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Overview

● The WCET Annotation Language Challenge

● Fundamentals

● First steps towards a common WCET annotation 
language

● Attributes of timing information

● List of timing information

● Future work



The WCET Annotation Language Challenge

● Announced in July 2007

● Motivation:
Mastering the WCET Annotation Language Challenge is 
essential for consolidating and advancing the state-of-
the-art:
Precision and performance of WCET analysis depends 
on expressiveness and usability of the annotation 
language

● Goal:
Define a common WCET annotation language to enable 
the annotation of benchmarks in a tool-independent way.



Fundamentals

● Using the name of “timing annotations” rather than 
“WCET annotations”

● The annotation language does not need to be as 
expressive as the programming language

– only properties of the program behavior have to be described, 
there is no need to describe the full program semantics

– avoiding unnecessary expressiveness in the annotation 
language keeps the WCET analysis efficient.

● Distinction between timing information and timing 
annotations

● Flow information is subset of timing information



First Steps Towards a Common Annot. Lang.

● Analysis of existing tools and papers to extract timing 
annotation constructs

● Description of existing annotation constructs in a 
language-independent way

● Identification of additional constructs
(e.g., invariants/overrules, annotation layers, selective 
use by grouping)

● Timing information that is not connected with the 
program code is left out of the annotation language

● Summarization of the results in a technical report to 
collect feedback



Attributes of Timing Information

● Annotation class: invariant vs. overrule
SBF…feasible system behavior
invariant: SBF ⊆ SB(Iinv)
overrule: ¬(SBF ⊆ SB(Iovr))
overrules can be used to describe application modes

● Annotation layer:
program, platform, operation

● Annotation groups:

– symbolic name with a textual description 
(no predefined semantics)

– groups may be nested

– use: selective use of timing information (e.g., multiple platforms, 
different sets of overrules)



Layered Timing Annotations

different annotation layers                       invariants vs. overrules



High-level Annotations

● Loop bounds

● Recursion bounds

● Linear flow constraints

● Variable value restrictions

● Summaries of external functions
(e.g., side effects, value ranges of results)

– used to describe an external function for which no code is 
available



Addressable Units

● Control-flow addressable units
– basic blocks

– control-flow edges

– subgraphs

● Loop contexts

● Call contexts

● Control-flow paths



Control-flow Information

● Specification of unreachable code

● Specification of predicate evaluation

● Control-flow reconstruction



Hardware-specific Low-level Annotations

● Specification of clock rate

● Specification of memory map and memory accesses

● Absolute time bounds



Future Work

● Discussion within the ARTIST2 Timing Analysis Activity
to get a common view on the requirements of a timing 
annotation language.

● Setting up a homepage to collect and publish different 
proposals towards the common timing annotation 
language.

● Local meetings with WCET tool vendors and research 
groups to discuss the instantiation of concrete timing 
annotation languages.


