analyzing model transformations

� Supporting distributed multi-developer modeling environments
� ModelBus (ModelWare/ModelPlex EU project)

� Supporting mega-modeling
� Models as manipulable entities
� Model type systems

UML/AADL July 12, 2007 Realizing the MDE Vision

Beyond development models …
Models@run.time
Models can be used at runtime to:
� Present aspects of runtime phenomenon
� Support software adaptation

� Adaptation agents can use runtime models to
determine the need for adaptation and to
determine the adaptation needed

� Support controlled evolution of software
� Change agents can use runtime models to correct

design errors and to introduce new features
during runtime

UML/AADL July 12, 2007 Realizing the MDE Vision

Summary
� Software engineering (technical aspects) is essentially a

modeling activity
� MDE highlights the importance of models as explicit

representations of abstractions
� Focus should be on developing a foundation for building MDE

frameworks (meta-tool environments)
� Technologies for effectively managing the web of models

produced in an MDE project are critical to adoption of MDE in
industry

� The MDE vision may not be realizable in its entirety
� But close approximations can reap benefits
� Building close approximations will require developing successive

generations of technologies;
� Each new generation should address the accidental complexities

of the previous generation

UML/AADL July 12, 2007 Realizing the MDE Vision

Accelerating MDE research

� Need facilities for collecting, analyzing and
sharing modeling experience
� A number of initiatives are taking form:

PlanetMDE, ZoooM, Open Models Initiative,
REMODD

UML/AADL July 12, 2007 Realizing the MDE Vision

Learn more about MDE by

attending IEEE/ACM MODELS 2007
Nashville, Tennessee, USA
http://www.modelsconference.org

reading Software and System
Modeling Journal (SoSyM)
Springer
http://www.sosym.org

