
IST-004527 ARTIST2 NoE Year 4
Cluster: Compilers and Timing Analysis D13-CTA-Y4
Activity: Platform-based Code Optimization and Verification
 (JPIA Platform)

1/29

IST-004527 ARTIST2
Network of Excellence

on Embedded Systems Design

Activity Progress Report for Year 4

JPIA-Platform

Platform-based Code Optimization and
Verification

Clusters:

Compilers and Timing Analysis

Activity Leader:
Prof. Dr. Sabine Glesner

Technical University of Berlin
http://www.pes.cs.tu-berlin.de/

Policy Objective (abstract)

The objective is to provide world-class code-synthesis and compiler tools for the generation of
efficient machine code. Goals of the cluster include the integration of existing compiler-
generation approaches allowing compilers for new architectures to be built quickly, efficiently
and reliably.

IST-004527 ARTIST2 NoE Year 4
Cluster: Compilers and Timing Analysis D13-CTA-Y4
Activity: Platform-based Code Optimization and Verification
 (JPIA Platform)

2/29

One goal of the compilers sub-cluster is to achieve a tighter integration of European R&D
activities by building on a carefully chosen industrial re-targetable compiler development
platform that ensures interoperability.

The CoSy compiler platform provided by ACE is a state-of-the-art software system on which
many of the common activities have been built. This has reinforced Europe’s leading position in
the area of compilers for embedded processors.

IST-004527 ARTIST2 NoE Year 4
Cluster: Compilers and Timing Analysis D13-CTA-Y4
Activity: Platform-based Code Optimization and Verification
 (JPIA Platform)

3/29

Table of Contents

1. Overview of the Activity..4
1.1 ARTIST Participants and Roles ...4
1.2 Affiliated Participants and Roles ..4
1.3 Starting Date, and Expected Ending Date ...4
1.4 Baseline...4
1.5 Problem Tackled in Year 4 ..5
1.6 Comments From Year 3 Review..6

1.6.1 Reviewers’ Comments...6
1.6.2 How These Have Been Addressed..6

2. Summary of Activity Progress ..7
2.1 Previous Work in Year 1 ..7
2.2 Previous Work in Year 2 ..7
2.3 Previous Work in Year 3 ..7
2.4 Final Results ..9

2.4.1 Technical Achievements..16
2.4.2 Individual Publications Resulting from these Achievements..................................18
2.4.3 Interaction and Building Excellence between Partners..21
2.4.4 Joint Publications Resulting from these Achievements ...22
2.4.5 Keynotes, Workshops, Tutorials ..23

3. Milestones, and Future Evolution Beyond the NoE..26
3.1 Milestones ...26
3.2 Indicators for Integration..26
3.3 Main Funding...27
3.4 Future Evolution Beyond the Artist2 NoE ..27

4. Internal Reviewers for this Deliverable...29

IST-004527 ARTIST2 NoE Year 4
Cluster: Compilers and Timing Analysis D13-CTA-Y4
Activity: Platform-based Code Optimization and Verification
 (JPIA Platform)

4/29

1. Overview of the Activity

1.1 ARTIST Participants and Roles
Prof. Dr. Sabine Glesner – Technical University of Berlin (Germany)

Activity Leader, Compiler Verification and Optimization.

Prof. Dr. Rainer Leupers – RWTH Aachen University (Germany)
Software for Systems on Silicon.

Prof. Dr. Peter Marwedel – Dortmund University (Germany)
Leader of cluster “Compilers and Timing Analysis”, Architecture-aware compilation,
low-power code generation, Development of optimizations for WCET minimization.

Hans van Someren – ACE (The Netherlands)
CoSy Lead Technical Architect. Core expertise used in ARTIST2: Software
compilation techniques.

Prof. Dr. Reinhard Wilhelm – Saarland University (Germany)
Compiler design, Static Program Analysis, Timing Analysis.

1.2 Affiliated Participants and Roles
Dr. Christian Ferdinand – AbsInt (Germany)

Program-Analysis Tools, Leading WCET estimation tool supplier.

Dr. Stylianos Mamagkakis, Prof. Francky Catthoor – IMEC vzw. (Belgium)
Collaboration with TU Dortmund. on high-level transformations for source code
optimization.

Dr. Markus Schordan, Prof. Andreas Krall – TU Vienna (Austria)
Collaboration with AbsInt on tool integration and development of program analyses
Areas of team's expertise: Development of tools for program analysis and
optimization of high-level languages

1.3 Starting Date, and Expected Ending Date
September 1st, 2004 until September 2008.

1.4 Baseline
Traditionally, timing analysis tools have been designed independently of compilers. It has now
turned out that proceeding along this path would result in a duplication of efforts. Flow facts are
available in compilers and need to be regenerated in timing analysis tools. Timing information
is available in timing analysis tools and would be useful for timing-aware optimizations in
compilers. Currently, compilers use very rough approximations of timing, if they use any timing
model at all. As a result, the impact of certain transformations on run-time is frequently not
known by compilers. Hence, the user has to follow a trial-and-error approach, experimenting
with different compiler options and figuring out a suitable combination of them. However, even
this time-consuming process cannot really minimize the execution time since options which
might be good for some part of the code might lead to bad result for some other part of the

IST-004527 ARTIST2 NoE Year 4
Cluster: Compilers and Timing Analysis D13-CTA-Y4
Activity: Platform-based Code Optimization and Verification
 (JPIA Platform)

5/29

code. A tight integration of timing models into compilers and their optimizations is urgently
needed.

There is a general trend in the industry to replace non-programmable hardware accelerators
(NPAs) with flexible reconfigurable cores, which have specialized resources and instructions
dedicated to a class of applications. These reconfigurable cores create new challenges for
embedded development tools and especially for compilers, and new challenge for processor
architecture investigation tools.

Examples of configurable cores include Xtensa from Tensilica, ARC600 and 700 from ARC,
CoreXtend from MIPS. Examples of flexible development tools are the Coware/LISATek
processor and compiler designer based on CoSy Express, or the toolsets proposed by
Tensilica and ARC for their core extension development.

Many applications in the embedded systems domain are both resource-restricted and safety-
critical. This in turn requires compilers for embedded processors to be both efficient and
correct. In cooperation between the Technical University of Berlin and ACE, verification
methods and tools for compilers have been investigated.

1.5 Problem Tackled in Year 4
Based on the first approaches towards WCET-aware compiler optimization reported by TU
Dortmund and AbsInt for Year 3 of Artist2, Year 4 focused on the development of more
sophisticated WCET-aware optimizations. As an outcome of the current reporting period, it
could be shown that combined procedure positioning and procedure cloning allows for
improved WCET estimates; simultaneously, huge code size increases which were a an issue
for the techniques reported during Year 3 of Artist2 are avoided now. Additionally, WCET-
aware memory hierarchy exploitation using data and instruction scratchpads and using WCET-
aware register allocation was studied. Furthermore, the infrastructure of the WCET-aware
compiler developed at TU Dortmund was complemented by a fully automated static loop
analyzer of superior quality. The work on timing-aware compiler analyses and optimizations
was published on international conferences and workshops of very high quality.

ACE and TU Berlin continued their cooperation for further improving the Itanium compiler
platform. At TU Berlin, we developed more compiler optimization techniques to overcome the
impact of the memory wall. To this end, we consider novel speculative optimization techniques
of memory accesses to reduce their effective latency. In one approach, we developed a
speculative optimization which reduces the number of memory accesses caused by the use of
global variables, and we could show that notable performance improvements can be obtained
for the SPEC CPU2006 benchmarks. Besides, we also developed a speculative optimization
which targets memory accesses in general. Using statistical machine learning techniques, we
trained predictors to learn the memory dependency degree of a given pair of accesses. The
result is used in our optimization to decide about the profitability of a given optimization step.
Preliminary results show that the predictors can effectively and precisely predict the memory
dependencies for previously unseen pairs of memory instruction.

Besides, we also considered how the correctness of compilers can be improved via formal
verification. One crucial phase in the compiler is the code generation. Due to its complexity, it
is highly error prone. We formalized important parts of the semantics of the intermediate
representation within the compiler and of the Itanium assembler code, respectively. From that,
we could prove code generation as correct for a subset of the language.

Aachen and ACE continued their cooperation. ACE productized the conditional execution
engines and further development on the analysis framework around the SIMD engines has
been developed by a student from Aachen.

IST-004527 ARTIST2 NoE Year 4
Cluster: Compilers and Timing Analysis D13-CTA-Y4
Activity: Platform-based Code Optimization and Verification
 (JPIA Platform)

6/29

AbsInt and Dortmund continued their work on a WCET-aware compiler. This compiler uses the
AIR interface format and aiT technology to determine WCET estimates for various code
possibilities and then to select the most efficient of these.

TU Vienna and AbsInt further integrated SATIrE and PAG, for performing whole-program
source-code analysis of C/C++ applications and evaluated the scalability of WCET analysis
methods in the presence of optimizations with the Mälerdalen Benchmark suite. In year four,
SATIrE was improved and made operational. In cooperation with Saarland University, it was
successfully applied to the analysis of loop bounds and function pointers.

TU Vienna also participated in the WCET Tool Challenge with TuBound, a tool built with
SATIrE and PAG in 2008. This also motivated further research in annotation languages and
new concepts for source code annotation-based WCET analysis. The iterative refinement
technique of annotations, and the transformation of annotations according to performed
compiler optimizations, was the most crucial conceptual achievement.

IMEC has continued research related with data memory hierarchy assignment optimizations.
More specifically, we developed a fully automatic application analysis and transformation tool
which selects static data-structures for transfer to the Scratchpad Memory (SPM) and
schedules data transfers between background memory and SPM (pre-fetching) to achieve both
high performance and low power consumption. Moreover, profiling and analysis tools were
developed to leverage on information about the dynamic data access behavior of
simultaneously executing threads in order to enable the relevant memory data transfer
optimizations.

1.6 Comments From Year 3 Review

1.6.1 Reviewers’ Comments
This is a quality document. No specific remarks.

1.6.2 How These Have Been Addressed
We are happy to hear the positive comment and hope that the same holds for this document.

IST-004527 ARTIST2 NoE Year 4
Cluster: Compilers and Timing Analysis D13-CTA-Y4
Activity: Platform-based Code Optimization and Verification
 (JPIA Platform)

7/29

2. Summary of Activity Progress

2.1 Previous Work in Year 1

2.1.1 Cooperation AbsInt – TU Vienna
Our goal for Year 1 was the integration of the Program Analysis Generator (PAG) of AbsInt in
several platforms to share the same analysis in different infrastructures and leverage existing
optimizations for evaluation. We created a tool, the PAG Interface Generator (PIG), to
automate the PAG integration. The two different infrastructures which served as applications
for the PAG integration by using PIG were ROSE and OCE/xDSPcore. ROSE is a source-to-
source infrastructure that supports C++ (and Fortran in near future). The OCE/xDSPcore is the
ATAIR open compiler infrastructure with a backend for digital signal processors.

Achievements for Year 1: Our goal for Y1 was the creation of a tool, PIG, to automate most
aspects of the PAG integration and prove its usefulness by using it for integrating PAG in
ROSE and OCE/xDSPcore. We have achieved both goals such that we can demonstrate the
result by having a constant propagation analysis (as test) running in both environments.

2.1.2 Cooperation IMEC – University of Dortmund
The cooperation between IMEC and University of Dortmund resulted in the alignment of the
research objectives for the steering of locality-improving loop transformations at the source
code level. For this purpose, the control flow complexity of a given source code should be
evaluated for steering the loop-transformations and evaluating their benefits and overheads,
before actually compiling the resulting code on the target platform. The requirements (the
WHAT specifications) to tackle this problem were defined. Based on the WHAT specifications,
Dortmund looked at high-level control flow cost estimation approaches that could base its
estimate when only the source code is available (without performing any compilation). At IMEC
complementary actions had been started to see how this estimator can be integrated in a loop
transformation framework project that had been started up earlier (prior to the start of
ARTIST2) and that is now being extended for these high-level estimators.

2.2 Previous Work in Year 2

2.2.1.1 Dortmund – AbsInt

Design of a WCET-aware C Compiler
Based on the interface language CRL2 of AbsInt’s timing analysis tool aiT, a successful
integration of timing analysis into the compiler infrastructure of Dortmund University was
achieved. This was done by automatically translating the assembly-like contents used in
compilers to aiTs CRL2 format. Additionally, the results produced by the WCET analyzer aiT
were automatically collected and re-imported into the compiler infrastructure. This way, precise
timing information is available within a compiler for future optimization for the very first time. In
addition, a powerful mechanism was developed to attach not only WCET-related data to the
compiler data structures, but also to store arbitrary information used by optimizations targeting
different objectives than WCET. This approach will be useful in order to perform automated
trade-offs between different optimization goals.

IST-004527 ARTIST2 NoE Year 4
Cluster: Compilers and Timing Analysis D13-CTA-Y4
Activity: Platform-based Code Optimization and Verification
 (JPIA Platform)

8/29

Source Code Transformation for WCET-Optimization

The influence of the loop nest splitting source code optimization on the worst-case execution
time (WCET) was examined. Loop nest splitting minimizes the number of executed if-
statements in loop nests of embedded applications. It identifies iterations of a loop nest where
all if-statements are satisfied and splits the loop nest such that if-statements are not executed
at all for large parts of the loop’s iteration space. Especially loops and if-statements of high-
level languages are an inherent source of unpredictability and loss of precision for WCET
analysis. As a consequence, the optimization achieves a significantly more homogeneous
control flow structure. Additionally, the precision of the optimization algorithms led to the
generation of very accurate high-level flow facts. All together, considerable reductions of
WCET were achieved by the source code optimization.

http://ls12-www.cs.uni-dortmund.de/research/C2C

2.2.1.2 ACE – Aachen

Optimization of Conditional Execution in CoSy

A dynamic programming algorithm is being implemented and tested on a number of different
architectures to validate its behavior with real world code and current high-end industrial
processors.

A prototype comprising a set of optimization engines and compilers has been constructed.

No-one has successfully been able to find a formalism or generate tools which facilitate generic
retargeting of these algorithms.

2.2.1.3 TU Berlin – ACE

TU Berlin, who joined the ARTIST2 NoE as an affiliated partner in Y2 and became a core
partner in Y3, has worked on the verification as well as on the development of optimizing
compiler transformations and machine code generation. Especially in safety-critical
applications in the embedded domain, compiler transformations must be both optimizing and
correct. Hence, verification is necessary to ensure that transformations indeed preserve
program semantics during compilation. Within ARTIST2, the focus is on the development of
automated checkers that, for a particular compiler run with its source and target program, make
sure that both programs are indeed semantically equivalent. As a starting point, the verification
and development of checkers for loop transformations based on unimodular transformations
has been investigated.

2.2.1.4 Dortmund – IMEC

The main technical outcome of the Dortmund-IMEC collaboration has been an agreement on
the basic guidelines for the source to source transformations regarding static and dynamic
optimizations (at design time and at run time respectively). These optimizations will target the
loop transformations and memory assignment of statically and dynamically allocated data in
complex memory hierarchies. The collaboration is mainly based on synchronized, individual
work of each of the two partners and aims on common work through PhD research.

2.2.1.5 AbsInt – TU Vienna

Extension of the ROSE-PAG integration from C to C++ and Implementation of Alias
Analysis.
The ROSE-PAG integration achieved in Y1 for C was substantially extended to cover full C++
(only excluding Exceptions). This includes handling of templates, virtual methods, short-circuit
evaluation in conditions, resolving overloaded functions, C++ name spaces, constructor and
destructor calls. An intra-procedural shape analysis, published by our cluster partner Reinhard

IST-004527 ARTIST2 NoE Year 4
Cluster: Compilers and Timing Analysis D13-CTA-Y4
Activity: Platform-based Code Optimization and Verification
 (JPIA Platform)

9/29

Wilhelm, was implemented using PAG. We extended the analysis to an inter-procedural shape
analysis. The results of the analysis can be written to an external file and visualized using the
tool AiSee.

Infrastructure for high-level specification of C++ program analyses
With the integration of PAG in ROSE, an infrastructure is available that permits using a high-
level language for specifying an abstract interpretation of C++ programs. ROSE uses the EDG
front end for parsing C++ and offers a powerful interface for accessing and transforming the
abstract syntax tree (AST). The decorated AST offers the full type information of C++ input
program and the PAG-ROSE integration permits using this type information in the PAG
specification (e.g. for virtual method resolution).

Difficulty: Handling of the wide range of programming constructs of a general-purpose
language
C++ has such a rich set of programming constructs that research prototypes of analyses often
only consider subsets of C/C++. Our goal was to create an infrastructure that permits
performing research on real-world programs. In particular, the interface between PAG and
ROSE required a careful design, such that we can maintain updates of ROSE and PAG, but
keep the required changes in existing analysis specifications at a minimum. Our approach is
grammar based and permits the generation of the used design patterns, glue code (between
ROSE and PAG), and implementations of the required interfaces.

2.3 Previous Work in Year 3

2.3.1 Technical Achievements
SIMD & Conditional Execution Support in CoSy (Aachen, ACE)

• SIMD retargeting: A retargeting formalism for the SIMD optimization developed earlier
has been devised. The SIMD instructions can now be described within CoSy's natural
code generator description format. To achieve this, adaptations to the backend
generator were necessary and improvements in data dependency analysis were
devised.

• SIMD enabling loop transformations: Several loop transformations, such as strip
mining and loop peeling, that increase the number of possible SIMD operations have
been implemented in the CoSy system. They interact with the SIMD optimizer and
consult the code generator description in order to assess the benefit of each
transformation.

• Conditional execution retargeting: The retargetability of the conditional execution
optimization previously done has been shown by adding support for a commercial,
CoSy based, compiler. The results of this work by a student from Aachen led to several
improvements in the cost calculation and to beneficiary transformations.

Transformation of Flow Facts within Optimizations of a WCET-aware Compiler
(Dortmund University)

Timing analysis relies on the presence of highly precise flow facts. Flow facts represent
information about the possible flow of control through a program under analysis – e.g. iteration
counts of loops. Usually, such information is provided by the designer who is fully responsible
for its correctness. In the context of the WCET-aware compiler developed at Dortmund in the

IST-004527 ARTIST2 NoE Year 4
Cluster: Compilers and Timing Analysis D13-CTA-Y4
Activity: Platform-based Code Optimization and Verification
 (JPIA Platform)

10/29

past years, flow facts can now be entered into the compiler within the source code to be
processed by the compiler. These flow facts are analyzed and kept semantically correct during
each transformation performed by the compiler. In particular, all flow facts are maintained and
adjusted during all compiler optimizations, even if they heavily restructure the code. These
automatically transformed flow facts are finally passed to the WCET analyzer aiT provided by
AbsInt, in order to perform the actual WCET analysis. This achievement has taken away the
burden from the designer to specify flow facts at the assembly code level. Instead, the designer
now can annotate the source code, invoke the compiler, perform optimizations, and still obtains
valid WCET results.

http://ls12-www.cs.uni-dortmund.de/

Compile-Time Decided Instruction Cache Locking Using Worst-Case Execution Paths
(Dortmund University, AbsInt)

Caches are notorious for their unpredictability. It is difficult or even impossible to predict if a
memory access results in a definite cache hit or miss. This unpredictability is highly undesired
for real-time systems. The Worst-Case Execution Time (WCET) of software running on an
embedded processor is one of the most important metrics during real-time system design. The
WCET depends to a large extent on the total amount of time spent for memory accesses. In
the presence of caches, WCET analysis must always assume a memory access to be a cache
miss if it cannot be guaranteed that it is a hit. Hence, WCETs for cached systems are
imprecise due to the overestimation caused by the caches.

Modern caches can be controlled by software. The software can load parts of its code or of its
data into the cache and lock the cache afterwards. Cache locking prevents the cache's
contents from being flushed by deactivating the replacement. A locked cache is highly
predictable and leads to very precise WCET estimates because the uncertainty caused by the
replacement strategy is eliminated completely.

In year 3 of Artist2, the lockdown of instruction caches at compile-time to minimize WCETs was
explored. In contrast to the current state of the art in the area of cache locking, our techniques
explicitly take the worst-case execution path into account during each step of the optimization
procedure. This way, we can make sure that always those parts of the code are locked in the I-
cache that lead to the highest WCET reduction. The results demonstrate that WCET reductions
from 54% up to 73% can be achieved with an acceptable amount of CPU seconds required for
the optimization and WCET analyses themselves.

http://ls12-www.cs.uni-dortmund.de/

Influence of Procedure Cloning on WCET Prediction (Dortmund University, AbsInt)
For the worst-case execution time analysis, especially loops are an inherent source of
unpredictability and loss of precision. This is caused by the difficulty to obtain safe and tight
information on the number of iterations executed by a loop in the worst case. In particular,
data-dependent loops whose iteration counts depend on function parameters are extremely
difficult to analyze precisely. Procedure Cloning helps by making such data-dependent loops
explicit within the source code, thus making them accessible for high-precision WCET
analyses.

In year 3 of Artist2, we studied the influence of standard optimizations found in ordinary
compilers on the program’s WCET. We present the effect of Procedure Cloning applied at the
source-code level on worst-case execution time. The optimization generates specialized
versions of functions being called with constant values as arguments. In standard literature, it

IST-004527 ARTIST2 NoE Year 4
Cluster: Compilers and Timing Analysis D13-CTA-Y4
Activity: Platform-based Code Optimization and Verification
 (JPIA Platform)

11/29

is used to enable further optimizations like constant propagation within functions and to reduce
calling overhead.

Our work shows that Procedure Cloning for WCET minimization leads to significant
improvements. Reductions of the WCET from 12% up to 95% were measured for real-life
benchmarks. These results demonstrate that Procedure Cloning improves analyzability and
predictability of real-time applications dramatically. In contrast, average-case performance as
the criterion Procedure Cloning was developed for is reduced by only 3% at most. Our results
also show that these WCET reductions only implied small overhead during WCET analysis.

http://ls12-www.cs.uni-dortmund.de/

Optimization and Verification in Compilers (TU Berlin, ACE)
TU Berlin works on the verification as well as on the development of optimizing compiler
transformations and machine code generation. Especially in safety-critical applications in the
embedded domain, compiler transformations must be both optimizing and correct. Hence,
verification is necessary to ensure that transformations indeed preserve program semantics
during compilation. Within ARTIST2, the focus is on the development of automated checkers
that, for a particular compiler run with its source and target program, make sure that both
programs are indeed semantically equivalent

TU Berlin has established a platform for a research compiler, using the compiler tool CoSy
provided by ACE. We developed a backend specification for the Intel Itanium processor, which
gave us an industrial-strength compiler for this architecture (the current SPEC benchmark suite
CPU2006 is compiled). The challenges in establishing this platform have been to exploit the
special features of the Itanium, e.g. predication. On top of that, first optimizations have been
developed. These optimizations mainly aim at reducing the impact of the memory wall on
program performance, which is drastic on modern VLIW processors like the Itanium.

Furthermore, we investigate how verification techniques can be brought into practice, in order
to ensure that the code generated by the compiler is correct. We considered the scheduling
phase of a compiler, which rearranges the instructions of a program in order to improve
runtime performance. We formalized the scheduling phase in the theorem prover Isabelle/HOL
and derived a criterion that is necessary for correctness of the scheduled code. From this
criterion, we automatically generated the core of a checker (facilitated by the code generation
capabilities of Isabelle) which can be used to augment any existing scheduler. By this, we
discovered a bug in the scheduler of the popular GNU assembler, which lead to possibly
incorrect programs.

http://www.pes.cs.tu-berlin.de/

Optimized Dynamic Memory Allocation (IMEC vzw.)

The main technical achievement of IMEC (in the context of the collaboration with Dortmund
Uni.) is the realization of multiple fine-grain dynamic memory allocation design options in
software modules of the standard compiler library (e.g., libc), which can be parameterized and
combined in many ways. Then, we extract application specific information (i.e., Software
Metadata) and memory hierarchy specific information (i.e., Hardware Metadata) from the
embedded system design. All this metadata information is exploited by our tools, which
parameterize and combine the aforementioned dynamic memory allocation modules using
energy efficiency criteria. The final result is the construction of a unique dynamic memory
allocator, which is compiled with the software application and utilizes a unique combination
design options. This unique design fine tunes its energy consumption management according

IST-004527 ARTIST2 NoE Year 4
Cluster: Compilers and Timing Analysis D13-CTA-Y4
Activity: Platform-based Code Optimization and Verification
 (JPIA Platform)

12/29

to the unique characteristics of the software application and the memory hierarchy of the
embedded system.

Automatic Source-Code Annotation (TU Vienna, AbsInt)

Source-Code annotations allow for providing additional semantic information. Our goal was to
support programmers in providing the information that the analyzer can determine
automatically in a readable form, such that the need for user-defined annotations is minimized.
We have created a general mechanism that allows for annotating source codes automatically
with a textual annotation representing the results of arbitrary analysis results. The annotation
mechanism is implemented as a source-to-source transformation at the statement level,
generating analysis information either as comments or pragmas at the corresponding
statement positions in the C/C++ source-code. A first application of this mechanism allows us
to generate may-alias and must-alias annotations based on the results of a shape-analysis.

External Program Representation for Tool Interoperability (TU Vienna, AbsInt)

An external program representation permits to build tool chains for program analysis and
transformation. We have designed and implemented an external representation for C
programs. The connection has been established in both directions, for generating an external
C representation as well as reading in the external representation. For the external format we
have chosen Prolog syntax, because it is suitable for querying programs and specifying
transformations at a high-level. This new feature has already been used in cooperation with the
CoSTA project for specifying the transformation of WCET annotations according to loop
optimizations performed with our LLNL-ROSE loop optimizer at the C code level.

The tools LLNL-ROSE, the ROSE loop optimizer, the Program Analysis Generator (PAG), and
the generator and parser for the external program representation have been integrated within
the Static Analysis Tool Integration Engine (SATIrE), which aims at offering the combined
features of all tools to the user through a single interface and a set of new specialized tools.
The full C++ language has been addressed, in particular virtual methods, templates,
constructor/destructor calls, function pointers, etc. – only exceptions are not addressed yet.
ROSE permits generating C++ code and lowered C code. The generated code can serve as
input to ACE's compiler for generating optimized machine code.

http://www.complang.tuwien.ac.at/markus/satire/

2.3.2 Individual Publications Resulting from these Achievements
Aachen

 S. Kraemer, R. Leupers, G. Ascheid, H. Meyr: SoftSIMD: Exploiting Subword
Parallelism Using Source Code Transformations, Design Automation & Test in Europe
(DATE), Nice (France), Apr 2007

 H. Scharwaechter, R. Leupers, H. Meyr, J. Youn, Y. Paek: A Code-Generator
Generator for Multi-Output Instructions, IEEE/ACM Int. Conf. on Hardware/Software
Codesign and System Synthesis (CODES + ISSS), Salzburg (Austria), Oct 2007

IST-004527 ARTIST2 NoE Year 4
Cluster: Compilers and Timing Analysis D13-CTA-Y4
Activity: Platform-based Code Optimization and Verification
 (JPIA Platform)

13/29

TU Dortmund
 Paul Lokuciejewski, Heiko Falk, Martin Schwarzer and Peter Marwedel. Tighter WCET

Estimates by Procedure Cloning. In Proceedings of “The 7th International Workshop on
Worst-Case Execution Time Analysis” (WCET), Pisa, Italy, July 2007.

 Heiko Falk and Peter Marwedel (Editors). Proceedings of the 10th International
Workshop on Software & Compilers for Embedded Systems (SCOPES), Nice, France,
April 2007.

TU Berlin

 L. Gesellensetter, S. Glesner, E. Salecker: Formal Verification with Isabelle/HOL in
Practice: Finding a Bug in the GCC Scheduler, 12th International Workshop on Formal
Methods for Industrial Critical Systems (FMICS 2007), 2007.

IMEC vzw.

 S. Mamagkakis, D. Soudris, F. Catthoor: Middleware design optimization of wireless
protocols based on the exploitation of dynamic input patterns. DATE 2007: 1036-1041

 M. Peon-Quiros, A. Bartzas, S. Mamagkakis, F. Catthoor, J. M. Mendias, D. Soudris:
Direct Memory Access Optimization in Wireless Terminals for Reduced Memory
Latency and Energy Consumption. PATMOS 2007: 373-383

TU Vienna

 Raimund Kirner, Jens Knoop, Adrian Prantl, Markus Schordan, Ingomar Wenzel:
WCET Analysis: The Annotation Language Challenge. 7th Workshop on WCET
Analysis, Pisa, Italy, July 3, 2007.

 Markus Schordan: The Language of the Visitor Design Pattern. Journal of Universal
Computer Science (JUCS), Vol. 12, No. 7, pp. 849-867, August 2006.

 Markus Schordan: Integrating Tools and Languages for Source-Based Static Analysis
and Optimization of High-Level Abstractions. Post-Workshop Proceedings of the GI-
Fachgruppe Programmiersprachen und Rechenkonzepte, 2007.

2.3.3 Interaction and Building Excellence between Partners
Compiler teams from Aachen and ACE held numerous face-to-face discussions and design
reviews relating to the joint R&D at ACE’s offices in Amsterdam and Aachen. ACE gave a
lecture on compiler technology on 17 January 2007 at Aachen and two Aachen students spent
several months at ACE on SIMD, Conditional Execution and Loop Transformations.

Researchers from Berlin attended the CoSy Community Gathering and academic workshops
that were held at ACE in October 2006, March 2007, and August 2007. Further interaction
between ACE and TU Berlin has been via email with regular support questions and mentoring
in the use of the CoSy platform as the subject.

A researcher from Berlin attended the ARTIST2 MOTIVES winter school in February 2007 held
at Trento, Italy. Researchers from Berlin visited RWTH Aachen in February 2007 and the
University of Edinburgh in August 2007 for academic exchange.

IST-004527 ARTIST2 NoE Year 4
Cluster: Compilers and Timing Analysis D13-CTA-Y4
Activity: Platform-based Code Optimization and Verification
 (JPIA Platform)

14/29

In multiple bilateral meetings during the last year, Dortmund and IMEC defined a common
roadmap on research for MPSoC memory management.

TU Vienna und AbsInt have intensified their cooperation in integrating AbsInt's program
analysis generator PAG with the C++ infrastructure ROSE as part of the compiler platform. In
Y3 an external program representation and an automatic analysis results annotation
mechanism have been added and integrated to create the Static Analysis Tool Integration
Engine, SATIrE. The cooperation with AbsInt allowed for performing tests with industrial codes
and working towards a test bench for evaluating the suitability of SATIrE for real-world
applications.

2.3.4 Joint Publications Resulting from these Achievements
Aachen/ACE

 M. Hohenauer, C. Schumacher, R. Leupers, G. Ascheid, H. Meyr, H. van Someren:
Retargetable Code Optimization with SIMD Instructions, IEEE/ACM Int. Conf. on
Hardware/Software Codesign and System Synthesis (CODES+ISSS), Seoul (Korea),
Oct 2006

TU Dortmund University/AbsInt
 Heiko Falk, Sascha Plazar and Henrik Theiling. Compile-Time Decided Instruction

Cache Locking Using Worst-Case Execution Paths. In Proceedings of “The
International Conference on Hardware/Software Codesign and System Synthesis”
(CODES+ISSS), Salzburg, Austria, October 2007.

 Paul Lokuciejewski, Heiko Falk, Martin Schwarzer, Peter Marwedel and Henrik Theiling.
Influence of Procedure Cloning on WCET Prediction. In Proceedings of “The
International Conference on Hardware/Software Codesign and System Synthesis”
(CODES+ISSS), Salzburg, Austria, October 2007.

2.3.5 Keynotes, Workshops, Tutorials
Workshop : ACE Second CoSy Community Gathering (CCG’06)
Amsterdam, Netherlands – October 2006

This CoSy workshop was held to give the users of the CoSy system a platform to present their
results and discuss their experiences. Amongst others, participants came from RWTH Aachen
and Technical University of Berlin.

Workshop : CoSy Research Workshop
Amsterdam, Netherlands – March 2007

A CoSy workshop was held for academic partners including Universities of Amsterdam,
Cambridge, Aachen, Edinburgh, Twente, Dresden, Berlin.

Workshop : CoSy Research Workshop
Amsterdam, Netherlands – August/September 2007

A CoSy workshop was held for academic partners including Universities of Edinburgh, Delft,
Berlin, Amsterdam, and Imperial College London, IMEC, INESC-ID, NTHU.

IST-004527 ARTIST2 NoE Year 4
Cluster: Compilers and Timing Analysis D13-CTA-Y4
Activity: Platform-based Code Optimization and Verification
 (JPIA Platform)

15/29

Workshop : Software & Compilers for Embedded Systems (SCOPES) 2007
Nice, France – April 20, 2007
The influence of embedded systems is constantly growing. Increasingly powerful and versatile
devices are developed and put on the market at a fast pace. The number of features is
increasing, and so are the constraints on the systems concerning size, performance, energy
dissipation and timing predictability. Since most systems today use a processor to execute an
application program rather than using dedicated hardware, the requirements can not be fulfilled
by hardware architects alone: Hardware and software have to work together to meet the tight
constraints put on modern devices.
One of the key characteristics of embedded software is that it heavily depends on the
underlying hardware. The reason of the dependency is that embedded software needs to be
designed in an application specific way. To reduce the system design cost, e.g. code size,
energy consumption etc., embedded software needs to be optimized exploiting the
characteristics of the underlying hardware.
SCOPES focuses on the software generation process for modern embedded systems. Topics
of interest include all aspects of the compilation process, starting with suitable modeling and
specification techniques and programming languages for embedded systems. The emphasis of
the workshop lies on code generation techniques for embedded processors. The exploitation of
specialized instruction set characteristics is as important as the development of new
optimizations for embedded application domains. Cost criteria for the entire code generation
and optimization process include runtime, timing predictability, energy dissipation, code size
and others. Since today's embedded devices frequently consist of a multi-processor system-
on-chip, the scope of this workshop is not limited to single-processor systems but particularly
covers compilation techniques for MPSoC architectures.
In addition, this workshop intends to put a spotlight on the interactions between compilers and
other components in the embedded system design process. This includes compiler support for
e.g. architecture exploration during HW/SW codesign or interactions between operating
systems and compilation techniques. Finally, techniques for compiler aided profiling,
measurement, debugging and validation of embedded software are also covered by this
workshop, because stability of embedded software is mandatory.
SCOPES 2007 is the 10th workshop in a series of workshops initially called "International
Workshop on Code Generation for Embedded Processors". The name SCOPES has been
used since the 4th workshop. The scope of the workshop remains software for embedded
systems with emphasis on code generation (compilers) for embedded processors.
SCOPES 2007 was organized by Heiko Falk and Peter Marwedel from Dortmund University
and was held as DATE Friday Workshop.
http://www.scopesconf.org/scopes-07/

Workshop : Compiler Optimization Meets Compiler Verification (COCV’07)
Braga, Portugal – 25 March 2007

COCV provides a forum for researchers and practitioners working on optimizing and verifying
compilation, and on related fields such as translation validation, certifying compilation and
embedded systems with a special emphasis on hardware verification, formal synthesis
methods, correctness aspects in HW/SW co-design, formal verification of hardware/software
systems, and practical and industrial applications of formal techniques for exchanging their
latest findings, and for plumbing the mutual impact of these fields on each other. By
encouraging discussions and co-operations across different, yet related fields, the workshop
strives for bridging the gap between the communities, and for stimulating synergies and cross-
fertilizations among them.

IST-004527 ARTIST2 NoE Year 4
Cluster: Compilers and Timing Analysis D13-CTA-Y4
Activity: Platform-based Code Optimization and Verification
 (JPIA Platform)

16/29

COCV’07 is the 6th workshop in a series of workshops held annually since 2002. COCV’07
was organized by Sabine Glesner (TU Berlin), Jens Knoop (TU Vienna) and Rolf Drechsler
(University of Bremen) and was held as a satellite event of ETAPS’07.
http://pes.cs.tu-berlin.de/cocv2007/

Exhibition : OpenCoSy Stand
Design, Automation and Test in Europe (DATE)
Nice, France – 16-20 April, 2007

Aachen presented the results of its research at DATE in Nice. A specially organized
OpenCoSy stand for academic users of CoSy – www.opencosy.org/announcements. This
stand proved very attractive to attendees over the course of the week with the results obtaining
an unusually high level of visibility for such projects. Also represented on the stand were
University of Amsterdam, TU Delft, Leiden University and Edinburgh University.

Workshop : Dagstuhl Seminar 08161 “Scalable Program Analysis”
Schloss Dagstuhl, Germany – 13.04.08 – 18.04.08.

Organizers: Florian Martin (AbsInt), Hanne Riis Nielson (Technical University of Denmark),
Claudio Riva (NOKIA Research Center - Helsinki), Markus Schordan (TU Vienna).

The application for the seminar has been accepted in 2007.
http://www.dagstuhl.de/de/programm/kalender/semhp/?semnr=2008161/

2.4 Final Results

2.4.1 Technical Achievements
Design of a Static Loop Analyzer (TU Dortmund)
Knowledge about the loop iteration counts is mandatory for a large number of different program
analyses (e.g. loop transformations like loop unrolling or loop tiling). Furthermore, it is
impossible to derive WCET information statically without knowing iteration counts of loops. In
the past, this information was collected and annotated manually which was a very time
consuming and error-prone job. By integrating a loop analyzer into the existing WCET-aware
compiler framework developed at TU Dortmund, it is now possible to produce WCET-
optimized code fully automatically.

Static loop bound analysis has the same complexity as the halting problem. Because of this, it
is impossible to get exact results in an acceptable amount of time for general problems. The
only way to do loop analysis is to reduce complexity by applying approximations. This is the
reason why our loop analyzer is based on an enhanced version of the classical paradigm of
Abstract Interpretation which is a mathematical framework to obtain sound approximations of
the original problem.

The main disadvantage of conventional Abstract Interpretation is that it is still a very time
consuming analysis technique if the results should not be too pessimistic. It analyses loops by
evaluating every iteration on its own. By integrating a new static polytope-based loop
evaluation inside the original Abstract Interpretation, it was possible to reduce the required
analysis time without getting inferior results. If a loop is reached during fixed-point iteration of

IST-004527 ARTIST2 NoE Year 4
Cluster: Compilers and Timing Analysis D13-CTA-Y4
Activity: Platform-based Code Optimization and Verification
 (JPIA Platform)

17/29

Abstract Interpretation, it is checked whether the new polytope-based loop analysis is
applicable. If so, the loop body is analyzed only once and the iterative calculation of Abstract
Interpretation can be skipped. If polyhedral analysis is not applicable, the loop is analyzed
conventionally.

To analyze loops with the new polytope-based technique, several constraints concerning the
loop’s header and body have to be met. These constraints require that the body of the loop is
not too complex. This is achieved by integrating another technique called Program Slicing.
Program Slicing determines all expressions that are superfluous for the current analysis so that
their evaluation can be skipped.

To demonstrate the applicability of the developed loop analyzer, we tested it using 96
benchmarks containing more than 700 loops. These benchmarks were taken from the
benchmark suites MRTC, DSPStone, MiBench, UTDSP and MediaBench. Related to these
benchmarks, 99.15% of all loops could be analyzed successfully. Furthermore, 95.62% of all
loops could be analyzed without any overapproximation thus leading to exact results.
Concerning the running time of our analysis, we could accelerate the time consumed by
conventional Abstract Interpretation up to a factor of 100 for some benchmarks it the
combination of Program Slicing and polyhedral loop analysis was enabled.

Another fact showing that our loop analyzer is also applicable to real-world problems is that it
was the only tool which was able to answer all questions related to flow fact during the WCET
tool challenge 2008, organized by the Timing Analysis cluster of Artist2.

http://ls12-www.cs.tu-dortmund.de

WCET-aware Procedure Positioning and Cloning (TU Dortmund, AbsInt)
In year 3 of Artist2, we studied the influence of the standard compiler optimization Procedure
Cloning on the worst-case execution time and could show that WCET reductions of up to 95%
could be achieved. The main drawback of this optimization is its heavy code size increase. In
year 4 we continued our work on Procedure Cloning and extended the optimization by WCET
concepts. In a first extension, the novel WCET-driven Cloning focuses on the optimization of
those functions that promise the highest WCET improvement. We achieve WCET reductions of
64.2%, while restricting the average code size increase to 22.6% which is a significant
improvement compared to the average code size increase of more than 80% in the previous
work. In a further extension, we combined our WCET-driven Procedure Cloning with a smart
positioning of the newly created function clones. By placing the clones and their callers
contiguously in memory, cache conflict misses can be reduced. Results show that the WCET
can be reduced by 7% on average when Cloning is combined with a sophisticated positioning
of the cloned functions.

Moreover, the compiler optimization Procedure Positioning was exploited for a WCET
reduction. Procedure Positioning is a well known optimization aiming at the improvement of the
instruction cache behavior. In the past, this technique was based on profiling information to
improve the average-case performance of the program. We exploited the ideas behind
Procedure Positioning for an effective WCET minimization. Our optimization operates on a call
graph which is based on WCET information to find the function candidates for a contiguous
memory allocation that promise the highest WCET reduction. Thus, our WCET-centric call
graph is more reliable than previous approaches since it is valid for all program and all input
data. We developed two types of the WCET-aware Positioning, an effective greedy and a fast
heuristic approach. Results on real-world benchmarks show that WCET reductions of 10% on
average could be achieved while the average-case execution time (ACET) was decreased by
2% on average. This emphasizes the importance of compiler optimizations tailored towards an

IST-004527 ARTIST2 NoE Year 4
Cluster: Compilers and Timing Analysis D13-CTA-Y4
Activity: Platform-based Code Optimization and Verification
 (JPIA Platform)

18/29

effective WCET reduction which can not be accomplished with standard ACET optimizations
that take decisions based on other cost models.

http://ls12-www.cs.tu-dortmund.de

WCET- and Memory Architecture-aware Compilation (TU Dortmund, AbsInt)
In year 4 of Artist2, we studied the influence of scratchpad memory allocation techniques on
worst-case execution times. Here, we developed integer linear programming models in order to
decide which parts of a program’s code or data should be moved onto the highly predictable
scratchpad memory. In contrast to the current state of the art in this area, we developed
integrated models explicitly taking the critical path of a program defining its WCET into
account. The optimizations developed during year 4 of Artist2 pre-compute the scratchpad
contents during compilation time. During runtime of the optimized programs, the scratchpad
contents remain unchanged. The results demonstrate that average WCET reductions of 11.6%
can be achieved by simply moving parts of the global data of 30 representative benchmarks
onto the scratchpad. First experiments with scratchpad memory allocation of program code
show that WCET reductions of more than 50% can be achieved for several benchmarks.
Unlike previously published approaches, our ILP formulations scale well so that our techniques
only require a few CPU seconds to solve the optimization problem.

In addition to scratchpad memory allocation, we investigated WCET-aware register allocation.
Within the compiler community, register allocation is considered the most important
optimization since it leads to an optimized use of processor registers which are by far the most
efficient memories of an entire system. Traditionally, register allocation relies on graph coloring
approaches which apply some simple heuristics to decide where so-called spill code (i.e.
load/store instructions swapping registers in and out to main memory) has to be inserted. Since
these traditional techniques are timing-unaware, they may lead to spill code generation along a
program’s critical path defining the WCET. By making a graph coloring register allocator
WCET-aware, large average WCET reductions of 27.3% were measured for a total of 28
representative benchmarks. It is worthwhile mentioning that still huge gains can be achieved
even in such well-established areas like register allocation.

http://ls12-www.cs.tu-dortmund.de

Optimization and Verification in Compilers (TU Berlin, ACE)
TU Berlin works on the verification as well as on the development of optimizing compiler
transformations and machine code generation. Within ARTIST2, the focus is on the
development of automated checkers that, for a particular compiler run with its source and
target program, make sure that both programs are indeed semantically equivalent

TU Berlin has established a platform for a research compiler, using the compiler tool CoSy
provided by ACE. We developed a backend specification for the Intel Itanium processor, which
gave us an industrial-strength compiler for this architecture (the current SPEC benchmark suite
CPU2006 can be compiled). We investigated the development of novel compiler optimizations
to mitigate the impact of the memory wall on program performance, which is drastic on modern
VLIW processors like the Itanium. One result lies in the development of speculative compiler
optimization (Speculative register promotion for global variables), which reduces the number of
loads induced by the use of global variables and thereby leads to a better memory
performance. We could show that this optimization leads to notable performance improvement
for the SPEC CPU2006 benchmark suite. Second, we also considered how memory accesses
in general can be optimized. To this end, we developed a speculative optimization, which
targets all kinds of memory accesses. It requires precise information about the dependencies

IST-004527 ARTIST2 NoE Year 4
Cluster: Compilers and Timing Analysis D13-CTA-Y4
Activity: Platform-based Code Optimization and Verification
 (JPIA Platform)

19/29

amongst memory accesses, to decide whether or not a given optimization is beneficial.
However, state-of-the-art alias analyses are too imprecise for that aim. As a consequence, we
propose to use statistical machine learning techniques to yield predictors, which can act as
heuristics to determine the dependency amongst memory accesses. In our experiments, we
could show that with the trained predictors, the dependencies could be efficiently and precisely
predicted for unseen programs.

Furthermore, we investigated how the code generator phase, which is a crucial compiler
optimization, can be verified formally. We considered code generators that are based on
bottom-up rewriting, which is the most common technique in current compilers. The machine
code is generated from the intermediate representation by applying a set of rules that specify
how a construct on the abstract level can be mapped to the machine level. The correctness of
these rules is necessary for the code generator to be correct. We developed a formal model for
a subset of the compiler intermediate representation from the CoSy-Compiler and for a subset
of the Itanium assembler. On top of this, we specified code generator rules and proved them
correct. Besides the correctness proofs, we developed proof engineering techniques that help
to handle the size of formalizations for complete rule sets. We investigated which strategies
known from software engineering can be applied in the area of formal verification, too. In
addition, we investigated methods and have preliminary results concerning proof automation.
We could show correctness for a subset of the rules used in the specification for the Itanium.
Besides, our results make the verification of complete code generator specifications more
realistic.

http://www.pes.cs.tu-berlin.de/

Source-To-Source WCET Analysis (TU Vienna, AbsInt)
TU Vienna and AbsInt work on scalable source-level analysis and annotation-based timing
analysis methods. The presentation of analysis results and the iterative enhancement by the
user with expert knowledge about the timing behavior of a given system is incorporated by
allowing round-trip engineering of timing analyses. The infrastructure SATIrE allows building
analyzers that take source-code annotations as additional input as well as automatically
generate output as annotations. The iterative application of this approach increases
productivity, by requiring the user only to annotate the timing relevant information that is not
automatically computed. The integration of PAG was fundamental in investigating scalability
and precision of analyses. The automatic annotation of programs with PAG analysis results is
possible because of its combination with the LLNL-ROSE C/C++ backend in SATIrE. The
importance of user-readable analysis results as annotations has also fostered the use of PAG
and SATIrE in teaching program analysis at several universities in Y3 and Y4.

For timing analysis various supporting analyses are necessary. In Y4 SATIrE was enhanced
with a Steensgaard-style points-to analysis. This analysis partitions a program's objects
(variables and dynamically allocated memory regions) into equivalence classes, and models
which classes may contain pointers to which other classes. Members of structures are treated
as individual objects unless accesses through pointers of incompatible type make it necessary
to collapse structure fields. The analysis runs in almost linear time in the size of the program,
allowing it to scale to very large input programs.

Further more, TuBound, was created with SATIrE. It performs an inter-procedural context-
sensitive interval analysis with PAG and computes loop bounds for specific loop patterns in
Prolog. For loops where a loop bound cannot be established, annotations can be provided by
the user. The implemented algorithm for loop bounds was evaluated with the Mälerdalen
Benchmark suite. TuBound also participated in this year's WCET Tool Challenge 2008.

http://www.complang.tuwien.ac.at/markus/satire/

IST-004527 ARTIST2 NoE Year 4
Cluster: Compilers and Timing Analysis D13-CTA-Y4
Activity: Platform-based Code Optimization and Verification
 (JPIA Platform)

20/29

Retargetable Code Optimizations (RWTH Aachen, ACE)
The cooperation between ACE and Aachen on retargetable code optimizations has been
continued. The major problems left were complete integration of the conditional execution
prototype into CoSy and further development on the analysis framework necessary to facilitate
compilation for SIMD architectures.

The conditional execution engines have been extended by a strong retargeting formalism.
Several compiler passes and a few extensions to the backend description used in CoSy have
been devised to achieve this goal. This work has by now been productized in the CoSy
release.

Work continues in two directions. Improved loop analysis infrastructure is developed by at ACE
by a student from Aachen. The goal of this project is to deliver the information necessary for
advanced optimizations like vectorization. Also a cooperation to make efficient code generation
for clustered VLIW processors available is being planned.

ARTIST Interchange Representation and Attribute Database: AIR (AbsInt)
Work on the AIR format continued. The format was extended and adapted to the needs of the
partners. The attribute database was extended by new attributes as required.

http://www.theiling.de/absint/attrdb.fcgi

Analyses on C source code (TU Vienna, AbsInt, Usaar)
AbsInt and TU Wien continued working on the Static Analysis Tool Integration Engine, SATIrE,
which connects LLNL-Rose with AbsInt's Program Analysis Generator (PAG). In year four,
SATIrE was improved and made operational. In cooperation with Saarland University, it was
successfully applied to the analysis of loop bounds and function pointers.

http://www.complang.tuwien.ac.at/markus/satire/

2.4.2 Individual Publications Resulting from these Achievements
TU Dortmund

 Paul Lokuciejewski, Heiko Falk, Peter Marwedel: WCET-driven Cache-based
Procedure Positioning Optimizations, Proceedings of the 20th Euromicro Conference
on Real-Time Systems (ECRTS), Prague, Czech Republic, July, 2008.

 Heiko Falk (Editor), Proceedings of the 11th International Workshop on Software &
Compilers for Embedded Systems (SCOPES), Munich, Germany, March 2008.

 Paul Lokuciejewski, Fatih Gedikli, Peter Marwedel: Accelerating WCET-driven
optimizations by the Cold Path Paradigm, Submitted to Design Automation & Test in
Europe (DATE), 2009.

 Paul Lokuciejewski, Daniel Cordes, Heiko Falk, Peter Marwedel: A Fast and Precise
Static Loop Analysis based on Abstract Interpretation, Program Slicing and Polytope
Models, Submitted to the International Symposium on Code Generation and
Optimization (CGO), 2009.

IST-004527 ARTIST2 NoE Year 4
Cluster: Compilers and Timing Analysis D13-CTA-Y4
Activity: Platform-based Code Optimization and Verification
 (JPIA Platform)

21/29

 Sascha Plazar, Paul Lokuciejewski, Peter Marwedel: A Retargetable Framework for
Multi-objective WCET-aware High-level Compiler Optimizations, Submitted to the IEEE
Real-Time Systems Symposium (RTSS), 2009.

 Peter Marwedel, Heiko Falk, Sascha Plazar, Robert Pyka, Lars Wehmeyer: Automatic
mapping to tightly-coupled memories and cache locking (presentation), 4th HiPEAC
Industrial Workshop on Compilers and Architectures, Cambridge / UK, November 2007.

TU Berlin
 L. Gesellensetter, S. Glesner, E. Salecker: Formal Verification with Isabelle/HOL in

Practice: Finding a Bug in the GCC Scheduler, Formal Methods for Industrial Critical
Systems (FMICS’07), Revised Selected Papers, Springer LNCS 4916, 2008.

 L. Gesellensetter, S. Glesner: Interprocedural Speculative Optimization of Memory
Accesses to Global Variables, Euro-Par 2008, Springer LNCS 5168, 2008.

TU Vienna

 A. Prantl, M. Schordan, J. Knoop: TuBound - A Conceptually New Tool for Worst-Case
Execution Time Analysis. To appear in Post-Workshop Proceedings of the 8th
International Workshop on Worst-Case Execution Time Analysis (WCET 2008),
Prague, Czech Republic, July 1, 2008.

 R. Kirner, A. Kadlec, P. Puschner, A. Prantl, M. Schordan, J. Knoop: Towards a
Common WCET Annotation Language: Essential Ingredients. To appear in Post-
Workshop Proceedings of the 8th International Workshop on Worst-Case Execution
Time Analysis (WCET 2008), Prague, Czech Republic, July 1, 2008.

 Markus Schordan: Source-To-Source Analysis with SATIrE - an Example Revisited. In
Proceedings of Dagstuhl Seminar 08161: Scalable Program Analysis, 17 pages,
Germany, Dagstuhl, April 2008.

AbsInt

 C. Ferdinand, R. Heckmann, M. Jersak, F. Martin, K. Richter: Integrating System-Level
and Code-Level Timing Analysis for Dependable System Development. 4th European
Congress ERTS - Embedded Real Time Software, January 29, 30, 31, February 1,
2008, Toulouse, France.

 C. Ferdinand, R. Heckmann, M. Jersak, F. Martin, K. Richter: Integrating System-Level
and Code-Level Timing Analysis for Dependable System Development. 4th European
Congress ERTS - Embedded Real Time Software, January 29, 30, 31, February 1,
2008, Toulouse, France.

IMEC
 R. Baert, E. de Greef, E. Brockmeye: An automatic scratch pad memory management

tool and MPEG-4 encoder case study. In Proceedings of the 45th Annual Conference
on Design Automation (Anaheim, California, June 08 - 13, 2008). DAC '08. ACM, 201-
204, 2008.

 A. Bartzas, M. Peon-Quiros, S. Mamagkakis, F. Catthoor, D. Soudris, J.M. Mendias:
Enabling run-time memory data transfer optimizations at the system level with

IST-004527 ARTIST2 NoE Year 4
Cluster: Compilers and Timing Analysis D13-CTA-Y4
Activity: Platform-based Code Optimization and Verification
 (JPIA Platform)

22/29

automated extraction of embedded software metadata information. In Proceedings of
the 2008 Conference on Asia and South Pacific Design Automation (Seoul, Korea,
January 21 - 24, 2008). ASP-DAC '08. IEEE, 434-439, 2008.

2.4.3 Interaction and Building Excellence between Partners
Interaction between RWTH Aachen and ACE
Aachen and ACE continue to maintain their strong cooperation. The main indicators are
information exchange by e-mail, joint publications and ongoing student exchanges, which
sends students from Aachen for internships or thesis writing to work at ACE offices.

Interaction between TU Berlin and ACE
Researchers from Berlin attended the CoSy Community Gathering that was held at ACE in
September 2008. Further interaction between ACE and TU Berlin has been via email with
regular support questions and mentoring in the use of the CoSy platform as the subject.

Interaction between AbsInt and TU Vienna:

The interactions between AbsInt and TU Vienna have been on a daily basis since Y1. After a
meeting in Y2, AbsInt and TU Vienna organized again a project-meeting in Saarbrücken in
April 2008. This allowed for discussing the various aspects of the integration of PAG in SATIrE
and possible connections to aiT in more detail. In particular, plans for further cooperations
beyond ARTIST2 were sketched and have become concrete in the continued cooperation in
the ALL-TIMES project.

Interaction between AbsInt and Dortmund:

AbsInt is supporting Dortmund in its effort to build a WCET-aware compiler by integrating aiT
technology into the compiler framework.

Interaction between AbsInt and USaar:
AbsInt and USaar are cooperating on the integration of code synthesis, compilers, and timing
analysis, on timing predictability, on scheduling, and on analysis of multi-core architectures.

Interaction between AbsInt, TU Vienna, and USaar:
AbsInt and Vienna are jointly improving the SATIrE interface between ROSE and PAG. They
are supporting USaar in using SATIrE for the implementation of a loop bound analysis and a
function pointer analysis on C/C++ level.

2.4.4 Joint Publications Resulting from these Achievements
TU Dortmund / AbsInt

 Paul Lokuciejewski, Heiko Falk, Peter Marwedel, Henrik Theiling: WCET-Driven, Code-
Size Critical Procedure Cloning, Proceedings of the 11th International Workshop on
Software & Compilers for Embedded Systems (SCOPES), Munich, Germany, March,
2008.

 Niklas Holsti, Jan Gustafsson, Guillem Bernat (eds.), Clément Ballabriga, Armelle
Bonenfant, Roman Bourgade, Hugues Cassé, Daniel Cordes, Albrecht Kadlec,
Raimund Kirner, Jens Knoop, Paul Lokuciejewski, Nicholas Merriam, Marianne de
Michiel, Adrian Prantl, Bernhard Rieder, Christine Rochange, Pascal Sainrat, Markus
Schordan, WCET TOOL CHALLENGE 2008: REPORT, to appear.

IST-004527 ARTIST2 NoE Year 4
Cluster: Compilers and Timing Analysis D13-CTA-Y4
Activity: Platform-based Code Optimization and Verification
 (JPIA Platform)

23/29

Aachen, ACE
 M. Hohenauer, F. Engel, R. Leupers, G. Ascheid, H. Meyr, RWTH Aachen University;

G. Bette, ACE; B. Singh, NXP Semiconductors Eindhoven: Retargetable Code
Optimization for Predicated Execution,. In DATE, Munich, Germany, March 2008.

AbsInt, USaar

 Christian Ferdinand, Florian Martin, Christoph Cullmann, Marc Schlickling, Ingmar
Stein, Stephan Thesing, and Reinhold Heckmann: New Developments in WCET
Analysis. In Thomas Reps, Mooly Sagiv, and Jörg Bauer, editors, Program Analysis
and Compilation, Theory and Practice. Essays Dedicated to Reinhard Wilhelm on the
Occasion of His 60th Birthday (Lecture Notes in Computer Science 4444), pages 12-52.
Berlin, Springer, 2007.

2.4.5 Keynotes, Workshops, Tutorials

Workshop : Software & Compilers for Embedded Systems (SCOPES) 2008
Munich, Germany – March 13-14, 2008
The influence of embedded systems is constantly growing. Increasingly powerful and versatile
devices are developed and put on the market at a fast pace. The number of features is
increasing, and so are the constraints on the systems concerning size, performance, energy
dissipation and timing predictability. Since most systems today use a processor to execute an
application program rather than using dedicated hardware, the requirements can not be fulfilled
by hardware architects alone: Hardware and software have to work together to meet the tight
constraints put on modern devices.
One of the key characteristics of embedded software is that it heavily depends on the
underlying hardware. The reason of the dependency is that embedded software needs to be
designed in an application specific way. To reduce the system design cost, e.g. code size,
energy consumption etc., embedded software needs to be optimized exploiting the
characteristics of the underlying hardware.
SCOPES focuses on the software generation process for modern embedded systems. Topics
of interest include all aspects of the compilation process, starting with suitable modeling and
specification techniques and programming languages for embedded systems. The emphasis of
the workshop lies on code generation techniques for embedded processors. The exploitation of
specialized instruction set characteristics is as important as the development of new
optimizations for embedded application domains. Cost criteria for the entire code generation
and optimization process include runtime, timing predictability, energy dissipation, code size
and others. Since today's embedded devices frequently consist of a multi-processor system-
on-chip, the scope of this workshop is not limited to single-processor systems but particularly
covers compilation techniques for MPSoC architectures.
In addition, this workshop intends to put a spotlight on the interactions between compilers and
other components in the embedded system design process. This includes compiler support for
e.g. architecture exploration during HW/SW codesign or interactions between operating
systems and compilation techniques. Finally, techniques for compiler aided profiling,
measurement, debugging and validation of embedded software are also covered by this
workshop, because stability of embedded software is mandatory.
SCOPES 2008 is the 11th workshop in a series of workshops initially called "International
Workshop on Code Generation for Embedded Processors". The name SCOPES has been
used since the 4th workshop. The scope of the workshop remains software for embedded
systems with emphasis on code generation (compilers) for embedded processors.

IST-004527 ARTIST2 NoE Year 4
Cluster: Compilers and Timing Analysis D13-CTA-Y4
Activity: Platform-based Code Optimization and Verification
 (JPIA Platform)

24/29

SCOPES 2008 was organized by Heiko Falk from TU Dortmund and was held as DATE Friday
Workshop.
http://www.scopesconf.org/scopes-08

Workshop : Dagstuhl Seminar 08161 “Scalable Program Analysis”
Schloss Dagstuhl, Germany – April, 2008
Organizers: Florian Martin (AbsInt), Hanne Riis Nielson (Technical University of Denmark),
Claudio Riva (NOKIA Research Center - Helsinki), Markus Schordan (TU Vienna).

The goal of the seminar was to bring together researchers from academia and industry to
discuss the strengths and weaknesses of state-of-the-art program analysis technology for
industrial-sized software. To achieve that goal the seminar gathered 38 participants from 9
companies and 23 academic/research institutions.

The seminar showed how broad the field of program analysis has grown over the years.
Traditionally used in optimizing compilers, program analysis has turned into a major discipline
with techniques and commercial tools supporting understanding, maintaining, and engineering
of software. It often turned out that an in-depth discussion of scalability requires further
investigations. The scalability of analysis techniques is a major issue as the size of
software systems is rapidly growing and the automatic analysis of those systems is becoming
yet more important in future. Many questions were raised about scalability - to address the
scale of today's systems, analyses will have to be run as parallel programs in future, posing
themselves as problem of being scalable on multiple cores, but also whether it can be applied
to multiple parts of a system which may differ in structural properties of the code or even in
used programming languages.

Raising the awareness about the many faces of scalability is the major achievement of the
seminar. As the seminar progressed, increasingly more questions about scalability were
raised, mostly asking for more extensive evaluations of the methods & tools in future.
Discussions about the need and development of specific benchmarks for scalability were
started and agreed to be continued past the seminar by different groups of the seminar.
Carefully systematically designed sets of test cases, accompanied by test cases from industry,
were considered a good setting for evaluating scalability.
http://www.dagstuhl.de/de/programm/kalender/semhp/?semnr=08161

Workshop : CoSy Community Gathering 2008
Amsterdam, The Netherlands, September 2008
The CoSy Community Gathering 2008 has been held at the Amsterdam Public Library.
Researchers from RWTH Aachen and TU Berlin attended the event and reported on their
CoSy related work.
http://www.opencosy.org/

Full Day tutorial: Peter Marwedel, Embedded Systems in a Nutshell, Spring School on
Knowledge Discovery in Ubiquitous Systems,
Porto, Portugal, March 2, 2008

IST-004527 ARTIST2 NoE Year 4
Cluster: Compilers and Timing Analysis D13-CTA-Y4
Activity: Platform-based Code Optimization and Verification
 (JPIA Platform)

25/29

This tutorial provided a brief overview over specification techniques, hardware, scheduling and
optimization of embedded systems for a community without any pre-existing knowledge on
embedded systems.
http://www.kdubiq.org

Invited Course : Peter Marwedel, Heiko Falk, Embedded Systems with Emphasis On the
Exploitation of the Memory Hierarchy
Advanced Institute of Information Technology
Seoul, Korea – August 11-15, 2008
The goal of this course is to provide an overview over key areas in embedded system design
which should be taught at Universities. After attending the course, the attendees should be
able to compare different approaches to embedded system design education and their
advantages and limitations. The attendees will also become familiar with the contents of a
course on embedded system design which aims targets second or third year students. The
course should enable attendees to design the structure of embedded system education at their
universities. In the last third of the course, attendees will be introduced to research topics
regarding embedded system optimization. In particular, this last third will address the so-called
memory wall problem (the problem resulting from the small performance improvements of
memories). This problem is frequently seen as the key problem for further performance
enhancements of future systems. This material would be appropriate for an advanced course
in embedded system design.
Peter Marwedel and Heiko Falk from TU Dortmund lectured this one-week course for Korean
professors (CS and EE) after an invitation by the Korean Advanced Institute of Information
Technology.
http://ttt.aiit.or.kr

Tutorial: Peter Marwedel: Memory architecture aware compilation for
Embedded Systems (5 lectures of 2 hrs each)
Artist South American Summer School
Florianopolis, Brazil, Aug. 25.-29., 2008
The tutorial focused on compilation techniques exploiting descriptions of the memory
architecture.

Lecture : Peter Marwedel, Heiko Falk, Memory-architecture aware compilation
The ARTIST2 Summer School 2008 in Europe
Autrans, France – September 8-12, 2008
The memory system is increasingly turning into a bottleneck in the design of embedded
systems. The speed improvements of memory systems are lower than the speed
improvements of processors, eventually leading to embedded systems whose performance is
limited by the memory. This problem is known as the “memory wall” problem. Furthermore,
memory systems may consume the largest share of the system’s energy budget and may be
the source of unpredictable timing behavior.
In their lecture during the ARTIST2 Summer School in Europe, Peter Marwedel and Heiko Falk
from TU Dortmund present optimization techniques leading to high performance, low energy
consumption and tight worst-case execution times by making efficient use of scratchpad
memories and processor registers.
http://www.artist-embedded.org/artist/ARTIST2-Summer-School-2008.html

IST-004527 ARTIST2 NoE Year 4
Cluster: Compilers and Timing Analysis D13-CTA-Y4
Activity: Platform-based Code Optimization and Verification
 (JPIA Platform)

26/29

3. Milestones, and Future Evolution Beyond the NoE

3.1 Milestones
See also current 18 months workprogram. Please note that compiler platform activity
milestones can hardly be separated from architecture aware compilation activity milestones, as
both activities are interwoven. With increased use of the compiler platform at the different
partners´ sites, it is expected that more and more activities will concentrate on building
architecture aware compilation modules on top of that platform.

Year 1: Initial definition of common compiler platform

This milestone has been achieved by selection of ACE’s CoSy platform as the primary platform
for most cluster partners.

Year2: Initial implementation of the platform

This milestone has been achieved by installing and adopting the platform at the partners’ sites
(partially after some setup meetings and training) for teaching and research purposes (e.g. for
projects related to the architecture aware compilation activity). Examples: Aachen is using
CoSy presently for development of SIMD and conditional instruction based code optimization in
close cooperation with ACE. Likewise, Berlin is using CoSy for research on new compiler
optimization and verification technologies.

Year3: New timing-aware optimizations are available at the end of year 3.

This milestone has been achieved, the partners achieved first results with the platform. E.g.
Aachen has results on the SIMD support and on retargetability of conditional execution.
Dortmund established a WCET-aware compiler and was able to improve the program
performance by instruction cache optimizations and procedure cloning. TU Berlin established
the Itanium compiler platform and formalized the scheduling phase of a compiler. By that, they
were able to show a bug in the popular GCC assembler.

Year4: More timing-aware optimizations are available at the end of year 4.
This milestone has been achieved, the partners could obtain further results based on last
year’s achievements. TU Dortmund developed several WCET-aware optimizations based on
the infrastructure set up during earlier years of Artist2. TU Berlin has considered two
approaches to mitigate the implications of the memory wall. In one case, notable performance
improvement could be shown. In the other case, they could show that predictors for memory
dependency can be automatically built via statistical machine learning techniques. Besides, TU
Berlin successfully investigated how relevant aspects of two crucial phases in the compiler,
namely scheduling and code generation, could be verified formally to prove them correct. TU
Vienna investigated the transformation of source-level WCET annotations in the presence of
loop optimizations. This work involved the entire tool chain built in Y1-Y4 and served as use
case of the established tool connections between AbsInt and TU Vienna. As a result it was
possible to compute the WCET for non-optimized and optimized versions of the Mälerdalen
Benchmarks.

3.2 Indicators for Integration
As we expected, this activity led to a high-quality compiler platform prototype whose
capabilities include many existing and newly developed techniques which previously have

IST-004527 ARTIST2 NoE Year 4
Cluster: Compilers and Timing Analysis D13-CTA-Y4
Activity: Platform-based Code Optimization and Verification
 (JPIA Platform)

27/29

been largely separated due to heterogeneous compiler platforms in use by the different
partners. As a consequence, high-level transformations are now available to the partners.

aiT and the compiler from Dortmund University have been tightly integrated. This combination
of tools is used daily at Dortmund University. It provides the basis for numerous optimizations
enabled by this integration. AbsInt is able to access the combined tools as well. TU Berlin and
ACE also worked successfully on integration by developing verification methods and
optimizations within the CoSy compiler framework. TU Vienna and AbsInt further integrated
SATIrE and PAG. The work in Y4 continued on daily basis and motivated new PAG features
and extensions of SATIrE for integration of other timing tools. Based on this platform a new
tool, TuBound, was created for source-level based WCET analysis.

3.3 Main Funding
Main sources of funding are:

Large national project proposal to DFG, AVACS.

Several partners participate in a STREP proposal, PRESS.

ASTEC support by VINNOVA.

INRIA; CNRS, university funding.

PREDATOR, STREP proposal within 7th FP.

Absint receives funding from different BMBF and EU projects.

Resources of the University of Dortmund and of the Technical University of Berlin.

3.4 Future Evolution Beyond the Artist2 NoE
In the future, TU Dortmund will keep on studying WCET-aware compiler optimizations. The
techniques developed so far can be extended towards dynamic scratchpad memory allocation
which means that an optimized program will be allowed to modify its scratchpad contents
dynamically at runtime. Supporting multi-process applications and MPSoCs will be an
important aspect of Dortmund’s future work. Furthermore, multi-objective optimization
techniques trading-off e.g. hard real-time constraints versus energy dissipation will be
interesting to investigate.

The results achieved within the Artist2 NoE at the TU Berlin constitute a promising fundament
for further research and cooperation. For compiler optimization, we could show that the impact
of the memory wall can be mitigated by our techniques, and in further work, we will extend
these results. For compiler verification, we could successfully formalize the scheduling phase,
which yielded correctness criteria a correct scheduler has to fulfill, which could be used to
identify a bug in the scheduler of the GNU Itanium assembler. Besides, we have promising first
results for the verification of the code generation phase. We are convinced that our further
research continues to benefit from cooperation with Artist partners, especially with ACE (CoSy
infrastructure) and the University of Edinburgh (Machine Learning techniques).

Several ARTIST2 activity partners also participate in the FP7 project ALL-TIMES (Integrating
European Timing Analysis Technology), which will run until Feb. 2009. A major theme in ALL-
TIMES is the definition and implementation of open interfaces between timing analysis tools,
followed by an integration where different tool combinations are investigated. An explicit goal of
ALL-TIMES is the further development of analyses on the C/C++ source level and their
integration with analyses on the binary level. For code level timing analysis, the work is very
much in line with the ARTIST2 platform integration work and paves the way for its future

IST-004527 ARTIST2 NoE Year 4
Cluster: Compilers and Timing Analysis D13-CTA-Y4
Activity: Platform-based Code Optimization and Verification
 (JPIA Platform)

28/29

exploitation. ALL-TIMES also considers the integration with system level tools, such as
Symta/S from Symtavision. This provides another line of development from the platform
integration work performed within ARTIST2.

The connection between AbsInt and TU Vienna, which has been established through
ARTIST2, has proven fruitful for both sides. Both partners have extended their activities in
source-level analyses of C/C++ codes for embedded systems. Building on this successful
cooperation, both partners continue to further develop timing technology beyond ARTIST2 in
the ALL-TIMES project.

IMEC will continue the research and development of source-to-source pre-compiler tools that
optimize the parallelization and the data memory hierarchy assignment in the context of FP7
STREP IST projects MNEMEE (IST-216224) and MOSART (IST-215244).

IST-004527 ARTIST2 NoE Year 4
Cluster: Compilers and Timing Analysis D13-CTA-Y4
Activity: Platform-based Code Optimization and Verification
 (JPIA Platform)

29/29

4. Internal Reviewers for this Deliverable

Dirk Tetzlaff, TU Berlin

Peter Marwedel, TU Dortmund

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

