
Essential Ingredients for a WCET Annotation Essential Ingredients for a WCET Annotation
LanguageLanguage

Timing Analysis Cluster MeetingTiming Analysis Cluster Meeting
Munich, March 13, 2007Munich, March 13, 2007

Raimund KirnerRaimund Kirner

TU ViennaTU Vienna

Joint work within ARTIST2 of the Compilers Activity Joint work within ARTIST2 of the Compilers Activity
and the Timing Analysis Activityand the Timing Analysis Activity

Raimund Kirner, Albrecht Raimund Kirner, Albrecht KadlecKadlec, Adrian , Adrian PrantlPrantl, ,
Markus Markus SchordanSchordan, Jens , Jens KnoopKnoop, Peter , Peter PuschnerPuschner

Overview

● The WCET Annotation Language Challenge

● Fundamentals

● First steps towards a common WCET annotation
language

● Attributes of timing information

● List of timing information

● Future work

The WCET Annotation Language Challenge

● Announced in July 2007

● Motivation:
Mastering the WCET Annotation Language Challenge is
essential for consolidating and advancing the state-of-
the-art:
Precision and performance of WCET analysis depends
on expressiveness and usability of the annotation
language

● Goal:
Define a common WCET annotation language to enable
the annotation of benchmarks in a tool-independent way.

Fundamentals

● Using the name of “timing annotations” rather than
“WCET annotations”

● The annotation language does not need to be as
expressive as the programming language

– only properties of the program behavior have to be described,
there is no need to describe the full program semantics

– avoiding unnecessary expressiveness in the annotation
language keeps the WCET analysis efficient.

● Distinction between timing information and timing
annotations

● Flow information is subset of timing information

First Steps Towards a Common Annot. Lang.

● Analysis of existing tools and papers to extract timing
annotation constructs

● Description of existing annotation constructs in a
language-independent way

● Identification of additional constructs
(e.g., invariants/overrules, annotation layers, selective
use by grouping)

● Timing information that is not connected with the
program code is left out of the annotation language

● Summarization of the results in a technical report to
collect feedback

Attributes of Timing Information

● Annotation class: invariant vs. overrule
SBF…feasible system behavior
invariant: SBF ⊆ SB(Iinv)
overrule: ¬(SBF ⊆ SB(Iovr))
overrules can be used to describe application modes

● Annotation layer:
program, platform, operation

● Annotation groups:

– symbolic name with a textual description
(no predefined semantics)

– groups may be nested

– use: selective use of timing information (e.g., multiple platforms,
different sets of overrules)

Layered Timing Annotations

different annotation layers invariants vs. overrules

High-level Annotations

● Loop bounds

● Recursion bounds

● Linear flow constraints

● Variable value restrictions

● Summaries of external functions
(e.g., side effects, value ranges of results)

– used to describe an external function for which no code is
available

Addressable Units

● Control-flow addressable units
– basic blocks

– control-flow edges

– subgraphs

● Loop contexts

● Call contexts

● Control-flow paths

Control-flow Information

● Specification of unreachable code

● Specification of predicate evaluation

● Control-flow reconstruction

Hardware-specific Low-level Annotations

● Specification of clock rate

● Specification of memory map and memory accesses

● Absolute time bounds

Future Work

● Discussion within the ARTIST2 Timing Analysis Activity
to get a common view on the requirements of a timing
annotation language.

● Setting up a homepage to collect and publish different
proposals towards the common timing annotation
language.

● Local meetings with WCET tool vendors and research
groups to discuss the instantiation of concrete timing
annotation languages.

