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-

 

provide greater computing capacity, at lower cost
-

 

many real-time applications are inherently parallelizable
-

 

uniprocessor systems are becoming obsolete
-(multicore CPU’s)

Goal: A theory of  multiprocessor real-time scheduling

Why

 

multiprocessors?

Multiprocessor real-time computing: formal 
foundations

Outline of presentation
1. a multi-layered perspective

2.

 

background and context
3. an

 

illustrative example
Intro (3 Layers)

 

– context – L1 – L2 – L3 
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A multi-layered perspective

Layer 1. Techniques & concepts for solving multiprocessor 
generalizations of uniprocessor problems

Layer 2. Metrics for quantifying multiprocessor problems

Layer 3. Task and machine models

 

for representing multiprocessor 
systems

Intro (3 Layers)

 

– context – L1 – L2 – L3 
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Task model

Jobs: basic units of work.  J = (A, E, D)

Recurring tasks or

 

processes
-

 

finite (a priori known) number of them
-

 

generate the jobs
- represent code within an infinite loop
-

 

different tasks are assumed independent

-

 

Preemptable

time
A D

(E)

- Not parallelizable

Intro (3 Layers) –

 

context

 

– L1 – L2 – L3 
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Task τ

 

= (e,p)
-

 

execution requirement
-

 

minimum inter-arrival separation (“period”)
Jobs

-

 

first job arrives at any time
-

 

consecutive arrivals ≥

 

p

 

time units apart
-

 

each task has execution requirement ≤

 

e
-

 

each job has its deadline p

 

time units after arrival

Example: τ

 

=(2,5)

The Liu & Layland
 

task model

0 5 10 15 20

(2) (2) (2) (2) (2)

Intro (3 Layers) –

 

context

 

– L1 – L2 – L3 
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Task τ

 

= (e,d,p)
- execution requirement
- relative deadline
- minimum inter-arrival separation (“period”)

Jobs
-

 

first job arrives at any time
- consecutive arrivals ≥

 

p time units apart
- each task has execution requirement ≤

 

e
- each job has its deadline dd

 

time units after arrival

Example: τ

 

=(2, 3, 5)

The sporadic
 

task model

0 5 10 15 20

(2) (2) (2) (2) (2)

Intro (3 Layers) –

 

context

 

– L1 – L2 – L3 
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A DAG-based
 

task model

(2,5)

(4,4)

(3,6)

(1,5)

(2,5)
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Period = 25

A task is represented by 
•a directed acyclic graph
•a period

(0,0)

Intro (3 Layers) –

 

context

 

– L1 – L2 – L3 
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Multiprocessor scheduling: the current landscape

Liu & Layland

 

model Sporadic model DAG-based model

Uniproc.

Multiproc.
Uniprocessor 
results, metrics, 
and models do

 
generalize

Example: Feasibility analysis

 

of systems of sporadic tasks:
Can a specified system be scheduled to always

 

meet all

 

deadlines?

WELL UNDERSTOOD

Intro (3 Layers) –

 

context

 

– L1 – L2 – L3 
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Layer 1. Techniques & concepts

The multi-layered perspective

Layer 1. Techniques & concepts

Layer 2. Metrics

Layer 3. Task and machine models

Intro (3 Layers) –

 

context

 

– L1 – L2 – L3 
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INTUITIVELY APPEALING!!

Layer 1:  Techniques and concepts

On

 

uniprocessors:

1. identify worst-case arrival sequence
- each τi

 

generates one job at t=0; subsequent arrivals exactly pi

 
time-units apart. (SYNCHRONOUS ARRIVAL SEQUENCE)

2.  validate

 

its  schedulability
- EDF is an optimal preemptive uniprocessor scheduling 
algorithm

Feasibility analysis algorithm:  Simulate
 

EDF on the 
synchronous arrival sequence until (at most) lcm { p1

 

, p2

 

, …, pn

 

} 

Example: Feasibility analysis
 

of systems of sporadic tasks

Intro (3 Layers) –

 

context –

 

L1

 

– L2 – L3 
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Layer 1:  Techniques and concepts

τ1

 

=(1,1,2), τ2

 

=(1,1,3), τ3

 

=(5,6,6), 2 Procs

τ2

0 2 4 6

τ1

τ3

Synchronous Arrival Sequence

RESULT: The

 

Synch. Arrival Sequence not

 

worst-case arrival 
sequence

τi

 

=(ei

 

, di

 

, pi

 

)

Intro (3 Layers) –

 

context –

 

L1

 

– L2 – L3 
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Synchronous Arrival Sequence

Layer 1:  Techniques and concepts

τ1

 

=(1,1,2), τ2

 

=(1,1,3), τ3

 

=(5,6,6), 2 Procs

RESULT: The

 

Synch. Arrival Sequence not

 

worst-case arrival 
sequence

Intro (3 Layers) –

 

context –

 

L1

 

– L2 – L3 

τ2

0 2 4 6

τ1

τ3

P1

P2 P1

P2 P2 P2 P2 P2

P1??

Infeasible on 2 processors

τi

 

=(ei

 

, di

 

, pi

 

)
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Layer 1:  Techniques and concepts 

On

 

multiprocessors:

1.

 

identify

 

worst-case arrival sequence:
- each τi

 

generates one job at t=0; subsequent jobs are exactly 
pi

 

time-units apart.(SYNCHRONOUS

 

ARRIVAL SEQUENCE)

2.  validate its  schedulability
- EDF is an optimal preemptive uniprocessor scheduling 
algorithm

Feasibility analysis algorithm:  Simulate EDF on the 
synchronous arrival sequence until (at most) lcm { p1

 

, p2

 

, …, pn

 

} 

Feasibility analysis
 

of systems of sporadic tasks

Intro (3 Layers) –

 

context –

 

L1

 

– L2 – L3 

All sporadic task

 

systems can be shown to either be infeasible

 

on m 
speed-1 processors, or feasible

 

on m speed-(2 –

 

1/m) processors.

Bonifaci, Marchotti-Spaccamela, and Stiller.  A constant-approx. 
feasibility test for multiprocessor real-time scheduling. (ESA-2008)

Worst-case arrival sequence[s] remain unknown
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The multi-layered perspective

Layer 1. Techniques & concepts

Layer 2. Metrics

Layer 3. Task and machine models

Intro (3 Layers) –

 

context –

 

L1 –

 

L2

 

– L3 
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?????

Layer 2: Metrics

Example

 

(Rate-Monotonic

 

utilization bound).  
A Liu and Layland

 

task system τ

 

is Rate-

 Monotonic schedulable on a uniprocessor if 
U(τ) ≤

 

0.69

What makes a good

 

metric? (di

 

=pi

 

for all tasks)

utilization: e1

 

/p1

 

+ e2

 

/p2

 

+ ... + en

 

/pn

1.00

infeasible

0.00

0.69

RM-schedulable

U(τ)

A good metric minimizes the region of uncertainty

Intro (3 Layers) –

 

context –

 

L1 –

 

L2

 

– L3 
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infeasible

m

0.00

feasible

Layer 2: Metrics

Result. A Liu and Layland

 

task system τ

 

with

 U(τ) ≤

 

m is feasible

 

on m unit-capacity 
processors.

U(τ)

No

 

region of uncertainty: utilization is a good 
metric for multiprocessor feasibility of Liu and 
Layland

 

task systems

Intro (3 Layers) –

 

context –

 

L1 –

 

L2

 

– L3 
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Layer 2: Metrics
U(τ)

But, utilization is a poor metric for sporadic task 
systems

 

(even on uniprocessors)

Example: {τ1

 

=(1, 1, p), τ2

 

= (ε, 1, p) } 
has utilization

 

= (1 + ε)/p
- (very small for large p)

but infeasible

 

on a preemptive uniprocessor

X

region of 
uncertainty

1

0.00

Intro (3 Layers) –

 

context –

 

L1 –

 

L2

 

– L3 
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Layer 2: Metrics

Example: {τ1

 

=(1, 1, p), τ2

 

= (ε, 1, p) } 
has utilization

 

= (1 + ε)/p 
-

 

(very small for large p)
but infeasible on a preemptive uniprocessor

0.00

density: e1

 

/d1

 

+ e2

 

/d2

 

+ ... + en

 

/dn

density = 1/1 + ε/1 = (1+ ε) > 1

But, density is a poor metric for sporadic task 
systems

 

(even on uniprocessors)

Intro (3 Layers) –

 

context –

 

L1 –

 

L2

 

– L3 
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feasible

Layer 2: Metrics

0.00

density: e1

 

/d1

 

+ e2

 

/d2

 

+ ... + en

 

/dn

But, density is a poor metric for sporadic task 
systems

 

(even on uniprocessors)

Example: {τ1

 

=(1, 1, n), τ2

 

= (1, 2, n), τ3

 

= (1,3,n), .. τi

 

=(1,i,n),.., τn

 

=(1,n,n) }

- has density

 

= 1/1 + 1/2 + 1/3 + ... + 1/n ≈

 

loge

 

n;

-

 

but is feasible

 

on a preemptive uniprocessor

X

region of uncertainty

density bound
τ1 τ2 τi τn

0 1 2 i-1 i n-1 n

… …

Intro (3 Layers) –

 

context –

 

L1 –

 

L2

 

– L3 
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DEMAND BOUND FUNCTION
DBF(τi

 

, t)

 

≡

 

maximum cumulative execution requirement of jobs of 
sporadic task τi

 

in any interval  of length t

∑
τi

 

∈ τ

DBF(τi

 

, t)load(τ)

 

≡

 

maxall

 

t
t

Maximum total

 

execution requirement by jobs of sporadic 
task system τ

 

over any time-interval of length t

Layer 2: Metrics

infeasible

1

0.00

feasible

load(τ)

Intro (3 Layers) –

 

context –

 

L1 –

 

L2

 

– L3 
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DEMAND BOUND FUNCTION
DBF(τi

 

, t)

 

≡

 

maximum cumulative execution requirement of jobs of 
sporadic task τi

 

in any interval  of length t

RESULT: Any sporadic task system τ

 

is feasible on a 
preemptive multiprocessor

 

comprised of m unit-capacity 
procs

 

only if

 

load(τ) ≤

 

m

∑
τi

 

∈ τ

DBF(τi

 

, t)load(τ)

 

≡

 

maxall

 

t
t

Layer 2: Metrics

infeasible

load(τ)

m

RESULT: Any sporadic task system τ

 

is feasible on a 
preemptive uniprocessor if and only if load(τ) ≤

 

1

Intro (3 Layers) –

 

context –

 

L1 –

 

L2

 

– L3 

RESULT: Any sporadic task system τ

 

is feasible on a 
preemptive uniprocessor if and only if

 

load(τ) ≤

 

1
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X

Layer 2: Metrics

Example: {τ1

 

=(1, 1, ∞), τ2

 

= (10, 10, ∞), τ3

 

= (100, 100, ∞), } 

(Time-axis not to scale)

τ1

 

=(1,1,∞)

0 1

τ2

 

=(10,10,∞)

10

•

 

infeasible

 

on 2

 

processors
•

 

load =

 

max(1/1, 11/10, 111/100)      
= 1.11

RESULT: Any sporadic task system τ

 

is feasible on a 
preemptive multiprocessor comprised of m unit-capacity 
procs

 

only if load(τ) ≤

 

mload(τ) ≤

 

m

 

is not

 

sufficient for feasibility

Intro (3 Layers) –

 

context –

 

L1 –

 

L2

 

– L3 

100

τ3

 

=(100,100,∞)

infeasible

load(τ)

0

m

1

m
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X

Layer 2: Metrics

Example: {τ1

 

=(1, 1, ∞), τ2

 

= (10, 10, ∞), τ3

 

= (100, 100, ∞), } 

(Time-axis not to scale)

τ1

 

=(1,1,∞)

0 1

τ2

 

=(10,10,∞)

10

•

 

infeasible

 

on 2

 

processors
•

 

load =

 

max(1/1, 11/10, 111/100)      
= 1.11

RESULT: Any sporadic task system τ

 

is feasible on a 
preemptive multiprocessor comprised of m unit-capacity 
procs

 

only if load(τ) ≤

 

mload(τ) ≤

 

m

 

is not

 

sufficient for feasibility

Intro (3 Layers) –

 

context –

 

L1 –

 

L2

 

– L3 

100

τ3

 

=(100,100,∞)
For any

 

number of processors, there are infeasible 
systems with load = (1+ε), for arbitrarily small ε

infeasible

load(τ)

0

m

1

m
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Layer 2: Metrics

region of 
uncertainty

Load is a

 

poor metric for sporadic task systems on 
multiprocessors

Intro (3 Layers) –

 

context –

 

L1 –

 

L2

 

– L3 

X

m
infeasible

load(τ)

0

m

1
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Layer 2: Metrics –
 

current status

Intro (3 Layers) –

 

context –

 

L1 –

 

L2

 

– L3 

0 di pi pi

 

+di 2pi 2pi

 

+di 3pi 3pi

 

+di

DBF(τi

 

, t)

 

≡

 

maximum cumulative execution requirement of jobs of sporadic 
task τi

 

in any interval  of length t

DBF(τi

 

, t)

t
ei

ei

2ei

3ei

4ei

t

ei ei ei
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Layer 2: Metrics –
 

current status

Intro (3 Layers) –

 

context –

 

L1 –

 

L2

 

– L3 

Maxmin

 

demand bound function

0 di pi pi

 

+di 2pi 2pi

 

+di 3pi 3pi

 

+di

DBF(τi

 

, t)

t
ei

ei

2ei

3ei

4ei

t

Baker and Cirinei. A necessary and sometimes sufficient condition for 
the feasibility of sets of sporadic hard-deadline tasks.  RTSS 2006.

ei ei ei

MAXMIN  LOAD
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1.

 

the “no-parallelism”

 

assumption

2.

 

multiple-instance workloads

3.

 

cache

 

considerations:

-

 

the hierarchical arrangement of processors

Layer 1. Techniques & concepts

Layer 2. Metrics

Layer 3. Task and machine models

Intro (3 Layers) –

 

context –

 

L1 –

 

L2 –

 

L3

The multi-layered perspective
24



Layer 3: Task and machine models

“The simple fact that a [job] can use only one processor even when 
several processors are free at the same time

 

adds a surprising

 

 
amount of difficulty to the scheduling of multiple processors.”

-

 

Liu (1969)

Contributes to difficulty
 

of multiprocessor analysis:

Assumption: No job-level parallelism

May not be valid any longer :  extend the job model

Intro (3 Layers) –

 

context –

 

L1 –

 

L2 –

 

L3

25



execution rate

number of processors
1 2 3 4 5

1

2

3

4

5

Layer 3: Task and machine models

“divisible loads”
current  models

arbitrary speedups

Intro (3 Layers) –

 

context –

 

L1 –

 

L2 –

 

L3

Incorporating job-level parallelism

26



Layer 3: Task and machine models

Incorporating job-level parallelism: current status 

Intro (3 Layers) –

 

context –

 

L1 –

 

L2 –

 

L3

Steve

 

Goddard and colleagues –

 

University of Nebraska

* Anwar Mamat, Ying Lu, Jitender

 

Deogun

 

and Steve Goddard. Real-time 
divisible load scheduling with advance reservations. ECRTS 2008

Joel Goossens

 

and colleagues –

 

Université

 

Libre

 

de Bruxelles

* S. Collette and L. Cucu

 

and J. Goossens. Integrating job parallelism in 
real-time scheduling theory. IPL 2008.
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Layer 3: Task and machine models

1.
 

the “no-parallelism”
 

assumption

2.
 

all tasks are distinct

3.
 
cache considerations:

-
 

the hierarchical

 

arrangement of processors

Intro (3 Layers) –

 

context –

 

L1 –

 

L2 –

 

L3
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Summary

Multiprocessor systems are increasingly important
⇒

 
need a theory of

 
multiprocessor RT scheduling

Uniprocessors
 

to Multiprocessors:
an

 
evolutionary change? or a paradigm shift?

Extend
 

uniprocessor scheduling theory to multiprocessors?

Yes
 

(for an approximate
 

theory)
-

 

currently sufficient for practical purposes

Long term, probably not
-

 

conjecture:

 

fundamental new theory is needed 
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