
Software Components for Reliable Automotive Systems

H. Heinecke
BMW Car IT GmbH

Munich, Germany

W. Damm, B. Josko, A. Metzner
OFFIS

Oldenburg, Germany

H. Kopetz
Technical University of Vienna

Wien, Austria

A. Sangiovanni-Vincentelli
Univ. of California Berkeley

Berkeley, CA, USA

M. Di Natale
Scuola Superiore Anna

Pisa, Italy

Abstract

System-level integration requires an overall understand-
ing of the interplay of the sub-systems to enable component-
based development with portability, reconfigurability and
extensibility, together with guaranteed reliability and per-
formance levels. Integration by simple interfaces and plug-
and-play of sub-systems, which is the main objective of AU-
TOSAR, requires solving essential technical problems. We
discuss to what degree the existing AUTOSAR standard can
support the development of safety- and time-critical soft-
ware and what is required to move toward the desirable
goal of timing isolation when integrating multiple applica-
tions into the same execution platform.

1. Introduction

Today’s automotive electronics systems are often devel-
oped by car makers (or OEMs) by assembling components
that completely or in part have been designed and developed
by suppliers. The value chain is traditionally targeted at
simple, black-box integrated subsystems, where the require-
ments capture and the specifications issued to the OEMs
consist of the message interface with their periods and gen-
eral performance requirements, often without a detailed def-
inition of the timing and synchronization properties and re-
quirements of the communication protocols.

When considering the increasing complexity of automo-
tive architectures, the increased distribution of active-safety
and future safety-critical functions, including by-wire sys-
tems, and the interdependency of these functions, the bur-
den on the integrators is rapidly becoming unbearable. The
OEMs are generally struggling to understand and control
the emerging behavior of the complex distributed functions,
resulting from the integration of subsystems.

The source of these problems is clearly the increased

complexity but also the difficulty of the OEMs in manag-
ing the integration and maintenance process with subsys-
tems that come from different suppliers who use different
design methods, different software architecture, different
hardware platforms, different (and sometimes proprietary)
Real-Time Operating Systems and middleware layers. Fur-
thermore, there is limited understanding of how to control
the para-functional behavior of interacting modules, includ-
ing the timing and reliability properties emerging from the
composition.

Therefore, there is a need for standards in the software
and hardware domains that may allow plug-and-play of sub-
systems. The ability to integrate subsystems will then be-
come a commodity item, available to all OEMs. The com-
petitive advantage of an OEM will increasingly reside on
novel and compelling functionalities. The possibility of
defining components (subsystems) at higher levels of ab-
straction and with well defined interfaces allows separation
of concerns and improves modularity and reusability. Fur-
thermore, the availability of verification tools gives the pos-
sibility of a design-time verification of the system proper-
ties. Possibly, components could be defined in such a way
that their fundamental properties are preserved after com-
position, or the properties of the aggregate can easily be
derived from abstract properties of its components. In this
way, systems could be built in such a way that they are
correct-by-construction.

The essential technical problem to solve for this vision
is the establishment of standards for interoperability among
IPs, both software and hardware, and tools. AUTOSAR [5],
a world-wide development partnership including almost all
players in the automotive domain electronics supply chain,
has been created with the purpose of developing an open
industry standard for automotive software architectures.

To achieve the technical goals of modularity, scalabil-
ity, transferability and re-usability of functions, AUTOSAR
provides a common software infrastructure based on stan-

978-3-9810801-3-1/DATE08 © 2008 EDAA 

 



dardized interfaces for the different layers.
The AUTOSAR project has been focused on the con-

cepts of location independence, standardization of inter-
faces and portability of code. While these goals are un-
doubtedly of extreme importance, their achievement will
not necessarily be a sufficient condition for improving the
quality of software systems. As for most other embedded
system, car electronics are characterized by functional as
well as non functional properties, assumptions and con-
straints. In complex systems, component-based design
may provide encapsulation and separation of concerns, and
therefore improve reuse, upon condition that information
hiding is implemented so that the component model allows
the following properties ([13])

• Composability ability of guaranteeing that a compo-
nent property is preserved across integration

• Compositionality ability of deducing global proper-
ties (of the composed object) from the properties of its
components

Clearly, there are technical and business challenges to
overcome. In particular, from the technical point of view,
while sharing algorithms and functional designs seems fea-
sible at this time, the sharing of safety-critical and hard
real-time software requires substantial improvements in de-
sign methods and technology. Several issues need to be
solved for function partitioning and subsystem integration,
in the presence of real-time and reliability requirements, in-
cluding [7]:

• Time predictability. This issue is related to the ca-
pability of predicting the system-level timing behavior
(latencies and jitter), resulting from the synchroniza-
tion between tasks and messages, but also from the in-
terplay that different tasks can have at the RTOS level
and the synchronization and queuing policies of the
middleware. The timing of end-to-end computations
depends, in general, on the deployment of the tasks
and messages on the target architecture and on the re-
source management policies.

• Dependability. The deployment of the functions onto
the system ECUs and the communication and synchro-
nization policies must be selected to meet dependabil-
ity targets. A system-level methodology should inte-
grate support for design patterns suited to the devel-
opment of highly-reliable components with fault con-
tainment both at the functional level and at the tim-
ing level. Time triggered architectures can provide
timing isolation, but require careful planning and tool
support to optimize resource availability against future
changes.

• Composability and Extensibility vs. Efficiency. The
timing of software tasks depends on the presence or
absence of other tasks (a similar reasoning applies to
messages). A scheduling policy that could prevent tim-
ing variability in presence of dynamical changing task
characteristics can be conceived (for example, timing
isolation or resource reservation policies) but it will
carry overhead, albeit potentially not prohibitive. The
previous situation is the standard trade-off between ef-
ficiency and reliability but it has more important busi-
ness implications than usual. In fact, if software from
different sources has to be integrated on a common
hardware platform, in absence of composition rules
and formal verification of the properties of composed
systems, who will be responsible for the correct func-
tioning of the final product?

In the future scenario, in which application tasks from
multiple Tier-1 suppliers are integrated into the same ECU,
leveraging the standardization of interfaces allowed by AU-
TOSAR, protecting the tasks of each IP from the functional
and timing errors of other IPs is of fundamental importance.
Timing isolation is therefore required to provide for addi-
tional separation of concerns and protection.

The following sections will provide additional details on
the major challenges that the development of component-
based methodologies and standards must face today. Sec-
tion 2 provides a reasoned overview of the fundamental con-
cepts and the main challenges in the development of the
AUTOSAR standard. Section 3 highlights the main prin-
ciples of a component-based methodology that not only al-
lows the static checking of interfaces, but also verification
of behavioral properties and timing constraints. The ap-
proach is an extension of the AUTOSAR component model
and includes a contract-based approach to interface spec-
ification that allows the use of timing analysis tools for
the verification of end-to-end latencies. Finally, Section 4
defines the needs of a component-based methodology for
the realization of integrated architectures. Focus is on the
concepts of encapsulation, fault isolation and error contain-
ment, both at the functional and temporal level.

2. AUTOSAR: facts and fancies on the impact
in system design

AUTOSAR is a global development partnership which
achieved a significant drive for the industry-wide handling
of functional complexity [5]. The core objectives of the
partnership are concentrating as well on a domain indepen-
dent standardized software architecture as on a standardized
methodology in the software system design enabling a solid
development basis with large design bandwidth.



Since the foundation of the partnership in 2003 the ma-
turity of the resulting specifications has been significantly
increased from release to release. The recent release 3.0
contains more than 130 specifications which are now uti-
lized for industrial exploitation in the automotive industry.

There is a clear commitment in the automotive indus-
try to migrate now from individual proprietary solutions
to the standardized AUTOSAR Architecture and method-
ology. Such a move and joint undertake is unique in the
automotive industry because it is triggered by some key
targets. The most prominent ones are: Hardware abstrac-
tion, domain wide standard interfaces, reusability of soft-
ware implementations, transferability of functions and fa-
cilitated multi user development and exploitation as well as
a support in system design by defining and utilizing the rel-
evant functional and system data for the configuration pro-
cess. Today, the AUTOSAR set of specifications deliver for
the first time a platform for a OEM-wide realization.

In this standardization activities a consolidation of ex-
isting automotive design solutions were integrated together
with several innovative concepts, see Figure 1 [1]. The new
concepts include:

Extended configuration concept The support of multi-
ple configuration variants enables pre-compile, link-time
and post-build parameters configuration classes or a com-
bination thereof.

Error handling A consistent and non ambiguous error
handling supports effective communication to application
layer functionality and can also be used as a means for mode
management and diagnostic purposes. Use cases include
broken sensors, communication errors and memory failures.

Runtime Environment (RTE) From an abstract point of
view (i.e. at system design time) the RTE is the run-time
implementation of the Virtual Functional Bus (VFB) on a
specific ECU. The notion of the VFB translates to all com-
munication mechanisms that are relevant to the application
layer software. Conclusively, the RTE abstracts the applica-
tion layer from any implementation details of the basic soft-
ware and hardware aspects. With this in mind, the RTE is a
middleware layer technology that enables transferability of
application layer software components across the network.

Functional interfaces In order to facilitate integration of
application software components in a system, clear seman-
tics of the interface are being published in function cata-
logues. Descriptions of the interface that conform to the
standardized AUTOSAR format are used as an input to the
development process without the need to disclose any inter-
nal design, which is often sensitive to competition.

Methodology The AUTOSAR meta model precisely de-
fines the concepts used to describe a self-contained system
with AUTOSAR. A direct derivation of the meta model are
the exchange formats (based on ’templates’), which are thus
inherently consistent. Now, the AUTOSAR methodology
covers all major steps of system development, starting with
the input descriptions for

• Software components

• ECU resources

• System constraints

All subsequent development steps up to the generation of
executable code are supported by the AUTOSAR method-
ology by defining exchange formats and work methods for
these steps.

Industry−wide
consolidation of
,existing’ basic 
software designs

New concepts

Memory
Services

RTE

VFB

Error
Handling

Meta Model

Methodology

Configuration
Concept

Exchange

Templates
Input

Formats

OS kernel

Diagnostics

Bus systems

Drivers

Gateway

Network

Complex
Abstraction

Controllerµ

ECU
Abstraction

Drivers

Management
Mode

Management
Services
Comms

Figure 1. AUTOSAR concepts.

Whilst the AUTOSAR methodology is not a complete
process description itself, it can be applied as a foundation
for multipartner development processes. In analogy to the
benefits of technical interface compatibility, the AUTOSAR
methodology has the potential to enable synergies and im-
proved effectiveness when applied properly in a collabora-
tive business context.
It is important to point out here some major limitations:

1. The enabling role of AUTOSAR with respect to
reusability of software modules is frequently misun-
derstood. The AUTOSAR methodology and infras-
tructure is not intended to specify, design or generate
the reusability of Software components; it is organized
to handle in a standardized design process finalized
software components (SWC) which are designed to be



reused at clear boundary conditions. This means the
fraction of the functional network represented in such
a SWC must be integrable in the different networks of
SWC. This holds true as well for the logical as well as
for the dynamic signal networking. This limitation is
an intrinsic one.

2. In order to allow for an improved system design
methodology where the mapping of SWC (and there-
fore the mapping of fractional function networks) to
computer nodes is supported, the handling of timing
and scheduling requirements is mandatory besides the
already described items in the AUTOSAR templates.
Consequently the extension of the AUTOSAR meta-
model and the templates is a must for the implemen-
tation of system generators enabling the possibility for
prior to implementation system configuration checks
[2].

3. Limited support of Release 3.0 in the infotainment and
telematics domain so far.

Being aware of these limitations and pushing forward
the timing handling in AUTOSAR will certainly push AU-
TOSAR in a leading software platform in the automotive
industry.

3. Building blocks of a design methodology for
distributed real-time automotive applica-
tions

The Autosar Design Methodology offers key benefits,
but also poses major challenges:

• Separating application specification and development
from implementation on specific hardware platforms
is a key enabler for enhanced cross platform re-use of
applications, allowing cost-tuned hardware implemen-
tations for the specific set of functions and features in-
tegrated in a particular vehicle development.

• This same separation, however, inherently limits the
capabilities for system-level analysis, which strives
for an early assessment of key functional and extra-
functional requirements in order to avoid deep design
iterations and assess risks and realizability constraints
for new functions.

A design methodology for distributed real-time automo-
tive applications should reconcile the advantage of early
system-level analysis with the overall Autosar objective of
decoupling function design from its implementation. As
key enabler towards this objective, we propose to conser-
vatively extend the Autosar component model towards what

we call rich component interface specification . Here, "rich-
ness" refers to three dimensions:

• the capability to express the multitude of non-
functional constraints, which are central to embedded
systems development (including resource constraints,
dependability, end-to-end latencies, costs, weight, vol-
ume)

• sufficient expressiveness of interface specification lan-
guage, enabling interface compatibility analysis be-
yond pure static checking, and cross-viewpoint system
analysis

• Contract-based interface specifications, allowing in
particular the use of so-called vertical assumptions for
capturing resource requirements at system-level.

Jointly, these allow system-level analysis to be per-
formed up to a degree of confidence characterized by the
collection of vertical assumptions of system-level design
units, such as those decorating so-called "runnables" and
virtual communication channels. In particular, assumptions
can be annotated with confidence levels, reflecting design
experience on the ability to meet e.g. expected resource
constraints. Such vertical assumptions can also be used to
guide the search for cost-efficient hardware structures sup-
porting the joint resource constraints, as well as exploring
allocation decisions with respect to their impact on extra-
functional requirements.

When committing to a given system configuration map-
ping runnables on ECUs and logical communications to
inter- or, respectively, intra ECU communication, we
can propagate bottom-up extra-functional characteristics of
ECUs and bus-systems to assess compliance to the vertical
assumptions of system-level design units.

The Speeds project [4] has developed a layered meta-
model of heterogeneous rich components and standardized
approaches for the integration of commercial industry stan-
dard modeling tools to assemble system-level design mod-
els with rich interface specifications by combining models
expressed in any authoring tool compliant to the integration
standard, including Matlab-Simulink/Stateflow [8], Rhap-
sody [10], and Scade [11]. It is currently integrating a range
of analysis methods supporting interface compliance test-
ing and dominance analysis between contracts expressed in
extended automata model, subsuming timed automata.

A key component of the proposed methodology is the
availability of real-time analysis methods, which allow to
assess realizability of end-to-end latencies at system level,
exploring the design space of possible system configura-
tions meeting vertical resource assumptions, and assess-
ing compliance to such vertical assumptions based on dis-
tributed real-time schedulability analysis for FlexRay- and
CAN bus-based target architectures [6][9].



4. From a Federated to an Integrated Automo-
tive Architecture

Substantial economic and dependability benefits could
be realized, if the different existing distributed application
subsystems (DAS) within a car (e.g., the power-train control
subsystem, the braking and chassis control subsystem, the
comfort electronic subsystem, the multi-media system etc.,)
were integrated into a unified automotive architecture, with
a consequent reduction in the number of Electronic Con-
trol Units, physical wires and physical contact points. In
such an architecture, DASes of different criticality that are
developed by different organizations and may use different
platform services would have to reside in a single ECU and
would have to share a single physical communication chan-
nel.

In our opinion the key obstacles that hinder the move
to such an integrated architecture are the limited encapsula-
tion, the weak fault-isolation and the poor error containment
capabilities of the prevailing communication protocols and
of existing ECU hardware/software architectures that parti-
tion the services of a single CPU to a set of nearly indepen-
dent DASes.

Recent technology advances in the area of communica-
tion protocols and SoC (System-on-a-Chip) architectures
support the shift from a federated to an integrated automo-
tive architecture. In the area of communication, the recent
move of the industry to time-triggered protocols, such as
FlexRay [6], TTP [12] or Time-triggered Ethernet, supports
the partitioning of a single physical communication channel
into nearly independent sub-channels that are free of logical
or temporal interference and thus provide the encapsulation
and error-containment services that are required in an inte-
grated distributed architecture.

In the area of processor architectures, the advent of Mul-
tiprocessor MPSoCs that link a number of independent IP
Cores on a single chip by a proper Network on Chips (NoC)
provides an execution environment, where each component
of a DAS can be hosted on its own IP-Core, containing a
processor and local memory, such that fault-isolation, and
error containment, both in the logical and temporal do-
main, are achieved by design. Since the IP-Cores within
and among DASes communicate solely by the exchange of
messages, either via the NoC or the off-chip time-triggered
network, the NoC design must support the four composabil-
ity requirements:

1. precise interface specification: the interfaces between
the IP-Core and the NoC must be precisely specified in
the temporal and logical domain,

2. stability of priori services: the integration of an IP-
core into the SoC must not invalidate the established
correctness of the prior services of the IP-Core,

3. non-interfering interactions: There may be no tempo-
ral interference among the messages exchanged by the
NoC, and

4. error containment: An IP Core that becomes faulty (ei-
ther because a hardware or software fault) may not in-
terfere with the interactions of the other (non-faulty)
IP Cores.

On top of these core services of such a platform SoC
architecture, higher-level application specific services can
be implemented in middleware such that the APIs (appli-
cation program interface) that are visible to the application
software conform with the requirements of existing legacy
applications (e.g., a CAN overlay network) and support the
seamless integration of this existing legacy software into the
new integrated architecture.

5. Conclusions

The automotive electronic industry is undergoing a deep
change in its supply chain, which requires support for the
modeling, analysis, development and integration of compo-
nents. Issues on component design, composability require-
ments, safety and timing protection and a quick look at the
opportunities and the limitations of the existing AUTOSAR
standard are discussed.

References

[1] H. Heinecke et al, Current results and preparations
for exploitation, Euroforum May 2006 Stutttgart; see
www.autosar.org

[2] M.Rudorfer et al. Being on time using AUTOSAR
methodology, Elektronik automotive S2(2006)

[3] W. Damm, A. Votintseva, A. Metzner, B. Josko, T.
Peikenkamp, E. Böde, Boosting Re-use of Embedded
Automotive Applications Through Rich Components,
Elsevier’s Electronic Notes in Theoretical Computer
Science, Elsevier Science B.V., 2005

[4] Speeds: Speculative and Explorative Design
in Systems Engineering, IST project 033471,
www.speeds.eu.com

[5] AUTOSAR Consortium web page, www.autosar.org.

[6] Flexray, Protocol Specification V2.1 Rev. A, available
at http://www.flexray.com, 2006.

[7] A. Sangiovanni Vincentelli, M. Di Natale, Embedded
System Design for Automotive Applications IEEE
Computer, Vol 40 (10), Oct. 2007, pp 42-51



[8] Mathworks The Mathworks Simulink and
StateFlow User’s Manuals, web page:
http://www.mathworks.com.

[9] R. Bosch GmBh, CAN Specification, Version 2.0,
Stuttgart, 1991.

[10] Telelogic Rhapsody product web page,
http://modeling.telelogic.com/modeling/products/rhapsody

[11] Esterel Scade product web page, http://www.esterel-
technologies.com/products/scade-suite/

[12] Hermann Kopetz, Günter Grünsteidl, TTP-A Proto-
col for Fault-Tolerant Real-Time Systems, Computer,
v.27 n.1, p.14-23, January 1994

[13] G. Gossler and J. Sifakis, Composition for
Component-Based Modeling, Science of Computer
Programming, March, 2005, vol. 55, pp. 161–183

6


	Main
	DATE08
	Front Matter
	Table of Contents
	Author Index




