
Logical Reliability of Interacting Real-Time Tasks

Krishnendu Chatterjee
UC Berkeley

c krish@eecs.berkeley.edu

Arkadeb Ghosal
UC Berkeley

arkadeb@eecs.berkeley.edu

Thomas A. Henzinger
EPFL

tah@epfl.ch

Daniel Iercan
”Politehnica” U. of Timisoara

daniel.iercan@aut.upt.ro

Christoph M. Kirsch
University of Salzburg
ck@cs.uni-salzburg.at

Claudio Pinello
Cadence Research Labs
pinello@cadence.com

Alberto Sangiovanni-Vincentelli
UC Berkeley

alberto@eecs.berkeley.edu

Abstract

We propose the notion of logical reliability for real-time
program tasks that interact through periodically updated
program variables. We describe a reliability analysis that
checks if the given short-term (e.g., single-period) reliabil-
ity of a program variable update in an implementation is
sufficient to meet the logical reliability requirement (of the
program variable) in the long run. We then present a no-
tion of design by refinement where a task can be refined
by another task that writes to program variables with less
logical reliability. The resulting analysis can be combined
with an incremental schedulability analysis for interacting
real-time tasks proposed earlier for the Hierarchical Timing
Language (HTL), a coordination language for distributed
real-time systems. We implemented a logical-reliability-
enhanced prototype of the compiler and runtime infrastruc-
ture for HTL.

1 Introduction
In safety-driven embedded applications, such as auto-

motive stability controllers and medical devices, reliability
and fault tolerance are increasingly important, as regulatory
bodies and customers demand robust products. Much re-
search has been carried out on topics such as reliability anal-
ysis, fault-tolerant architectures, and fault analysis. How-
ever, we are still at the early stages for design methodolo-
gies and tools that take into consideration constraints on re-
liability and fault tolerance in addition to traditional design
constraints such as response time and power consumption.
Platform-based design [15] emphasizes the separation of
requirements (what the system is supposed to do) from ar-
chitecture (the implementation resources). A mapping from
the requirements specification to the architecture can then

be checked for correctness. This approach has been used
in [7] for real-time software tasks, where a specification de-
fines the functional and timing requirements of tasks. In
this paper, we extend the approach to reliability require-
ments, thus setting the foundation for a joint schedulabil-
ity/reliability analysis.

We consider a set of atomic, periodic, interacting real-
time tasks. The release times and deadlines of each task are
specified through the read times and write times of global
variables called communicators [6]. An architecture con-
sists of a set of networked hosts. An implementation must
assign each task to a host so that each task invocation can be
scheduled between its release time and deadline. To check
schedulability, the WCET of each task on each host must
be known. In this way, we separate the timing specification
(release times and deadlines) of the tasks from the imple-
mentation (mapping and schedule).

We treat system reliability in a similar way, by separat-
ing reliability requirements for communicators from the re-
liability characteristics of hosts. With each communicator,
we associate a logical (or long-term) reliability constraint
(LRC), which is a real number between 0 and 1. If the LRC
is 0.9, this means that in the long run, at least 0.9 fraction of
all periodic writes to this communicator are required to be
valid values. The LRC is a requirement on the implementa-
tion, just as release times and deadlines are requirements.
The mapping of tasks to hosts must ensure the LRCs of
all communicators. For this purpose, if hosts fail, it may
be necessary that a task be replicated on several hosts. To
check if an implementation satisfies all LRCs, the singu-
lar (or short-term) reliability guarantee (SRG) of updating
a communicator with a valid value must be known. The
SRG is again a real number between 0 and 1; for exam-

978-3-9810801-3-1/DATE08 © 2008 EDAA

ple, an SRG of 0.8 means that the probability that a host
fails during the execution of a task invocation is 0.2. The
SRG is a property of the architecture, just as WCETs are
architectural properties. To achieve LRCs of 0.9 with hosts
that guarantee only SRGs of 0.8, all tasks that write to com-
municators (with LRC 0.9) need to be replicated on two
hosts. This suffices when all communication between hosts
is non-faulty, because 0.22 < 0.1. The above assumes
that task inputs are reliable; we will later discuss scenar-
ios for non-reliable inputs. SRGs can be computed based
on networks of nodes [14, 4], fault trees [12], and reliability
block diagrams (RBDs). Our approach is closest to that of
RBDs [12], where systems are modeled as networks with
AND/OR junctions: an OR junction works reliably when
any of its inputs is reliable, and an AND junction requires
that all inputs be reliable.

The main contribution of this paper is the separation
of reliability requirements (LRCs) specified by a program
written in a task coordination language (e.g., HTL [6]),
from the reliability guarantees (SRGs) offered by hosts
and communication links. The program implementation
(replication mapping) must ensure that all timing require-
ments and all reliability requirements are satisfied. LRCs,
like release times and deadlines, represent application-
specific (“logical”) information; SRGs, like WCETs, rep-
resent architecture-specific (“physical”) data. An analysis
checks whether the replication mapping and task schedule
satisfies the logical requirements for timing and reliability.

We assume that the architecture consists of fail-silent
hosts and sensors connected over a broadcast network. If
a fail-silent host or sensor fails, it stops functioning (be-
comes silent) [3]. In [2], it is argued that fail-silence can
be achieved at a reasonable cost. To keep the analysis sim-
ple, we also assume a reliable broadcast network. However,
less-than-perfect reliable broadcast can be handled readily
as long as the broadcast is atomic, i.e., either all hosts re-
ceive identical values or none at all.

We extend the Hierarchical Timing Language (HTL) [6],
a coordination language for distributed real-time systems,
to capture the timing and reliability requirements of a set of
software tasks. The HTL compiler performs a joint schedu-
lability/reliability analysis for a given replication mapping
of tasks to hosts and generates distributed code that satis-
fies the requirements. We also present a notion of refine-
ment that preserves the reliability analysis and, thus, facil-
itates incremental reliability analysis in the design flow. In
this way, the complexity of a joint schedulability/reliability
analysis can be reduced significantly by progressing from
the requirements to the final implementation in a sequence
of steps.

To evaluate our approach, we set up an experiment with
a three-tank system (3TS) controlled by an HTL program
that targets a distributed, redundant implementation (con-

sisting of two physically separated controllers) with the re-
liability requirement that the system functions even if one
of the hosts fails. We verified that unplugging one of the
two hosts from the Ethernet network has indeed no effect
on the control performance.

Related work. In [1], a distributed static schedule is
generated for a given periodic algorithm on a distributed
architecture, trying to optimize reliability and the length of
a period. Our paper, which is similar in approach, targets
the joint satisfaction of timing and reliability requirements.

Reliability requirements can also be specified by assign-
ing priorities to faults and tasks. Each failure pattern (a
combination of faulty processors and channels) and tasks
are assigned a priority, and a synthesis procedure deter-
mines the replication of tasks to ensure that, if a fault occurs,
then all tasks with priority higher than the fault execute.
In [13], this approach was combined with a mono-periodic
data-flow model of computation. Our approach differs be-
cause LRCs are used instead of priorities.

Cyclic static schedules have been generated for plat-
forms with transient faults and time-triggered communica-
tion. In [9], re-execution (time redundancy) and replication
(space redundancy) are optimized automatically to improve
schedulability. In [10], the approach is refined to include
check-pointing, thus re-executing only the parts of a pro-
cess that are affected by transient faults. A method to ex-
plore the trade-off between schedulability and transparency,
using only re-execution, is proposed in [11].

2 Background
A communicator [6] is a typed variable that can be ac-

cessed (read from or written to) with a specified periodicity.
Communicators are used to exchange data between tasks
and their environment based on the logical execution time
(LET) model of execution [7]. Input communicators are
updated by physical sensors (possibly through drivers) and
read by tasks. Output communicators are updated by tasks
and read by physical actuators (possibly through drivers).
All other communicators are only read and written by tasks.
A task reads from certain instances of a set of communi-
cators, computes a function and writes to certain instances
of other communicators. The latest read and earliest write
times implicitly specify the LET of a task. Fig. 1 shows
four communicators c1, c2, c3, and c4 with periods of 2, 3,
4, and 2 time units, respectively. Task t reads the second
instances of c1 and c2 and updates the third and sixth in-
stances of c3 and c4, respectively. The LET of task t is five
time units from time instant 3 to 8. Communicators avoid
race conditions and therefore provide deterministic interac-
tion behavior.

A communicator may have an unreliable value if a task
fails to execute and/or the memory fails to store the value of
the communicator. The task implementations are assumed

10 2 43 5 76 8 109

c1 c1 c1 c1 c1 c1

c2 c2 c2 c2

c3 c3 c3

reads c1 reads c2 updates c3

task t

updates c4

c4 c4 c4 c4 c4 c4

Figure 1. Communicators and tasks

to be “correct”, i.e., if a task executes, then it produces
the “correct” output. In this work, we present a frame-
work to specify the logical (or long-run) reliability con-
straint (LRC) for a communicator, where the LRC speci-
fies the fraction of reliable values that the communicator
expects in the long run. Next, we formally define the notion
of a system (S, A, I), which consists of a specification S, an
architecture A, and an implementation I.

A specification S = (tset, cset) consists of a set of
tasks tset and a set of communicators cset, where tasks
and communicators are declared as follows.

A communicator declaration (c, typec, initc, πc, µc)
consists of a communicator name c, data type typec, an
initial value initc, an accessibility period πc ∈ N>0 and
an LRC µc ∈ R(0,1]. All communicator names are unique.
The data type includes a special symbol ⊥ to represent un-
reliable communicator values; a non-⊥ value indicates that
the communicator has a reliable value.

A task declaration (t, inst, outst, fnt, modelt, deft)
consists of a task name t, lists of inputs inst and outputs
outst, a function fnt, an input failure model modelt ∈
{1, 2, 3}, and a list of default values deft. All task names
are unique. An element of the input or output list is a pair
(c, i) consisting of a communicator name c ∈ cset and a
communicator instance number i ∈ N≥0. The length of the
input (resp. output) list is denoted by |inst| (resp. |outst|).
If inst(j) = (c, ·), then type(inst(j)) = typec; sim-
ilarly, if outst(k) = (c′, ·), then type(outst(k)) =
typec′ . The function fnt computes the outputs from
the inputs, i.e., fnt : Π1≤j≤|inst|type(inst(j)) →
Π1≤k≤|outst|type(outst(k)). The set of communicators
read by task t is denoted by icsett.

For a task t, its read time readt is the latest com-
municator instance read by t and its write time writet
is the earliest communicator instance written by t. For-
mally, readt = maxj(πc · i), where inst(j) = (c, i) and
writet = mink(πc′ · i), where outst(k) = (c′, i). The
tasks repeat with periodicity πS, where πS is derived from
the write time of the tasks. Formally, πS = lcm(cset) ·
d(maxt∈tset writet)/(lcm(cset)e, where lcm(cset) is
the least common multiple of the communicator periods.

The restrictions on task declarations are as follows: (1)
all tasks read from some communicators and write to some
communicators, (2) for all tasks, the read time is strictly
earlier than the write time, (3) no two tasks write to the same
communicator, and, (4) no task can write a communicator
instance multiple times. In other words, a communicator
can be written by at most one task at any time instant, i.e.,
the specification is race-free.

The input failure model modelt denotes the action of a
task if one or more inputs are unreliable. The list deft is a
list of default values for communicators being read by the
task (if the communicator is not reliable at read time). Three
failure models are considered: series (modelt = 1), parallel
(modelt = 2) and independent (modelt = 3). For failure
model series, if any one of the inputs fails, the task fails
to execute. For failure model parallel, if an input is unre-
liable, the task may execute by using the default value of
the communicator from the list deft. If all of the inputs
are unreliable the task fails to execute. For failure model
independent, if an input is unreliable, the task uses the cor-
responding default value for that input from the list deft.
The task may execute even if all inputs are unreliable.

An architecture A is a tuple (hset, sset, CS) where
hset is a set of hosts (connected over a reliable broadcast
network), sset is a set of sensors and CS is a set of archi-
tectural constraints for a given specification S = (tset, ·).
The constraints are: (1) reliability of hosts and sensors
specified by host reliability map hrel : hset → R(0,1],
and sensor reliability map srel : sset → R(0,1]; and,
(2) execution metrics for the tasks specified by worst-case-
execution-time (WCET) map, wemap : tset×hset→ N>0

and worst-case-transmission-time (WCTT) map, wtmap :
tset × hset → N>0. The hosts are assumed to be fail-
silent [3], i.e., if a host fails it does not produce any garbage
output. Non-reliability in broadcast networks can be ac-
counted for in our model as long as the faulty behavior is
atomic, i.e., if the broadcast fails none of the hosts receives
any input. The WCTT is measured as the broadcast time for
each task from each host. Memory is assumed to be 100%
reliable.

Given a specification S = (tset, ·) and an architecture
(hset, ·, ·), an implementation I is a function from tasks to
a set of hosts, i.e., I : tset → 2hset \ ∅. If a task t is
mapped to multiple hosts, then each host h executes a local
copy of t; the local copy is referred to as a task replica-
tion (t, h). All communicators c are replicated on all hosts
h; each local copy of a communicator is referred to as a
communicator replication (c, h). When a task replication
completes execution, it broadcasts the output to all hosts (to
update relevant communicator replications). For schedula-
bility analysis, the end-to-end task execution times there-
fore include both WCETs as well as WCTTs.

Semantics. An execution of an implementation, also
called an implementation trace (or simply trace), is a (pos-
sibly infinite) sequence of communicator values for every
time instant. A time instant is a sequence of positive inte-
gers and denotes the harmonic fraction of all communica-
tor periods. In practice, time instants are generated by the
architecture through clock interrupts. We will assume the
following. (1) Time instants are global, i.e., synchronized
across all hosts. (2) If a sensor s is replicated over multi-
ple hosts, then the environment writes identical values to all
replications of s when the update is due. (3) At any time in-
stant, if a communicator c is updated, then all replications
of c are first updated and then read. The above constraint
and exclusion of races ensure that all communicator repli-
cations have unique values when they are read. (4) When
a task replication (t, h) completes execution, it broadcasts
the output (to be written to a communicator c) to all hosts
hset/{h}. Every host receives the values from each repli-
cation of t and stores them in a local memory space (as-
signed to c). When the update of c is due, voting is used
to decide on the final value to be written to the commu-
nicator replication on the host. All tasks are functionally
correct and given identical inputs provide identical outputs.
All replications of a task have identical input failure mod-
els. At any given iteration, the replications of a task either
generate ⊥ (unreliable execution) or the correct value. If
some replications generated a non-⊥ value, then all other
replications which executed reliably generated the identical
non-⊥ value. If there is at least one non-⊥ value, then the
communicator replication is assigned that value.

We now formally define the semantics. For i ≥ 0, let Xi

be a function from the communicator set to the set of values,
with possibly the empty set, i.e.,Xi : cset→ typehset∪∅,
where type = ∪c∈csettypec. If i mod πc = 0, then
Xi(c) ∈ typec

hset, otherwise ∅. A trace is an infinite se-
quence (Xi)i≥0 of such functions. The semantics is the set
of all possible traces.

Reliability. Given a communicator c, and set α ∈
typehsetc , the value of α is reliable if α contains at least
one non-⊥ value. A reliability based abstraction con-
sists of only values 0 and 1, where 1 denotes a reliable
value, and 0 denotes an unreliable value. Given a trace
(Xi)i≥0, we define the reliability-based abstraction trace
(Zj)j≥0 = ρ((Xi)i≥0) as follows: Zj : cset → {0, 1}
with Zj(c) = 1 if the set Xj·πc

(c) is reliable, 0 other-
wise. In other words, the function ρ maps a trace (Xi)i≥0

to another trace (Zj)j≥0; the second trace is referred to
as reliability-based abstract trace. We define the limit-
average value of a reliability-based abstract trace for com-
municator c, τ c = (Zj(c))j≥0 as the long-run average
of the number of 1’s in the abstract trace. Formally, the
limit-average value limavg(τc) of a reliability-based ab-
stract trace for communicator c, τc = (Zi(c))i≥0 is de-

fined as limavg(τc) = lim
n→∞

1
n

n−1∑
i=0

Zi(c). Given a com-

municator c, the set of reliable abstract traces, denoted
by tracesc, is the set of reliability-based abstract traces
for c with limit-average no less than µc, i.e., tracesc =
{τc : limavg(τc) ≥ µc}. Given the set of communi-
cators cset = {c1, c2, · · · , ck}, the set of reliable ab-
stract traces is tracescset = {(Zj(ci))j≥0 : ∀i.1 ≤ i ≤
k.limavg((Zj(ci))j≥0) ≥ µci}.

Analysis. Given an implementation I for a specification
S on an architecture A, we define the following analyses:

• Schedulability analysis. The implementation I is
schedulable if (all replications of) all tasks complete
execution and transmission (of the outputs) between
the read and the write time of the respective task [6].
• Reliability analysis. The implementation I is reliable

if for each communicator c, the long-run average of the
number of reliable values observed at access points of
the communicator is at least µc.

An implementation I is valid for a specification S on an
architecture A, if I is schedulable and reliable.

3 Reliability Analysis and Refinement
A specification graph GS = (VS, ES) with ES ⊆ VS × VS

is defined as follows. The set of vertices is VS = {(c, i) :
c ∈ cset ∧ i ∈ {0, · · · , πS/πc}} ∪ {t : t ∈ tset}.
The set of edges is ES = {((c, i), t) : (c, i) ∈ ins(t)} ∪
{(t, (c, i)) : (c, i) ∈ outs(t)} ∪ {((c, i), (c, i′)) : i <
i′ ∧ ∀t ∈ tset.∀i′′.i < i′′ ≤ i′.(c, i′′) 6∈ outs(t)}. A
communicator cycle is a path δ from (c, i) to (c, i′) such
that the path δ contains at least one vertex t ∈ tset. A
specification S is memory-free if the specification graph GS
contains no communicator cycle.

Given the constraints on tasks and assumptions on ar-
chitecture, environment and semantics, replications of the
same task can be assumed to be connected in parallel, and
each block of such task replications is connected in series
with parallel blocks of replications of other tasks. Given
an implementation I, the reliability of a task t, λt =
1 −

∏
h∈I(t)(1 − hrel(h)), i.e., λt is the least probability

that the task t executes at every iteration of t.
The SRG λc of a communicator c is inductively de-

fined as follows: (a) for an input communicator c we have
λc = srel(s), where c is updated by a sensor s; and (b)
for a non-input communicator c written by a task t with
SRGs given for all communicators in the set icsett, we
have (1) if modelt = 1, then λc = λt ·

∏
c′∈icsett λc′ , (2)

if modelt = 2, then λc = λt · (1 −
∏

c′∈icsett(1 − λc′)),
and (3) if modelt = 3, then λc = λt.

With the constraints on task declarations, a communica-
tor c can be written by a single task. Given an implementa-
tion I, at every iteration the probability that c has a reliable

value is at least λc. Hence from the definition of local (or
one-step) probabilities we obtain a probability space PrI(·)
on the set of infinite traces.

Given a memory-free specification, an implementation I
is reliable if the probability of the set of reliable abstract
traces is 1, i.e., PrI[tracescset] = 1.

Proposition 1 Given a memory-free, race-free specifica-
tion, an implementation is reliable if for all communicators
c, we have λc ≥ µc.

The proposition can be proved using the strong law of
large numbers (SLLN) [5].

General implementation. Consider two tasks t1 and
t2 that write to two communicators c1 and c2, respectively.
The LRC of both communicators is 0.9. Let h1 and h2

be two hosts with reliability 0.95 and 0.85, respectively.
An implementation that maps t2 to h2 violates the relia-
bility requirement for c2, and an implementation that maps
t1 to h2 violates the reliability requirement for c1. How-
ever, consider a time-dependent implementation that maps
the tasks t1 and t2 alternately to hosts h1 and h2. This im-
plementation is reliable. Our definition of reliability is gen-
eral enough to allow such time-dependent implementations.
However, in this paper, we focus our analysis on implemen-
tations that are not time-dependent.

Specification with memory. If the specification graph
has a cycle, then the result does not hold for all task models.
Consider a task t, with modelt = 1, that reads and writes
to a communicator c. Once ⊥ is written, the value of c is
always ⊥ from that instant on. Hence if λt < 1, then the
long-run average of the number of reliable value of c is 0
with probability 1. The solution to the problem is that, for
each communicator cycle, there should exists at least one
task in the cycle with an independent input failure model.

Refinement. A specification can be refined (i.e. re-
placed) by another, more detailed, refining specification if
every task in the refining specification maps to a unique
task in the refined specification such that no two tasks in
the refining specification map to the same task in the re-
fined specification. We will show that, if an implementation
is valid for a refined specification and all tasks in the refin-
ing specification write to communicators whose LRCs do
not exceed the LRCs of the communicators being written
by the tasks they map to in the refined specification, then
the implementation is valid for the refining specification.

Given two systems (S, A, I) and (S′, A′, I′), let S =
(tset, cset), A = (hset, sset, CS), S′ = (tset′, cset′),
and A′ = (hset′, sset′, CS′). Let κ be a total and
one-to-one function from tset′ to tset. The system
(S′, A′, I′) refines system (S, A, I) under κ, denoted as
(S′, A′, I′) ≤κ (S, A, I), if the following set of refine-
ment constraints are met: (a) hset = hset′, (b) for
all tasks t′ ∈ tset′, we require (1) I(t′) = I(κ(t′)),
(2) ∀h ∈ I(t′) : wemap(t′, h) ≤ wemap(κ(t′), h) and

wtmap(t′, h) ≤ wtmap(κ(t′), h), (3) readt′ ≤ readκ(t′)

and writet′ ≥ writeκ(t′), (4) if (c′, ·) ∈ outst′ , then
µc′ ≤ max(c,·)∈outsκ(t′)

µc, (5) modelt′ = modelκ(t′),
and, (6) if t′ has input failure model 1, then icset(t′) ⊆
icset(κ(t′)) and if t′ has input failure model 2, then
icset(t′) ⊇ icset(κ(t′)).

Note that all the constraints are local checks on t′ and
κ(t′). The refinement relation is reflexive, anti-symmetric
and transitive. The following results hold:

Lemma 1 If I is schedulable for S, then I′ is schedulable
for S′.

Lemma 2 If I is reliable for S, then I′ is reliable for S′.
The following result follows from Lemmas 1 and 2.

Proposition 2 If (S′, A′, I′) ≤κ (S, A, I) and I is valid for
S on A, then I′ is valid for S′ on A′.

4 Example
The reliability analysis is explained through the design of

a three-tank-system (3TS) controller. The system consists
of three tanks tank1, tank2, and tank3, each with an
evacuation tap. Tank tank3 is connected to both tank1
and tank2. Two pumps, pump1 and pump2, feed wa-
ter into the tanks tank1 and tank2, respectively. The
controller maintains the level of water in tanks tank1 and
tank2 in the presence and absence of perturbations [8].

1000 200 300 400 500

t1reads l1 updates u1

t2reads l2 updates u2

estimate1reads u1 updates r1reads l1

estimate2reads u2 updates r2reads l2

read1reads s1 updates l1

s1, s2, r1, r2: period 500 l1, l2, u1, u2: period 100

read2reads s2 updates l2

Figure 2. The control tasks
Fig. 2 shows the functionality and timing of the con-

trol tasks; the tasks repeat every 500 ms. Task t1 reads
the level l1 (of tank1) and computes the motor cur-
rent u1 (for pump1). Task t2 reads the level l2 (of
tank2) and computes the motor current u2 (for pump2).
Task read1 (resp. read2) computes the level of water in
tank1 (resp.tank2) from sensor s1 (resp. s2). Tasks
estimate1 and estimate2 estimate the perturbations
r1 (for tank1) and r2 (for tank2), respectively. Tasks
read1 and read2 have input failure models 2; all other
tasks have failure model 1.

The architecture consists of three hosts h1, h2, and h3.
We do not have reliability data for our experimental plat-
form, however, for illustration purposes, we assume all host

and sensor reliabilities to be 0.999. The implementation
maps task t1 (resp. t2) to host h1 (resp. h2), and the rest
to host h3.

Each task is mapped to one host; thus the reliability of
each task is the same as the reliability of its host. The SRGs
of the communicators are computed as follows. The SRGs
λs1 and λs2 are the same as the sensor reliability, i.e., 0.999.
From reliability analysis it follows that λl1 = λread1 ·λs1 =
0.998 and λu1 = λl1 · λt1 = 0.997 and, similarly, λl2 =
0.998 and λu2 = 0.997. If the LRCs µu1 and µu2 are 0.99,
then the above implementation is reliable with respect to the
requirements.

By contrast, if the desired LRCs µu1 and µu2 are set
to 0.9975, then the above implementation is not reliable.
We will analyze two scenarios for meeting the new require-
ments. In the first scenario, the tasks t1 and t2 are mapped
to both hosts h1 and h2, respectively. The reliability of the
task t1, as well as t2, is modified to 1 − (1 − 0.999)2 =
0.999999. In turn, this changes the SRGs of u1 and u2 to
0.997999, which meet the LRCs. In the second scenario,
the sensors are replicated, i.e., tasks read1 and read2
read from two sensors each; the reliability of each sen-
sor is 0.999. The SRGs of the communicators l1 and l2
are now λl1 = λread1 · (1 − (1 − 0.999)2) = 0.998999
(modelread1 = 2); and λl2 = 0.998999. This changes the
SRGs of u1 and u2 to 0.998, which again meet the LRCs.

Implementation in HTL. We ran experiments with a
real version of the 3TS controller written in the Hierarchical
Timing Language (HTL) [6]. The control tasks were dis-
tributed over multiple hosts. To validate the fault tolerance
assumptions used in the reliability analysis, we unplugged
one of the two hosts from the network and verified that there
was no change in the control performance of the system. To
account for replication, the code generation technique [6]
is modified as follows. The output of each (replication of
a) task is sent to all other hosts. Each host then performs a
voting routine on the received data to determine, if possible,
the correct value, which is then stored in the local communi-
cators. Refer to htl.cs.uni-salzburg.at for more
details. In the example, there are mode switches between
tasks, but the switch is always to tasks with identical reli-
ability constraints, and the reliability analysis of Section 3
applies.

5 Conclusion
We proposed a separation-of-concerns approach for the

joint schedulability and reliability analysis of safety-critical
real-time embedded applications. The main contribution
is the separation of reliability requirements in a specifica-
tion (possibly written in a task coordination language), from
the reliability guarantees offered by hosts and communica-
tion links. The implementation (replication mapping and
scheduling) must ensure that all timing and reliability re-
quirements of the specification are met.

Acknowledgments. This work was supported in part by the
GSRC grant 2003-DT-660, the NSF grant CCR-0208875, the
HYCON and Artist II European Networks of Excellence, the
European Integrated Project SPEEDS, the SNSF NCCR MICS,
the Austrian Science Fund Project P18913-N15, General Motors,
United Technologies Corporation, and the CHESS at UC Berkeley,
which is supported by the NSF grant CCR-0225610, the State of
California Micro Program, and Agilent, DGIST, Hewlett Packard,
Infineon, Microsoft, and Toyota.

References

[1] I. Assayad, A. Girault, and H. Kalla. A bi-criteria scheduling
heuristics for distributed embedded systems under reliability
and real-time constraints. In DSN. IEEE, 2004.

[2] M. Baleani, A. Ferrari, L. Mangeruca, M. Peri, S. Pezzini, and
A. Sangiovanni-Vincentelli. Fault-tolerant platforms for au-
tomotive safety-critical applications. In CASES. ACM, 2003.

[3] F. Cristian. Understanding fault-tolerant distributed systems.
Communications of the ACM, 34(2), 1991.

[4] W. P. Dotson and J. O. Gobien. A new analysis technique for
probabilistic graphs. IEEE Trans. Circuits and systems, 10,
1979.

[5] R. Durrett. Probability: Theory and Examples. Duxbury
Press, 1995.

[6] A. Ghosal, T. A. Henzinger, D. Iercan, C. Kirsch, and
A. Sangiovanni-Vincentelli. A hierarchical coordination lan-
guage for interacting real-time tasks. In EMSOFT. ACM,
2006.

[7] T. A. Henzinger, B. Horowitz, and C. M. Kirsch. GIOTTO:
A time-triggered language for embedded programming. Pro-
ceedings of the IEEE, 91, 2003.

[8] D. Iercan. Tsl compiler. Technical report, ’Politehnica’ Uni-
versity of Timisoara, 2005.

[9] V. Izosimov, P. Pop, P. Eles, and Z. Peng. Design optimization
of time-and cost-constrained fault-tolerant distributed embed-
ded systems. In DATE. ACM, 2005.

[10] V. Izosimov, P. Pop, P. Eles, and Z. Peng. Synthesis of fault-
tolerant embedded systems with checkpointing and replica-
tion. In Intl. Work. on Electronic Design, Test and Applica-
tions. IEEE, 2006.

[11] V. Izosimov, P. Pop, P. Eles, and Z. Peng. Synthesis of fault-
tolerant schedules with transparency/performance trade-offs
for distributed embedded systems. In DATE, 2006.

[12] D. Kececioglu. Reliability Engineering Handbook, vol-
ume 2. Prentice Hall, 1991.

[13] C. Pinello, L. Carloni, and A. Sangiovanni-Vincentelli.
Fault-tolerant deployment of embedded software for cost-
sensitive real-time feedback-control applications. In DATE.
ACM, 2004.

[14] S. Rai and A. Kumar. Recursive technique for computing
system reliability. IEEE Trans. on Reliability, 36, 1987.

[15] A. Sangiovanni-Vincentelli and et al. Benefits and challenges
for platform-based design. In Proc. DAC, volume 91. ACM,
2004.

	Main
	DATE08
	Front Matter
	Table of Contents
	Author Index

