
Essential Ingredients for a WCET Annotation Language∗

Technical Report 10/2008, rev. March 12th, 2008

Raimund Kirner, Albrecht Kadlec, Adrian Prantl, Markus Schordan, Jens Knoop

Vienna University of Technology, Austria

Abstract

Ambitions towards the definition of common inter-

faces and the development of open frameworks have

been started within the last years to increase the ef-

ficiency of research on WCET analysis. Towards com-

mon interfaces the Annotation Language Challenge for

WCET analysis has been proposed.

Within this paper we present a list of essential ingre-

dients for a common WCET annotation language. The

ingredients we have selected are a summary of features

available in different WCET analysis tools, extended

by several new concepts we identified. The annotation

concepts are described conceptionally to ease instanti-

ation at different representation levels.

Keywords: Worst-case execution time (WCET)
analysis, annotation languages, WCET annotation lan-
guage challenge.

1 Why a Common WCET Annotation
Language?

The situation for WCET analysis is very heteroge-
neous. It is a well known fact, that manual annota-
tions are needed to supplement non-perfect analyzes.
Various tools exist in various stages of sophistication.
However, as the WCET Tool Challenge [8] has shown,
few tools share the same target, analysis method or
annotation language.

While a multitude of targets is beneficial, and a
diversity in tools and methods is favorable, a common

∗This work has been partially supported by the Austrian
Science Fund (Fonds zur Förderung der wissenschaftlichen
Forschung) within the research project “Compiler-Support for
Timing Analysis” (CoSTA) under contract P18925-N13. This
work has been funded in part by the ARTIST2 Network of Ex-
cellence (http://www.artist-embedded.org/).

annotation language is required for an accepted set of
benchmarks in order to evaluate the various tools and
methods. Still as a direct consequence of the first
WCET tool challenge a set of accepted benchmarks
is already being collected, without such annotation
support.

To enable annotations within these benchmarks, the
WCET Annotation Language Challenge [13] has for-
mulated the need for a common annotation language.
This language has the task of specifying the problem-

inherent information in a tool- and methodology-
independent way, supporting e.g.: static analysis
equally well as measurement based methods, thus al-
lowing the combination of their results. It also has
the difficult task to enable annotations at the source

level, which is the natural specification level, as well
as allowing the annotation of binary or object code, if
the source code is not available, like for e.g.: operating
systems or libraries.

This common language may allow the tool develop-
ers to concentrate on their analysis methods, creating
interchangeable building blocks within the timing anal-
ysis framework, as intended by ARTIST2 [11]. Using
this common annotation format as a common interface,
tools can evaluate the same set of sources for a fair
comparison of performance and may exchange analysis
results to synergetically supplement each other. Thus,
the steps of manual annotation, automatic annotation
and timing analysis can be repeated, iteratively refin-
ing the analysis results.

This all should foster common established practices
and may, eventually, lead to standardization, leading to
a broader dissemination of WCET analysis throughout
research and industry.

http://www.artist-embedded.org/

2 Basic Concepts

2.1 Definitions

Flow Information We define flow information to
be any information about the control or data flow of
a program code. Typical examples of flow information
are loop bounds or descriptions of (in)feasible paths.

Timing Information We define timing information

to be any information that is introduced in order to
describe the search space of the WCET analysis. Be-
cause control and data flow represents the basis for the
WCET analysis, the flow information of a program is
always part of the timing information. An example of
timing information that is not also flow information

would be the specification of access times of different
memory areas.

Information versus Annotation We distinguish
between the timing information and the timing anno-

tation of program code. The timing information is the
information per se and the timing annotation is the
linkage of the timing information with the program
code.

There are different techniques possible of how to
annotate the program code with timing information.
For example, one possibility to annotate the program is
to write the timing information directly into the source
code, either as native statements of the programming
language or as a special comment. Another possibility
of annotation is to write

Above arguments apply for control-flow annotations
that are placed directly inside the program code. How
about, if control-flow annotations are placed in sepa-
rate files? A common syntax would make sense if a
programmer has to annotate the program modules at
different representation levels.

2.2 Invariants versus Overrules

Program annotations in WCET analysis are typi-
cally assumed to describe a superset of the possible
program behavior, i.e., program invariants. We extend
this annotation concept to information that doesn’t
have to be a superset of the program behavior. We call
all timing information that describes a superset of the
possible program behavior timing invariants. In con-
trast, we introduce timing overrules as arbitrary tim-
ing information the user wants to be used for WCET
analysis. We add a flag to each timing annotation to
specify whether it is about timing invariants or timing
overrules.

To give a precise criterion of whether a timing infor-
mation is an invariant or an overrule, we define SBF

to be the set containing all feasible system behavior
and SB(I) to be the potential system behavior allowed
by a timing information I and the syntactical control-
flow structure of the program code. For each timing
information Iinv that is an invariant it holds that

SBF ⊆ SB(Iinv)

For each timing information Iovr that is an overrule it
holds that

SBF 6⊆ SB(Iovr)

Timing overrules have a higher priority than any
information given implicitly by the possible program
behavior. In case an analysis tool can check that
given overrules and invariants are in conflict, a warning
should be given. However, depending on the complex-
ity of the annotations and the analysis method, it might
be possible to identify the conflicting annotations. If
the conflict between overrules and invariants cannot be
resolved by giving priority to overrules, an error should
be reported.

2.3 Layers

The WCET of a program cannot be determined pre-
cisely without knowing information about the execu-
tion platform of the program. The execution platform
of a program includes, for example, the development
tools, any operating system, the hardware, and the ap-
plication environment. Naturally, the execution plat-
form is sliced into layers to benefit from the indepen-
dence of different parts of the execution platform. For
example, the operating system is an optional layer that
may be placed on top of the hardware layer, and again,
the layer of the development tool chain may be on top
of the operating system.

These platform layers allow the reuse all timing

annotations that address only properties of platform
layers above any platform layer to be changed. For
example, if we change the processor type but still use
exactly the same code binary, any timing information
describing the behavior of the compiler can still be
reused.

Interestingly, the classification of whether a timing
information is an invariant or an overrule can depend
on the considered level of platform layers. For example,
when looking at the operation environment we might
see that a system has only four sensors, thus the loop
for polling the sensors has a loop bound of 4, which is
an invariant at the operation layer. But if we only look
at the source-code layer then it is not known, how the

2

i = read();

--i;

assert(i < 48);

Program

Assertions

while (i >= 0) {

Invariant: Loopboundwhile = 48

i = read();

while (i >= 0) {

--i;

Overrule: Loopboundwhile = 48

Environment

Static Analysis Manual Annotation

Annotated
Flow Information

Figure 1. Lifting environmental information to the
program layer

program will be used. Thus the same loop bound of 4
will be an overrule at the source-code layer.

2.4 Testing of Invariants

As we have seen in Section 2.3, it is possible for
timing information to originate from the execution en-
vironment. Manual annotation of assumptions about
the environment is potentially hazardous and may yield
incorrect WCET estimates. It is possible, however, to
“lift” environmental information to the program infor-
mation layer, e.g., by inserting range checks and similar
assertions wherever appropriate. The connection be-
tween these two approaches is illustrated in Figure 1.
These kinds of assertions can easily be generated by an
automatic tool and could be valuable for diagnose and
testing of annotations. An example of using runtime
checks with special support by the compiler is Modu-
laR [17].

By lifting annotations from the platform layers to
the program layer, the resulting program becomes a
specialized instance of the original program. These
specializations may also improve the code performance
if it allows the compiler to perform additional code
optimizations.

3 Ingredients of the Basic WCET
Annotation Language

In the following we describe essential ingredients for
a WCET annotation language. The different timing
informations are described at a conceptional level with-
out focusing on the concrete syntax of an annotation
language. The instantiation of a concrete syntax is left
as a separate step. We focus on timing information that

is somehow connected with the program code. Timing
information that is not connected to the program code,
like the description of a cache implementation, is left
out to be better directly specified to the WCET anal-
ysis tool.

The code examples we use to motivate the useful-
ness of the different timing informations are given in
ANSI C.

T1 Annotation Categorization

We define attributes for timing information to
categorize and group them. These categorization
attributes help to organize, check, and maintain
timing annotations.

T1.1 Specification of annotation class

The annotation class is an optional attribute of
timing information in general. As described in
Section 2.2, besides the invariants we introduce
so-called overrules as an additional class of tim-
ing information. A timing information should
therefore contain a flag that indicates whether
it is an invariant or an overrule.

Invariants (default): If not specified explic-
itly, a timing information is by default as-
sumed to be an invariant. An invariant

just makes more explicit what is already
given by the semantics of the system.
For example, given the following code, a
specified upper loop bound of 10 is an in-

variant:

1 for (i = 0; (i < 10); ++i) {

2 a[i] = b[i];

3 }

Overrules: As overrules are used to exclude
feasible system behavior, it is important to
explicitly mark such timing information as
overrule. WCET analysis based on over-

rules may underestimate the real WCET.
On the other side, classifying invariants
mistakenly as overrules may result in un-
expected warnings by the WCET analysis
tool. Overrules may be used to experiment
with the timing behavior of the system.
Another use of overrules is the ability to
analyze the WCET for a selected appli-

cation mode. Application modes describe
subsets of the program behavior and are
typically used to analyze only selected ex-
ecution patterns of the concrete applica-
tion. As an example for an execution mode,
given a communication protocol stack that

3

manages connections between communica-
tion partners, an execution mode of in-
terest might be solely the communication
without the overhead of adding or remov-
ing communication partners.
Referring to the code example given for the
invariant above, an example of an overrule
would be the specification of a loop bound
of 3, since the program semantics implies
that the loop can only iterate 10 times.

The criterion of whether a timing information
is an overrule is not only that it restricts the se-
mantics of the program code. This is because,
as shown in Figure 2.b, the system can be an-
notated at different layers (layers are described
by timing information T1.2). For example, if a
timing information describes properties of the
execution platform, we have to look at the con-
crete execution platform to decide whether the
timing information is an overrule or not.

T1.2 Specification of annotation layer

The annotation layer is an optional attribute of
timing information in general. As described in
Section 2.3, the WCET of a program depends
on its execution platform. The execution plat-
form is typically divided into several layers, al-
lowing the customization of the system at each
layer.

As shown in Figure 2 we propose to support
the specification of at least the following three
layers:

Program Layer (default): If not specified
explicitly, a timing information is by de-
fault assumed to belong to the program
layer, i.e., the timing information is by de-
fault assumed to be platform-independent.
Here it is important to note that in pro-
gramming languages like C or C++ the
functional behavior is not fully platform-
independent, i.e., some timing information
about the control flow may already belong
to the platform layer.

Platform Layer: The platform of a program
includes everything necessary to execute
the program. If a finer granularity is
needed, the platform may be divided into
different layers, like, for example, the build
and run environment, the operating sys-
tem, any middleware, and also the hard-
ware (as shown in Figure 2.a).
For example, the cache geometry and the
cache miss penalty may be specified at

the hardware layer. As another example,
knowing the attached flash memory device,
one may specify the time needed by busy-
waiting for the completion of a write ac-
cess.
Figure 2 also shows the difference between
platform (interface) and layers. In Fig-
ure 2.a we see the different annotation lay-
ers, including the platform layers, each of
them clearly separated from the others. In
contrast, a platform is an interface that
subsumes all the layers below it. Thus, as
shown in Figure 2.b, the influenced system
behavior of each interface contains all lay-
ers below it.

Application Layer: The application layer de-
scribes the usage of the computer system,
i.e., how the environment of the system is
configured and how this environment be-
haves.
For example, timing information may de-
scribe at the application layer that the
computer system is connected to three sen-
sors, implying that a loop in the software to
poll these sensors will iterate exactly three
times.

In case that a timing information describes
properties of different annotation layers, the
annotation layer of a timing information is the
layer equal to the lowest layer among each of
its properties.

The specification of the annotation layer is also
important to decide the annotation class of a
timing information. For example, a concrete
control-flow information may be an invariant

at the application layer, but an overrule at the
program layer. Note that application-modes

belong to annotation class attributes (as a form
of overrule) and not to the annotation layer (see
timing information T1.1).

T1.3 Specification of Annotation Group

Timing informations that are invariants at the
program layer are relatively easy to maintain.
They can be checked directly against the source
code and they only have to be changed if the
program code changes. They remain valid if
the execution platform changes.

For timing information that refers to anno-
tation layers different to the program or tim-
ing information that represents overrules, more
care has to be taken to ensure their intended
use.

4

P
la

tfo
rm

 A
nn

ot
at

io
ns Overrules

Platform−Independent Program Semantics

Invariants

Control−Flow Structure
Build and Run Annotations

Operation Annotations

Hardware Annotations

Annotations
Operating System

Program Annotations
(default)

Program

Platform

Operation

Operation Environment

Platform Properties

Timing Facts

Telescoping Timing Facts

b) System Behavior Described by

a) Layered System View

Figure 2. Layered Timing Information

The grouping mechanism allows to give each
timing information membership to multiple
groups. A group simply is a symbolic name
together with a description field. There is no
special semantics behind the groups: their in-
tended meaning has to be described in its de-
scription field. With the group mechanism one
can specify which timing informations will be
used together for WCET analysis. Hierarchical
definitions of groups is supported by specifica-
tion of an optional list of nested groups.

There are several reasons why one might use
different sets of timing information. For ex-
ample, one might want to use and annotate
different scenarios at the application layer, or
different tool chains at the platform layer, etc.
Also overrules might be organized in groups to
ensure their selective and intended use.

T2 Program-specific High-level Annotations

We define high-level annotations as informations
that directly describe the control flow of a pro-
gram. The term “high-level” hereby refers to the
program layer being at the highest position in the
annotation layer stack.

T2.1 Loop bounds

Loop bounds comprise the minimal information
that is necessary to estimate the WCET of a
simple program. For this reason, they were
the first type of annotation to be introduced
in the short history of WCET annotation lan-
guages [13].

Although loop bounds can always be expressed
through linear flow constraints, there are prac-
tical reasons to allow loop bounds to be spec-
ified in a specialized and more compact nota-
tion. To maintain a tight execution count esti-
mate after certain loop optimizations, it is de-
sirable to specify lower loop bounds as well.

1 // This loop will be executed n times

2 // when the enclosing scope is entered

3 int i;

4 for (i = 0; i < n; ++i) {

5 // Basic block bb
6 }

Annot.: if {i, n} ∈ transpbb then loopboundbb = n

T2.2 Recursion bounds

As soon as the monotonicity of a recursion vari-
able is established, the recursion is bounded
and a maximum recursion depth can be estab-
lished from the start and end values. Stack
space requirements are then bounded using the
recursion depth. If such conditions cannot be
established by analysis, user annotations can
supply the required data. In analogy to the
earlier work on loop-bounds [2], Blieberger and
Lieger establish the conditions necessary for es-
tablishing upper bounds for stack space and
time requirements of directly recursive func-
tions [4]. They also generalize the approach
to indirect recursive functions [3]. Recursion
depth annotations are also used by Ferdinand
et al. [6].

1 // The recursion depth of fac()

5

2 // is depending on n

3 unsigned fac(unsigned n) {

4 if (n == 0) return 1;

5 else return n*fac(n-1);

6 }

Annot.: recursionboundfac = n

T2.3 Linear flow constraints

Linear flow constraints are the basis for state-
of-the-art WCET calculation methods. In the
course of the calculation, all other annotations
will eventually get translated into linear flow
constraints. While flow constraints have a very
high expressiveness, they are not necessarily as
easy to write down as e. g. loop bounds, which
is one of the reasons to allow multiple ways to
annotate the same flow information.

Linear flow constraints are used to express a
relationship between certain reference points in
the CFG of a program. From the perspective
of the source language this necessitates the in-
troduction of auxiliary annotations like mark-

ers (to obtain a reference point) and scopes

(to restrict the lexical validity of a constraint).
The constraints themselves are usually called
restrictions.

1 // This is an example of how to express Linear

2 // Flow Constraints with scopes and markers

3 // Scope({m1})
4 for (i = 0; i < n; ++i) {

5 for (j = i; j ≥ 0; --j) {

6 // Marker m1

7 }

8 }

Annot.: restriction1 = m1 ≤ n ∗ (n − 1)/2

T2.4 Variable value restrictions

This is not a direct control-flow restriction; it
has to be transformed into an explicit control-
flow restriction by a program analysis tool.

1 if (i < 72) {

2 // In this block i is confined to be < 72
3 ...

Annot.: i ∈]−∞, 72[

T2.5 Summaries of External Functions

Often, software libraries are distributed as bi-
naries and without any source code. In these
cases, the library manufacturer could provide
summaries of the library functions that con-
tain the missing information that is necessary
to analyze programs that contain calls to the
library. A summary of a function may con-
tain side effects (list of modified items) or value

ranges of the returned values. A summary func-
tion would become superfluous when the source
code is available.

1 // This function is pure and returns ±1
2 int signum(int x);

Annot.: modifiessignum = ∅

returnssignum = {−1, 1}

T3 Addressable Units

Addressable units in an annotation language are
those that can be associated with timing infor-
mation. The more language constructs and lev-
els of abstraction can be addressed, the more fine
grained the timing information can be specified.
In this section we list all language construct that
we consider relevant for being annotated with
timing information.

T3.1 Control-Flow Addressable Units

typically express relationships between nodes,
edges and paths of the control flow graph
(CFG). If the paths between functions are in-
cluded in the graph as well then we call this
graph an interprocedural control flow graph
(ICFG). Although the ICFG is implicitly de-
fined by the program structure, it is never vis-
ible and will be generated ad hoc in the com-
piler. The annotation language therefore faces
the problem to address entities inside a graph
that has no standardized explicit representa-
tion.

We thus propose the following addressable
units of the ICFG based on the program source
code:

T3.1a Basic blocks as addressable units
Basic blocks are one-to-one equivalent to lo-
cations in the program code with single entry
and single exit points. For timing analysis it
is relevant that execution passes the entry
points as often as the exit points.

T3.1b Edges as addressable units
Edges in the CFG, however, do not necessar-
ily have a direct counterpart in the program-
ming language’s syntax because they are im-
plicitly defined by the semantics of the re-
spective language construct.
To circumvent this problem we introduce
a set of reserved edge-names for each con-
trol flow construct of the source language.
For example, considering some constructs
of the C language, as shown in Fig-
ure 3, these are: TrueEdgeif , FalseEdgeif},

6

while (cond) {

--i;

}

Marker m1

BackEdgewhile

}

--i;

// Marker m1

while (cond) {

Program CFG

Figure 3. Addressable units in the CFG

BackEdgewhile, etc. Such names allow a user
to associate timing information with specific
edges of the respective CFG for a given lan-
guage construct.

T3.1c Subgraphs as Addressable Units
Subgraphs of the control flow graph, the call
graph, or a combination of both, the inter-
procedural control flow graph (ICFG), [15, 1]
can be addressed and thus annotated. For
example, an annotation can be associated
with an entire function, or with a statement
containing several function calls, or some
nested loops.

To handle control flow inside of expressions,
such as function calls and short-circuit eval-
uation, it is necessary to normalize the pro-
gram first. In this step short-circuit evaluation
will be lowered into nested if-statements and
function calls are extracted from the expres-
sions. For addressing subexpressions a map-
ping between the normalized code and the orig-
inal code must be established.

T3.2 Loop Contexts as Addressable Units

For all kinds of loops, it may be of interest
to annotate specific iterations separately, or to
exclude specific iterations, i.e. annotate all but
these specific annotations. The most prominent
example is that the first (few) iteration(s) may
be very different from the following ones due to
cache effects.

1 for (int i = 0; i < n; ++i) {

2 // Due to the warming-up of the cache,

3 // the first iteration will show a

4 // different behavior than the

5 // subsequent iterations

6 for (int j = 0; j < d; ++j) {

7 a[i][j] *= v[j];

T3.3 Call Contexts as Addressable Units

As different call sites are bound to present dif-
ferent preconditions for a function e.g.: input
values, separate annotation of these different
call contexts must be possible.

1 // If f() is called by g(),

2 // the loop will iterate 50 times

3 void g() {

4 f(50);

5 }

6

7 int f(int i) {

8 while (--i ≥ 0) {

9 ...

10 }

Annot.: if calleef = g then loopboundwhile = 50

T3.4 Values of Input Variables as Addressable
Context

If a function behaves significantly different de-
pending on the values of input parameters, it
can be useful to provide different sets of anno-
tations for each case. This kind of annotation
was first introduced with Spark Ada [16] under
the name “modes”.

1 // We want to use a different set of

2 // annotations depending on the value of x

3 int f(int x) {

4 ...

Annot.: if i=0 then Annotationsearly exit

if i≥1 then Annotationsnormal

T3.5 Explicit Enumeration of (In)feasible
Paths

In path-based approaches [5, 9, 16, 18], explicit
knowledge of the feasibility of paths could be
incorporated into the analysis process.

1 // init() is never called through worker()

2 void init();

3

4 void worker() {

5 while (cond) {

6 process();

7 }

8 }

9

10 void process() {

11 if (!initialized)

12 init();

13 ...

14 }

Annot.: pathworker$process$init = 0

T3.6 The Goto Statement

The goto statement is the most general way to
introduce arbitrary new edges into the control
flow graph. Per definition, an (unconditional)

7

goto statement is always the last statement of a
basic block. Thus, it is not necessary to intro-
duce any special annotations to specifically ad-
dress a goto statement in the CFG; the contain-
ing basic block can be used equivalently. If the
target address of a goto is not statically known,
it makes sense to annotate possible jump tar-
gets as described in paragraph T4.3.

The break, continue and return statements are
specialized instances of the goto statement.

T4 Control Flow Information

The CFG is a valuable abstraction level, that can
be refined in various ways to improve the precision
of the analysis. This is to aid the automatic CFG
generation within the tools by additional infor-
mation that is not available within the program
itself.

T4.1 Specification of Unreachable Code

This is a high-level annotation, which has been
used by Heckmann [10]. Unreachable code
could be also specified by linear flow con-
straints, but having a specific mechanism for
this makes the intention of the user more ex-
plicit.

T4.2 Specification of Predicate Evaluation

Closely related to the above case, this was also
introduced by Heckmann [10]. This kind of
annotation describes for a condition/decision
whether it will always evaluate to True or False.

T4.3 Control-Flow Reconstruction

Introduced by Ferdinand [7], and further elab-
orated by Kirner and Puschner [14], the CFG
Reconstruction Annotations are used as guide-
lines for the analysis tool to construct the con-
trol flow graph (CFG) of a program. Without
these annotations it may not be possible to con-
struct the CFG from the binary or object code
of a program.

On one side, annotations are used for the con-
struction of syntactical hierarchies within the
CFG, i.e. to identify certain control-flow struc-
tures like loops or function calls. For example,
a compiler might emit ordinary branch instruc-
tions instead of specific instructions for func-
tion calls or returns. In such cases it might
be required to annotate a branch instruction
whether it is a call or return instruction. A
work-around, that sometimes helps avoiding
code annotations is to match code patterns gen-
erated by a specific version of a compiler. How-
ever, such a “hack” cannot cover all situations

and may also have the risk of incorrect classi-
fications, for example, if a different version of
the compiler is used.

On the other side, annotations may be needed
for the construction of the CFG itself. This
may be the case for branch instructions where
the address of the branch target is calculated
dynamically. Of course, static program analysis
may identify a precise set of potential branch
targets for those cases where the branch target
is calculated locally. In contrast, if the static
program analysis completely fails to bind the
branch target, it has to be assumed that the
branch potentially precedes each instruction in
the code, which obviously is too pessimistic to
be able to obtain a useful WCET bound. In
such a case, code annotations are required that
describe the possible set of branch targets.

The following list summarizes examples of code
annotations derived from aiT [7, 10]:

• instruction <addr>

calls <target-list>;

• instruction <addr>

branches to <target-list>;

• instruction <addr>

is a return;

• snippet <addr>

is never executed;

• instruction <addr>

is entered with <state>;

Note that these annotations need not be linked
to a specific instruction type, since an optimiz-
ing compiler may transform

1 call F

2 jump L

into:

1 push L ; prepare return to different address

2 jump F ; jump to function, return to target

This is also known as triangle call or triangle
jumps. Now the jump instruction represents
the logical call followed by the jump and must
bear both annotations.

Relevant program features: function pointers
and indirect conditional control-flow transfer.

1 // func may only point to reset() or iterate()

2 void process((void)(int∗) func, int ∗data) {

3 (∗func)(data);

4 }

Annot.: targetfunc=

{(void)reset(int*), (void)iterate(int*)}

8

T5 Hardware-specific Low-level Annotations

For a realistic modelling of the execution behavior
of a program, an annotation language also needs
mechanisms to describe the behavior of the un-
derlying hardware. Many of these annotations
are supported by industrial timing analyzers like
aiT[10].

Since hardware-specific annotations are closely
tied to a specific platform, they can easily be
reused for multiple programs running on the same
embedded platform. It thus can make sense to ex-
tract low-level information from the program code
and gather it in a common location that can be
referenced by the annotations of more than one
program.

It is not always obvious where to draw the border-
line between low-level annotations and informa-
tion that is better managed by the analysis tool.
Information like the timing of Cpu instructions
would fall into the latter category, for example.
The following items are examples of informations
that are reasonable to be expressed as annota-
tions:

T5.1 Specification of the Clock Rate

Whenever an absolute time bound is given in
time units (and not in clock cycles), it is nec-
essary to specify clock rate to calculate the
WCET in absolute time.

T5.2 Specification of the Memory and Mem-
ory Accesses

The temporal behavior of memory accesses de-
pends on the characteristics of the memory.
Embedded systems typically use different types
of memory depending on the access frequency
and pattern. It is thus necessary to specify the
following characteristics:

• address range of read operations

• address range of write operations

•writeable memory area (e.g. Ram, Flash-
Rom) and read-only memory area (Rom)

• data and code regions

• access time of specific memory regions (in
cycles or ms)

If the memory is accessed through a cache, the
analyzer also needs to model the behavior of
the cache. However, as said above, the param-
eters of such a hardware model are beyond the
scope of the annotation language and are better
directly specified to the timing analyzer.

T5.3 Absolute Time Bounds

Using such a construct, one could specify the
maximum and minimum execution time of a
fraction of code. Such a feature can be found
in wcetC [12], for example.

1 // Wait for a I/O device to be ready;

2 // the device always responds within 30−100µs
3 char poll() {

4 volatile char io_port;

5 while (io_port 6= 0)

6 /* wait */ ;

7 }
Annot.: executiontimepoll ∈ [30µs, 100µs]

The above features are put in perspective in Fig-
ure 4. For example, loop and recursion bounds are
an alternative way to specify linear flow constraints,
which are the underlying generalized high-level repre-
sentation. Still, the use of more specialized annotations
has priority over generic ones as it allows for meta-
information like grouping. For example, the developer
should use loop bounds instead of the use of linear flow
constraints to describe the upper bound of loop itera-
tions. The idea is to ensure that the WCET annotation
language can be used almost independently of the cal-
culation method of the WCET analysis tool by using
the highest possible abstraction.

Low-level architectural specifications like memory
maps and access times are a much more general way of
specification, than annotating each load or store with
the respective execution times. CFG reconstruction
annotations, on the other hand, are a prerequisite for
low-level binary code to re-gain the abstraction level of
the CFG that can be used for high level annotations.

4 Conclusion

The lack of common interfaces or open analy-
sis frameworks is an impediment for the research in
WCET analysis. Ambitions have been started within
the ARTIST2 network of excellence to define such a
common WCET analysis platform. As part of this,
The Annotation Language Challenge for WCET anal-
ysis has been proposed [13]. This paper is aimed to be
a first step towards a common WCET annotation lan-
guage. It describes essential ingredients such an anno-
tation language should include. The timing informa-
tion is described conceptionally, to allow instantiation
for different representation levels and tools.

As a first step we analyzed literature to collect exist-
ing timing annotation constructs and described them
in a conceptional way. As a second step, we identi-
fied potential need for further mechanisms and devel-
oped some new ingredients for annotation languages.

9

[high level generic specification]
linear flow constraints

loop

Bounds

recursion loop call

Addressable Units

CFG

[mid level generic specification]
variable value limitations

classes layers symbolic

Categorization

Convenient High Level UI

Low Level UI

[low level generic specification]
absolute time / cycles

induce

HW−specification CFG reconstruction

Instr. annotationmemory maplatency

abstracted

Representations

inducesspecified as

refined by

reflect

specified as

induce

reflect

Figure 4. Relation between types of annotations and the various representations.

Among the new contributions are the separation be-
tween invariant and overrule, the introduction of anno-

tation layers, grouping mechanisms, and a discussion of
addressable units for annotation within the program.

The proposed list of ingredients for a WCET anno-
tation language is by no means complete. Feedback
from practitioners and researchers is encouraged to re-
fine this list.

We would like to thank Peter Puschner for his valu-
able comments on earlier versions of this paper.

References

[1] M. Alt, F. Martin, and R. Wilhelm. Generating analyz-
ers with PAG. Technical Report A10/95, Universität des
Saarlandes, Germany, Dec. 1995.

[2] J. Blieberger. Discrete loops and worst case performance.
Computer Languages, 20(3):193–212, 1994.

[3] J. Blieberger. Real-time properties of indirect recursive
procedures. Inf. Comput., 171(2):156–182, 2001.

[4] J. Blieberger and R. Lieger. Worst-case space and time
complexity of recursive procedures. Real-Time Systems,
11(2):115–144, 1996.

[5] R. Chapman, A. Burns, and A. Wellings. Combining static
worst-case timing analysis and program proof. Real-Time
Systems, 11(2):145–171, 1996.

[6] C. Ferdinand, R. Heckmann, M. Langenbach, F. Martin,
M. Schmidt, H. Theiling, S. Thesing, and R. Wilhelm.
Reliable and precise WCET determination for a real-life
processor. In Proc. of the 1st International Workshop
on Embedded Software (EMSOFT 2001), pages 469–485,
Tahoe City, CA, USA, Oct. 2001.

[7] C. Ferdinand, R. Heckmann, and H. Theiling. Convenient
user annotations for a WCET tool. In Proc. 3rd Interna-
tional Workshop on Worst-Case Execution Time Analysis,
pages 17–20, Porto, Portugal, July 2003.

[8] J. Gustafson. The WCET tool challenge 2006. In Pre-
liminary Proc. 2nd Int. IEEE Symposium on Leveraging

Applications of Formal Methods, Verification and Valida-
tion, pages 248 – 249, Paphos, Cyprus, November 2006.

[9] C. A. Healy and D. B. Whally. Automatic detection
and exploitation of branch constraints for timing analysis.
IEEE Transactions of Software Engineering, pages 763–
781, Aug. 2002.

[10] R. Heckmann and C. Ferdinand. Combining automatic
analysis and user annotations for successful worst-case ex-
ecution time prediction. In Embedded World 2005 Confer-
ence, Nürnberg, Germany, Feb. 2005.

[11] IST-004527. The ARTIST2 Network of
Excellence on Embedded Systems Design.
http://www.artist-embedded.org/ , September 1st
2004 - August 31st 2008. funded by the European
Commission within FP7.

[12] R. Kirner. The programming language wcetC. Technical
report, Technische Universität Wien, Institut für Technis-
che Informatik, Treitlstr. 1-3/182-1, 1040 Vienna, Austria,
2002.

[13] R. Kirner, J. Knoop, A. Prantl, M. Schordan, and I. Wen-
zel. WCET analysis: The annotation language challenge.
In Proc. 7th International Workshop on Worst-Case Exe-
cution Time Analysis, Pisa, Italy, July 2007.

[14] R. Kirner and P. Puschner. Classification of code annota-
tions and discussion of compiler-support for worst-case exe-
cution time analysis. In Proc. 5th International Workshop
on Worst-Case Execution Time Analysis, Palma, Spain,
July 2005.

[15] S. S. Muchnick. Advanced Compiler Design & Implemen-
tation. Morgan Kaufmann Publishers, Inc., 1997. ISBN
1-55860-320-4.

[16] C. Y. Park. Predicting program execution times by analyz-
ing static and dynamic program paths. Real-Time Systems,
5(1):31–62, 1993.

[17] A. Vrchoticky. Modula/R - Language Definition. Tech-
nical report, Technische Universität Wien, Department of
Realtime Systems, Vienna, Austria, Mar. 1992.

[18] I. Wenzel, B. Rieder, R. Kirner, and P. Puschner.
Measurement-based worst-case execution time analysis.
In Proc. 3rd IEEE Workshop on Software Technologies
for Future Embedded and Ubiquitous Systems (SEUS’05),
pages 7–10, Seattle, Washington, May 2005.

http://www.artist-embedded.org/

	Why a Common WCET Annotation Language?
	Basic Concepts
	Definitions
	Invariants versus Overrules
	Layers
	Testing of Invariants

	Ingredients of the Basic WCET Annotation Language
	Conclusion

