
14/07/2007

A Co-modeling Methodology for the Integration

of Real-time Architecture Models

Isabelle Perseil, Laurent Pautet

GET-Télécom Paris

LTCI-UMR 5141 CNRS

ICECCS07- Auckland, New Zealand

Workshop « UML&AADL’2007 »

Page 2 - ICECCS07 - 14/07/2007

Overview

� Introduction

� Part 1 - Atomic components behavior and their

accounting

� Part 2 - Using the AADL to model architectures

� Part 3 - Integrating the +CAL algorithm language into

the AADL formalism

� Part 4 - A proof approach to ensure that the

architecture requirements are followed

� Part 5 - A full generated application

� Conclusion

Page 3 - ICECCS07 - 14/07/2007

Multi layers of design

� Architectural configurations of real-

time and embedded systems have to be

formally verified

� Integration techniques of multiple

domain-specific languages and tools

� Architecture design languages (ADLs)

� AADL

Page 4 - ICECCS07 - 14/07/2007

Algorithms and processes

� Non-functional properties are often specified throu gh
algorithms that mainly involve process units

� Processes are described separately from their

behavior

� Atomic operations of an algorithm define what we call

atomic component behavior

� These atomic operations are hidden in the state

machine formalism, although they are key elements for

proving the correctness of an algorithm

Page 5 - ICECCS07 - 14/07/2007

The grain of atomicity

� Coarser-grained representation (simpler)

� Sequence of system operations � a shorter
sequence of steps (encapsulated)

� May fail to reveal important details of the system

� Or Finer-grained representation : more accurately
describes the behavior

� Involves multiple suboperations

� � Choose the specification’s level of abstraction ?

� What system changes are represented as a single
step of behavior

Page 6 - ICECCS07 - 14/07/2007

Semantic behavior of components

� The semantic behavior of AADL components

is described within an annex

� Neither in the AADL standard, nor in its

Behavioral Annex, is any language specified

to describe atomic component behavior

� It could be expressed either in the most

informal language (natural language) or in a

very formal language

Page 7 - ICECCS07 - 14/07/2007

+CAL integration

� The integration of an algorithm language,

+CAL, into an AADL specification is under

construction through an annex mechanism

� It constitutes the heart of this present

work

� together with the Ada code generation from

Ocarina, our implementation of an AADL

compiler

Page 8 - ICECCS07 - 14/07/2007

Overview

� Introduction –Algorithms are the heart

� Part 1 - Atomic components behavior and their

accounting

� Part 2 - Using the AADL to model Architectures

� Part 3 - Integrating the +CAL algorithm language into

the AADL formalism

� Part 4 - A proof approach to ensure that the

architecture requirements are followed

� Part 5 - A full generated application

� Conclusion

Page 9 - ICECCS07 - 14/07/2007

Atomic components behavior description

� Medvidovic’s ADL classification leaves very

little room for the atomic components

behavior description

� From components to subcomponents, we

have to ensure that the behavior is

consistent, down to the finest grain

� What do we usually mean, in the

architecture design language domain, by

atomic component?

Page 10 - ICECCS07 - 14/07/2007

Services…

� Why an atomic element behavior has to be
described within a totally different
formalism?

� Atomic components are generally
manipulated through a set of primitives that
make up services

� Services are expanded but not reactively to
the requirements changes; in addition, at a
design level, we do not have a generic
thread management

Page 11 - ICECCS07 - 14/07/2007

Choices…

� To avoid the dependence of a limited set of
proved properties, we did not choose to build
a proved algorithms library

� The analysis of a given algorithm through
a set of parameters coming from the
initial requirements

� A fixed number of parameters / a
suitable algorithm
• To prove
• To guaranty that it is consistent with global
architectural non functional properties

Page 12 - ICECCS07 - 14/07/2007

Context…

� To use a formal language to specify architectures in an
industrial context ?

� A specific formal language, but not necessary linked to the
semi formal architecture language

� Looking for a formal language that would be strongly linked to
the architecture language

� allow ease of use and

� rich formal expressivity

� A gradual formal expressivity

� A progression in the formal expressivity can be obtained by
language transformations

� From a language that we could integrate, we would also like to
be able to generate formal verifications

Page 13 - ICECCS07 - 14/07/2007

How to handle a low level behavior design

� Algorithm steps

� A low level in terms of behavior would be the

one in which every necessary element to

figure out the processing is modelized

� We need dynamic, functional, set elements

and operators to properly design the atomic

components behavior

� We will refer to “single steps” by “atomic

component behavior”

Page 14 - ICECCS07 - 14/07/2007

Survey of languages

� Natural language

� Controlled natural languages

� Pseudo code

� CSP-like languages

Page 15 - ICECCS07 - 14/07/2007

Choosing the suitable language for writing algorith ms

� The right level of formalization ?

� From the usual pseudo-code, we will not have enough

constraint formalism to generate a formal language

� Choosing the +CAL language brings numerous

advantages

� The +CAL language provides

� the advantages of high-level code

� the precision of a formal language that can be

mechanically checked

� TLA+ spec � PVS spec

Page 16 - ICECCS07 - 14/07/2007

Overview

� Introduction –Algorithms are the heart

� Part 1 - Atomic components behavior and their

accounting

� Part 2 - Using the AADL to model architectures

� Part 3 - Integrating the +CAL algorithm language into

the AADL formalism

� Part 4 - A proof approach to ensure that the

architecture requirements are followed

� Part 5 - A full generated application

� Conclusion

Page 17 - ICECCS07 - 14/07/2007

Using the AADL to model architectures

� AADL relies on the notion of components

� Component interfaces / Component implementations

� An implementation of a thread or a subprogram can specify
call sequences to other subprograms

� execution flows in the architecture

� Through the use of properties attached to AADL elements,
AADL models can incorporate non-architectural elements:

� execution time

� memory footprint

� behavioral descriptions, etc

� Use AADL as a backbone to describe all the aspects of a
system

Page 18 - ICECCS07 - 14/07/2007

Attaching behavior to AADL components

� The AADL does not particularly address the

description of component behavior

� Using properties, source code can be

associated with AADL components

� This allows for the production of

executable applications from AADL

descriptions

Page 19 - ICECCS07 - 14/07/2007

Attaching Behavior to AADL Components (2)

� The AADL standard also defines a behavioral
annex to describe how to associate state
machines to AADL components

� Describe the actions performed by the
components of the architecture

� formal verification on the execution of
the components

� Lists of states and transitions

� Transitions can depend on inputs, and can
generate outputs or perform actions

Page 20 - ICECCS07 - 14/07/2007

Integration of Concurrent Behavior

� Behaviors involving several threads

cannot be directly described

� The example on the next figure

describes a situation in which

describing local behavior, attached to

each AADL thread, is not sufficient

Page 21 - ICECCS07 - 14/07/2007

Integration of Concurrent Behavior

Page 22 - ICECCS07 - 14/07/2007

Overview

� Introduction –Algorithms are the heart

� Part 1 - Atomic components behavior and their

accounting

� Part 2 - Using the AADL to model architectures

� Part 3 - Integrating the +CAL algorithm language

into the AADL formalism

� Part 4 - A proof approach to ensure that the

architecture requirements are followed

� Part 5 - A full generated application

� Conclusion

Page 23 - ICECCS07 - 14/07/2007

Purpose

� The strict scope of an ADL

� Put the focus on describing the constraints on the
architectural elements, with a property-based
approach is an important step

� Constraints need a constraint language to be
formally described

� For the MetaH language (from which AADL emerged),
an accompanying language (ControlH) for modeling
algorithms was developed

� concentrate on what and not on how ?

� represent the components separately from their
behavior ?

Page 24 - ICECCS07 - 14/07/2007

Integration in AADL Models

� Where the most appropriate place to integrate

algorithm structures is to be found ?

� Within the global system implementation ?

� This system implementation is the place where the main

components (i.e. the processes, the processors, etc.)

are instantiated and connected

� It is also the place to describe the way data

are shared

� In order to be compliant with the AADL annex behavior

specification, atomic behavior should also be attached

to subprogram implementations

Page 25 - ICECCS07 - 14/07/2007

Modifying the Language itself or Adding an AADL Ann ex

� Two ways of undertaking an advanced

algorithm language dedicated to

describing component behavior in an

AADL specification

� each element of AADL could take advantage

of such a feature

� the algorithm language as one more AADL

sublanguage

Page 26 - ICECCS07 - 14/07/2007

Annex subclauses types
system global

end global ;

system implementation global.i

Subcomponents

process1 : process a_process.i ;

process2 : process a_process.i ;

bus1 : bus a_bus ;

processor1 : processor a_processor ;

processor2 : processor a_processor ;

connections

[. . .]

annex algorithm specification { ∗ ∗

algorithm my_algorithm

[. . .]

end algorithm

∗ ∗}

end global.i

Listing 1. Integration of an algorithmic annex in the architectural model

Page 27 - ICECCS07 - 14/07/2007

Choosing the suitable parameters

� Process synchronization design plays a central role in critical
systems

� In order to illustrate the use of algorithms in a classical
architecture design process, we show how a mutex algorithm
implementation can have an influence on the resulting
configuration

� This algorithm guarantees mutually exclusive access to a
critical section among a number of competing processes

� At the same time, when two or more threads want to read or
write the same memory area, we need a reliable mechanism to
lock the access

� Among the well-known mechanisms: mutexes, semaphores,
monitors and protected objects, we have kept the simplest,
to avoid complicated design

Page 28 - ICECCS07 - 14/07/2007

Choosing the suitable parameters(2)

� Our intention is to describe a mutex algorithm with
possible variants

� The variants would obviously correspond to
requirements changes

� We show that these algorithms can’t only be described
into an aadl ‘Property set’

� As a basis for argument, we will take a simple algorithm
that is well-known

� Then, from the specification of this algorithm, we will
show how we can check it using a translator to TLA+
and a model checker for a subclass of ”executable”
TLA+ specifications

Page 29 - ICECCS07 - 14/07/2007

Parameters

� At the AADL design level, we would like to be able to
describe the parameters that will both have an influence on
the construction of the algorithm and on the System
architecture

� As starvation-free strictly depends on the chosen scheduling,
either scheduling type is a parameter or the delay before
entering the critical section

� Therefore, we may now determine around five relevant
parameters

� delay parameter = delay entering in the critical section

� req performance parameters = number of memory access

� upper bound on time required to perform an atomic operation

� upper bound on time needed to execute the critical section

� time to stay in the critical section

Page 30 - ICECCS07 - 14/07/2007

Parameters (2)

� Another relevant parameter will be the use of

guards on the regions, the implementation of

conditional critical region changes the

configuration

� This solution represents some drawbacks

too, and so we may wish to change again

the algorithm, writing the critical region

as a procedure, encapsulated in a monitor,

or a protected object

Page 31 - ICECCS07 - 14/07/2007

Lamport Bakery in +CAL

−−algorithm bakery
variables Extraction = [k \ i n 1 . .N |−> FALSE] ,
Rank= [m \ i n 1 . .N|−> 0] ;
process a_process \ i n 1 . .N
variable q ;

begin
Extraction [a_process] : = TRUE;
Rank [a_process] : = 1 + max(Rank [1] . . Rank [N]) ;
Ex t r a c t i o n [a_process] : = FALSE;
q :=1 ;
while q /= N+1 do

while (Extraction [q])
do skip ;

end while ;
while ((Rank [q] / = 0) /\ ((Rank [q] , q) < (Rank [a_process] , a_process)))

do skip ;
end while ;

q : q+1;
end while ;

\The critical section
Rank [a_process] : = 0 ;
\ non−critical section . . .

end process
end algorithm

Page 32 - ICECCS07 - 14/07/2007

Overview

� Introduction –Algorithms are the heart

� Part 1 - Atomic components behavior and their

accounting

� Part 2 - Using the AADL to model architectures

� Part 3 - Integrating the +CAL algorithm language into

the AADL formalism

� Part 4 - A proof approach to ensure that the

architecture requirements are followed

� Part 5 - A full generated application

� Conclusion

Page 33 - ICECCS07 - 14/07/2007

A proof approach

� The +CAL language has many relevant features

� From +CAL, it is possible to generate as well a program

into a procedural language like C++ (the c version), or

Pascal (the p version), Java and Ada, as well as to

automatically translate the +CAL specification into a

language like TLA+

� Ex : Generating a TLA+ specification from the +CAL

bakery algorithm

� First we reformat the +CAL algorithm as a TLA+

Module to be transformed by the translator

Page 34 - ICECCS07 - 14/07/2007

Generating a TLA+ specification from the
+CAL bakery algorithm

� For the translation, we use the Lamport

+CAL Translator

� Then, after translation, we obtain a

TLA+ specification with labels

� The translation defines an action for

each atomic operation of the algorithm

Page 35 - ICECCS07 - 14/07/2007

Reformatting the Bakery algorithm for TLA+
generation

−−−−−−−−−−−−−−−−−−− MODULE Lamportbakery −−−−−
−−algorithm LamportbakeryAlg
variables Ex t r a c t i o n = [k \ i n 1 . .N |−> FALSE] ;
Rank= [m \ i n 1 . .N|−> 0] ;
process a process \ i n 1 . .N

variable q ;
begin
....−−> see +CAL algorithm (same)
cs : Rank [a process] : = 0 ;

end process
end algorithm
\∗ BEGIN TRANSLATION
\∗ END TRANSLATION
====================================

Page 36 - ICECCS07 - 14/07/2007

The Bakery algorithm in TLA+
VARIABLES Extraction , Rank , pc , q
vars == << Extraction, Rank , pc , q >>

ProcSet == (1 . .N)

Init == (Global variables)
/\ Extraction = [k \ i n 1 . .N |−> FALSE]
/\ Rank = [m \ i n 1 . .N|−> 0]
(∗ Process a_process ∗)
/\ q = [self \ i n 1 . .N |−> {}]
/\ pc = [self \ i n ProcSet |−>

CASE self \ i n 1 . .N −> ” ncs ”]

ncs (self) == /\ pc [self] = ” ncs ”
/\ Extraction’ =

[Extraction EXCEPT ! [a_ process] = TRUE]
/\ Rank ’ = [Rank EXCEPT ! [a_ process] =
1 + max(Rank [1] . . Rank [N])]
/\ pc ’ = [pc EXCEPT ! [self] = ”start”]
/\ UNCHANGED q
. . . .

Page 37 - ICECCS07 - 14/07/2007

The Bakery algorithm in TLA+

.
a_process (self) == ncs (self) \/ start (self)
\/ lab1 (self) \/ lab2 (self)

\/ lab3 (self)

Next == (\E self \in 1 . .N: a_process (self))
\/ (∗ Disjunct to prevent deadlock on termination ∗)
(\A self \in ProcSet : pc [self] = ”Done” /\ UNCHANGED vars)

Spec == Init /\ [] [Next] vars

Termination == <> (\A self \in ProcSet : pc [self] = ”Done ”)

Page 38 - ICECCS07 - 14/07/2007

Overview

� Introduction –Algorithms are the heart

� Part 1 - Atomic components behavior and their

accounting

� Part 2 - Using the AADL to model architectures

� Part 3 - Integrating the +CAL algorithm language into

the AADL formalism

� Part 4 - A proof approach to ensure that the

architecture requirements are followed

� Part 5 - A full generated application

� Conclusion

Page 39 - ICECCS07 - 14/07/2007

Generating Ada Code from the +CAL bakery
algorithm

� From the previous +CAL bakery algorithm, we

can easily instantiate an Ada version

� To be absolutely clear, we will only present

the body of the algorithm

� In Ada, when the processes are waiting, we

have the delay statement, to delay the

execution for a specified period of time

Page 40 - ICECCS07 - 14/07/2007

The procedure entering of the Bakery
algorithm in Ada

procedure entering (a_process : in (proc_index) is
begin
Extraction(a_process) := true ;
Rank(a_process) := 1 + maximum;
Extraction(a_process) := false ;
for q in 1 . .N loop

loop
delay 0 . 0 ;
exit when not Extraction(q) ;
exit when (Rank (q)=0)

or (Rank (a_process)> (Rank (q))
or (a_process > q)

end loop ;
end loop ;
end entering ;
−−
−− Exit Protocol
procedure way_out (a_process : in (proc_index) is
begin

Rank (a_process) := 0;
end way_out ;

end algo Lamport bakery ;

Page 41 - ICECCS07 - 14/07/2007

Injecting the algorithm implementation into
the AADL description

� From the +CAL description of the algorithm, we are able to
produce source code

� We merge the source code we generate with the description
of the initial architecture

� The implementation of the algorithm in itself implies some
modifications in the code executed in the AADL threads

� to add calls to procedures such as entering

� In addition, the Bakery algorithm relies on two variables,
shared by all the threads

� These variables have to be integrated into the architecture,
as shown on the next figure

� The shared data is instantiated in one of the AADL
processes, and accessed by all AADL threads

Page 42 - ICECCS07 - 14/07/2007

AADL(2) merging the source code we generate with the descri ption of

the initial architecture

� To add calls to procedures

� The Bakery algorithm relies

on 2 variables, shared by

all the threads

� have to be integrated into

the architecture

� the shared data are

instantiated in one of the

AADL processes, and

accessed by all AADL

threads

The locking policy of the shared data is centralized
at the level of one process ,
���� can be easily managed

Page 43 - ICECCS07 - 14/07/2007

Introduction to a cross-checking procedure

� The verification on the Bakery algorithm
obtained with TLA+ consists of a proof-based
approach

� It is performed before the design of the
actual architecture

� Once the architecture has been designed, it
can be processed by tools such as Ocarina

� Thus we can perform model checking

� Prototypes of the modeled application can also
be generated for tests

Page 44 - ICECCS07 - 14/07/2007

Overview

� Introduction –Algorithms are the heart

� Part 1 - Atomic components behavior and their

accounting

� Part 2 - Using the AADL to model architectures

� Part 3 - Integrating the +CAL algorithm language into

the AADL formalism

� Part 4 - A proof approach to ensure that the

architecture requirements are followed

� Part 5 - A full generated application

� Conclusion

Page 45 - ICECCS07 - 14/07/2007

Conclusion (1)

� Architecture analysis and design is mostly performed

without any standardized process or methodology

� very little traceability to handle the transition

between the requirements, analysis and

architecture design steps

� On the one hand, in describing the global requirements,

the functional is separated from the non functional

properties

� In the prototype phases, it is often necessary to adapt

the algorithms to the architecture configuration, and

vice versa

Page 46 - ICECCS07 - 14/07/2007

Conclusion (2)

� On the another hand, we build architectures that

follow the requirements but, make abstraction of all

the behavior constraints

� We have proposed to enhance the AADL language by

providing an atomic component behavior design

� Our purpose is to complete the existing gap between

requirements and analysis

� Our methodology provides a way, when choosing

and updating parameters, to dynamically build an

optimal configuration

Page 47 - ICECCS07 - 14/07/2007

Questions ?

