
Methods, Tools and Standards for the Analysis, Evaluation and Design of
Modern Automotive Architectures

E. Frank
VaST Systems

Munich, Germany

R Wilhelm
Saarland University,

Saarbrücken, Germany

R Ernst
TU Braunschweig,

Braunschweig Germany

A. Sangiovanni-Vincentelli
Univ. of California Berkeley

Berkeley, CA, USA

M. Di Natale
Scuola Superiore S. Anna

Pisa, Italy

Abstract

Automotive systems are increasingly distributed and
complex. Reduced time-to-market, cost and safety concerns
require advance validation of the integrated systems and
its components, from the functional, timing, and reliability
standpoints. In particular, function correctness and perfor-
mance may depend on communication and computation de-
lays imposed by the selected architecture platform. Hence,
the need for methods and tools capable of predicting the
system-level timing behaviour (latencies and jitter), result-
ing from the HW platform selection, the synchronization be-
tween tasks and messages, and also from the synchroniza-
tion and queuing policies of the middleware and RTOS lev-
els. In this paper, we review methods and tools for the evalu-
ation of the function performance and its timing correctness
by simulation or by worst case static analysis.

1. Introduction

The complexity of car electronic systems is rapidly
growing, and the overall size of the embedded software in
cars has now reached millions of lines of embedded code.
Furthermore, the fundamental paradigm of system devel-
opment in car electronics is changing. Vehicle architec-
tures are still traditionally component or sub-system fo-
cused, where each function is deployed to an autonomous
Electronic Control Unit (ECU), but the proliferation in the
number of ECUs, subsystems and buses, and the increasing
interdependency of functions makes these systems difficult
to test and validate. A shift from the single ECU approach
toward an increased networking of control modules within
application domains (e.g. Powertrain) as well as across do-
mains (e.g., Powertrain and Chassis) is now taking place.

Furthermore, complex automotive functions, including
active safety and safety critical systems, are characterized
by non-functional requirements, including timing and per-
formance, requirements for safety, and cost, together with
reusability, flexibility, scalability and extensibility of the ar-
chitecture artifacts.

Model-based development allows the description at de-
sign time of the fundamental properties (functional and non
functional) of the system in a user-friendly high-level mod-
eling language, based on a mathematical formalism. The
model is amenable to analysis by verification or simulation
methods in order to detect and fix errors and performance is-
sues at design time. When the model includes the architec-
ture platform on which the functions are executed, the term
virtual prototyping is also used. Later, the automatic deriva-
tion of implementation code from a high-level algorithmic
representation of the function is typically performed, reduc-
ing substantially the time required for the coding and testing
stages.

Most of the software functions developed today and pos-
sibly even more in the future, considering the upcoming
X-by-wire systems are sensitive to time performance and
possibly even time-critical. Real-time constraints require
a model capable of expressing timing constraints and tools
for the analysis of the average case as well as of worst-case
behavior.

System-level analysis and new modeling and analysis
methods and tools are not only needed for predictability
and composability when partitioning end-to-end functions
at design time and later at system integration time, but also
for providing guidance and support to the designer in the
evaluation and selection of the electronics and software ar-
chitectures.

Architecture evaluation and selection is a vital stage with
tremendous impact on the cost, performance and quality of
a vehicle architecture, typically performed years in advance

978-3-9810801-3-1/DATE08 © 2008 EDAA 

 



of subsystem development and integration, in which models
of the functions and of the possible solutions for the physi-
cal architecture need to be defined and matched to evaluate
the quality and select the best possible hardware platform
with respect to the performance, reliability and cost metrics
and constraints.

For timing related metrics (including end-to-end latency,
signal jitter and bus/cpu utilization), schedulability analysis
theory can provide the formal evaluation of the worst case
timing behavior, stochastic analysis for a better insight into
the probability of each latency value, and system-level sim-
ulation.

The Controller Area Network (CAN) bus [6], used for
most types of communication is based on the concept of a
deterministic resolution of the contention and on the assign-
ment of priorities to messages. The OSEK standard for real-
time operating systems [12] supports predictable priority-
based scheduling [9], and bounded worst case blocking time
through an implementation of the immediate priority ceiling
protocol [14] and the definition of non-preemptive groups
[16]. In absence of faults, and assuming that the worst case
execution time of a task can be safely estimated, these stan-
dards allow predicting the worst-case timing behavior of
computations and communications.

A prerequisite of schedulability analysis is however the
capability of obtaining an estimate of the worst case exe-
cution times of all the application tasks and the operating
system services.

Priority-based scheduling of tasks and messages fits well
within the traditional design cycle, in which timing prop-
erties are largely verified a-posteriori and applications re-
quire conformance with respect to worst case latency con-
straints rather than tight time determinism. Furthermore,
control algorithms are designed to be tolerant with respect
to small changes in the timing behavior and to the nondeter-
minism in time that possibly arises because of preemption
and scheduling delays [7], or even possibly to overwritten
data or skipped task and message instances because of tem-
porary timing faults. Finally, although formally incorrect,
there is a common perception that small changes in the tim-
ing parameters (decreased periods and/or wrong estimates
of the computation times) typically only result in a grace-
ful degradation of the response times of tasks and messages
and that such degradation will in any case preserve the high
priority computations.

This is only partly true and can lead to timing faults
because of discontinuities in the function that defines the
dependency of the worst-case response times of tasks and
messages from its computation or transmission times and
periods.

In face of the development of larger and more com-
plex applications, which are deployed with a significant
amount of parallelism on each ECU and consist of a densely

connected graph of distributed computations, and of new
safety-critical functions, that require tight deadlines and
guaranteed absence of timing faults, the previous assump-
tions can no more be trusted. Hence, a new rigorous science
needs to be established.

A number of issues needs to be considered.

• Priority-based scheduling can lead to discontinuous
behavior in time and timing anomalies. The depen-
dency of the response time of a lower priority task or
message with respect to the computation time (or pe-
riod) of a higher priority task is not linear and not even
continuous. A small additional high priority load can
lead to a sudden increase in the response time on some
computation paths [5]. Furthermore, especially in dis-
tributed systems, it may even be possible that shorter
computation times result in larger latencies [13]. A re-
cently developed branch of worst case timing analysis
is focusing on sensitivity analysis [5][13] as a means
for understanding which computation and communica-
tion loads are critical for the preservation of deadlines
on selected paths.

• Variability of the response times between the worst
case and the best case scenario, together with the pos-
sible preemptions, can lead to the violation of time-
deterministic model semantics in the implementation
of software models by priority scheduled tasks and
messages [3].

• Extensibility and (to some degree) tolerance with
respect to unexpectedly large resource requirements
from tasks and messages that is allowed by priority-
based scheduling comes at the price of additional jitter
and latency and lack of timing isolation.

• Future applications, including safety critical (x-by-
wire) and active safety need shorter latencies and time
determinism (reduced jitter) because of increased per-
formance. The current model for the propagation of in-
formation, based on communication by periodic sam-
pling, among non-synchronized nodes [4] has very
high latency in the worst case and a large amount of
jitter between the best case and the worst case de-
lays. Even if communication-by-sampling can be for-
mally studied and platform implementations can be de-
fined to guarantee at least some fundamental properties
of the communication flow (such as data preservation
[4]), time determinism is typically disrupted and the
application must be able to tolerate the large latencies
caused by random sampling delays. In a time-triggered
system, the scheduling of the tasks and messages can
be arranged in such a way that latencies and jitter are
controlled and are possibly much shorter.



• The deployment of reliable systems requires timing
isolation in the execution of the software components,
and protection from timing faults. Timing protection
is even more important in light of AUTOSAR, when
components from Tier1 suppliers are integrated into
the same ECU and faulty behaviors (functional and
temporal) need to be contained and isolated. The
development of future applications will also require
the enforcement of composability and compositional-
ity not only in the functional domain but also for para-
functional properties of the system, including the tim-
ing behavior of the components and their reliability.

One of the major down-sides of priority-based schedul-
ing of resources is that faulty high priority computation or
communication flows can easily obtain the control of the
ECU or the bus, subtracting time from lower priority tasks
or messages.

In the future scenario, in which application tasks from
multiple Tier-1 suppliers are integrated into the same ECU,
leveraging the standardization of interfaces allowed by AU-
TOSAR, protecting the tasks of each IP from the timing
errors of other IPs is of fundamental importance. Timing
isolation is therefore required to provide for additional sep-
aration of concerns and protection.

Time-based schedulers, including those supported by
the FlexRay and OSEKTime [11] standards force context
switches on the ECUs and the assignment of the communi-
cation bus at predefined points in time, regardless of the out-
standing requests from the tasks for computation and com-
munication bandwidth. Therefore, they are better suited to
provide temporal protection, except that the enforcement of
a strict time window for the execution and communication
requires a much better capability of the designer in predict-
ing the worst case execution times ([8]) of tasks so that the
execution window can be appropriately sized, and guardians
are needed to ensure that an out-of-time transmission will
not disrupt the communication flow on the bus.

Moving from an event-triggered system scheduled by
priority to a time-triggered system in which resources are
allocated by time slots (or time windows) requires a much
better a-priori understanding of the timing properties (worst
case computation time) of the software and of the commu-
nication messages to allocate communication slots and de-
fine the scheduling tables. Development processes must be
updated to include design-time specification and early veri-
fication of timing properties, including determination of the
worst case computation time of tasks.

The following sections will provide insight on the major
challenges in the development of methods and tools for per-
formance and worst case timing analysis. Section 2 presents
a software technology that allows to explore a number of ar-
chitectural alternatives in automotive subsystems by virtual
prototyping. Section 3 provides an overview of the problem

of computing the worst case computation time of tasks start-
ing from a code implementation. Section 4 describes the use
of timing analysis tools for the verification of end-to-end la-
tencies in complex distributed systems and the evaluation of
architecture solutions.

2. Simulation-Based Analysis of Automotive
Electronic Control Units

Automobiles are increasingly differentiated by features
enabled by electronic control units (ECUs). Consequently
electronics content grows as a percentage of automobile de-
velopment costs-electronics are typically 40% of luxury ve-
hicles and over 70% of the cost of hybrids. As electronics
complexity and content escalates, methods for precisely op-
timizing system performance and cost become essential in
the automotive electronic design process. The use of virtual
prototypes-high-speed, cycle-accurate software representa-
tions (models) of ECUs and their surrounding components,
such as plant models-allow precise empirical analysis of
system performance. Furthermore, the relative ease of auto-
mated system reconfiguration and analysis provide a practi-
cal method for supporting directed exploration of the solu-
tion space where architectural tradeoffs can be measured to
determine precisely the impact on system performance.

The central question is: what role does each member
of the automotive electronics design supply chain play in
architectural analysis? Generally, the Semiconductor sup-
pliers have the device hardware expertise, and the Tier 1
and OEMs have the end-systems and system software ex-
pertise. New higher performance multi-core architectures
require deeper understanding of the tradeoffs between hard-
ware and software, and therefore require more precise meth-
ods for semiconductor suppliers and control systems en-
gineers to interact. Ultimately, what is needed is an ex-
ecutable specification medium, that can be passed to the
OEM and Tier 1, on which they can run their full (and often
confidential) software suites and both pass back to the sup-
pliers actual performance results as well as recommended,
alternative architectural changes. The Virtual Prototype is
being employed at leading OEMs and Tier 1s as such an
executable specification.

This presentation discusses the underlying modeling
technology behind virtual prototypes, and presents methods
for performing automated simulation-based exploration and
analysis of proposed solution spaces for automotive elec-
tronic control units.



3. Code-Level Worst-Case Execution Time
Analysis

Hard real-time systems are subject to stringent timing
constraints which are dictated by the surrounding physical
environment.

Schedulability analysis has to be performed in order to
guarantee that all timing constraints will be met. This stage
is also called timing validation. Schedulability analysis re-
quires a preceding determination of upper bounds for the
execution times of all the system’s tasks. These upper
bounds are commonly called worst-case execution times
(WCETs). The determination of the WCET of software is
an increasingly complex problem due to the use of proces-
sor components such as caches, pipelines, and all kinds of
speculation, which make the execution time of an individ-
ual instruction locally unpredictable. Such execution times
may vary between a few cycles and several hundred cycles.

A Working Solution A combination of static program
analysis with integer linear programming (ILP) has been
successfully used to determine precise upper bounds on the
execution times of real-time programs with uninterrupted
execution.

The method and tools based on it are in routine use in
the aeronautics and automotive industries. AbsInt’s tool,
aiT, has been used in the certification of several time-critical
subsystems of the Airbus A380 [2] and is therefore accepted
as validated tools for these applications by the European
Airworthiness Authorities.

Integration Timing Analysis profits from information
available at the model level in model-based design and often
lost during code synthesis and compilation. aiT has been in-
tegrated with Scade and ASCET-SD to increase precision.
It has also been integrated with Evidence’s and Symtavi-
sion’s schedulability analysis, as schedulability analysis is
the prime customer of upper bounds on execution times [1].

Extensions Possible extensions to the basic WCET anal-
ysis of sequential task code are the following.

1. Timing analysis of tasks for preemptive scheduling
needs the determination of context-switch costs. A
clever memory-allocation strategy may reduce the in-
terference of the tasks on the processor caches and thus
reduce these costs [18].

2. Many automotive systems are executed in different op-
erating modi. These modi have different associated
real-time constraints. A modus-specific timing anal-
ysis is able to produce more precise upper bounds for
the different modi compared to an overall upper bound
for the whole system.

Alternative Approaches In [17] a survey of most existing
approaches and tools for the determination of the WCET
can be found. Alternative approaches based on measure-
ment of execution times both end-to-end and piecewise have
problems with soundness, i.e. cannot derive guarantees, or
precision or both.

Design for Predictability The architecture of the un-
derlying execution platform, characteristics of the soft-
ware, e.g. coding rules, code synthesis, abstraction layers,
component-based design, the used scheduling strategy in-
fluence the analysability of the system and the precision
of the timing-analysis results. Recent results on the pre-
dictibility of different cache architectures will be presented
[10].

A new discipline, Design for Predictability is advocated
encompassing all system layers [15].

4. Automotive system level performance analy-
sis and optimization

A growing number of networked applications are imple-
mented on increasingly complex automotive platforms with
several bus standards and gateways. Together, they chal-
lenge the automotive design process. Recent automotive
software standards, in particular AUTOSAR that defines a
network runtime environment on top of the existing auto-
motive standards, are intended to improve portability and
interoperability. AUTOSAR shall replace or extend earlier
proprietary software architecture solutions, but it does not
yet sufficiently address time and platform modelling and
specification. This is a serious concern as AUTOSAR has
increased portability, reuse, scalability, and interoperability
as main targets. Only with a generally applicable timing
model, AUTOSAR can develop its full capacity.

On the other hand, there are recent results in composi-
tional performance analysis which can be exploited to ana-
lyze such automotive networked systems, and, due to their
low computational cost compared to simulation, can be ap-
plied to design space exploration in a complex automotive
supply chain. The resulting tools and methods can even be
used to optimize the robustness of an architecture which is
important to handle updates and to extend the lifetime of an
architecture.

These tools and methods can be used to improve the au-
tomotive system quality. This has been shown in automo-
tive component designs, even for cars that are already in
production today. On the other hand, a shift in the verifi-
cation process towards using more formal models will be a
major effort for industry. For good reasons the automotive
industry has developed a conservative approach to introduc-
ing innovations in the design process since changes affect



the whole supply chain. Yet, the challenges of new plat-
form architectures including multiple gateways and proces-
sors with caches, an increased dynamic in the design pro-
cess due to software updates, and variants, networked con-
trol functions, such as adaptive cruise control have created
new challenges that do not fit the current prototyping and
test based verification processes any more. In effect, AU-
TOSAR only made that trend towards complexity more vis-
ible. The expected advent of multi-core architectures might
have an even higher impact.

It is, therefore, very important to enable a smooth evo-
lution when introducing the new techniques, starting as a
complement to the existing techniques, checking the results
of prototyping and test for completeness. A very good place
to start are the early design phases where analytical ap-
proaches based on estimated values have always been used.
There, the necessary data of process timing and communi-
cation can be captured which can be refined throughout the
development process and compared against the estimation
data. This requires new measurement and profiling tech-
niques, or even a combination with formal process timing
analysis where highly reliable data are needed such as in
safety critical applications.

In is important to fully understand these issues, together
with the status of formal performance models and tools and
how to apply them in the automotive design process.

References

[1] Interest ist-2005-2.5.3 project. website,
http://www.ist-world.org/, 2006.

[2] AbsInt. Absint enhances the safety
of the a380. In available at
http://www.absint.com/releases/050427.htm.

[3] M. Baleani, A. Ferrari, L. Mangeruca, and
A. Sangiovanni-Vincentelli. Efficient embedded
software design with synchronous models. In EM-
SOFT ’05: Proceedings of the 5th ACM international
conference on Embedded software, pages 187–190,
New York, NY, USA, 2005. ACM Press.

[4] A. Benveniste, P. Caspi, S. Edwards, N. Halbwachs,
P. L. Guernic, and R. de Simone. The synchronous
languages 12 years later. Proceedings of the IEEE, 91,
January 2003.

[5] E. Bini, M. D. Natale, and G. Buttazzo. Sensitivity
analysis for fixed-priority real-time systems. In Eu-
romicro Conference on Real-Time Systems, Dresden,
Germany, June 2006.

[6] R. Bosch. Can specification, version 2.0. Stuttgart,
1991.

[7] P. Caspi and A. Benveniste. Toward an approximation
theory for computerised control. In Proceedings of the
EMSOFT 2002 conference, pages 294–304, 2002.

[8] C. Ferdinand et al. Reliable and precise WCET deter-
mination for a real-life processor. In EMSOFT, pages
469–485, 2001.

[9] M. G. Harbour, M. Klein, and J. Lehoczky. Timing
analysis for fixed-priority scheduling of hard real-time
systems. IEEE Transactions on Software Engineering,
20(1), January 1994.

[10] J. Reineke, D. Grund, C. Berg and R. Wilhelm. Timing
predictability of cache replacement policiess. In Real-
Time Systems, 37(2):99-122, November 2007.

[11] OSEK. OSEK/VDX Steering Committee: Time-
Triggered Operating System. vailable online at
http://www.osek-vdx.org.

[12] OSEK. Osek os version 2.2.3 specification. available
at http://www.osek-vdx.org, 2006.

[13] R. Racu and R. Ernst. Scheduling anomaly detection
and optimization for distributed systems with preemp-
tive task-sets. In 12th IEEE Real-Time and Embedded
Technology and Applications Symposium, San Jose,
April 2006.

[14] L. Sha, R. Rajkumar, and J. P. Lehoczky. Prior-
ity inheritance protocols: An approach to real-time
synchronization. IEEE transaction on computers,
39(9):1175–1185, September 1990.

[15] L. Thiele and R. Wilhelm. Design for timing pre-
dictability. In Real-Time Systems, 28:157 - 177, 2004.

[16] Y. Wang and M. Saksena. Scheduling fixed prior-
ity tasks with preemption threshold. In Proceedings,
IEEE International Conference on Real-Time Com-
puting Systems and Applications, December 1999.

[17] R. Wilhelm, J. Engblom, A. Ermedahl, N. Holsti,
S. Thesing, D. Whalley, G. Bernat, C. Ferdinand,
R. Heckmann, F. Mueller, I. Puuat, P. Puschner,
J. Staschulat, and P. Stenström. The determination of
worst-case execution times-overview of the methods
and survey of tools. In ACM Transactions on Embed-
ded Computing Systems (TECS), 2008.

[18] G. Gebhard and S. Altmeyer Optimal task placement
to improve cache performance EMSOFT 2007, Pages:
259 - 268


	Main
	DATE08
	Front Matter
	Table of Contents
	Author Index




