
1

-

provide greater computing capacity, at lower cost
-

many real-time applications are inherently parallelizable
-

uniprocessor systems are becoming obsolete
-(multicore CPU’s)

Goal: A theory of multiprocessor real-time scheduling

Why

multiprocessors?

Multiprocessor real-time computing: formal
foundations

Outline of presentation
1. a multi-layered perspective

2.

background and context
3. an

illustrative example
Intro (3 Layers)

– context – L1 – L2 – L3

2

A multi-layered perspective

Layer 1. Techniques & concepts for solving multiprocessor
generalizations of uniprocessor problems

Layer 2. Metrics for quantifying multiprocessor problems

Layer 3. Task and machine models

for representing multiprocessor
systems

Intro (3 Layers)

– context – L1 – L2 – L3

3

Task model

Jobs: basic units of work. J = (A, E, D)

Recurring tasks or

processes
-

finite (a priori known) number of them
-

generate the jobs
- represent code within an infinite loop
-

different tasks are assumed independent

-

Preemptable

time
A D

(E)

- Not parallelizable

Intro (3 Layers) –

context

– L1 – L2 – L3

4

Task τ

= (e,p)
-

execution requirement
-

minimum inter-arrival separation (“period”)
Jobs

-

first job arrives at any time
-

consecutive arrivals ≥

p

time units apart
-

each task has execution requirement ≤

e
-

each job has its deadline p

time units after arrival

Example: τ

=(2,5)

The Liu & Layland

task model

0 5 10 15 20

(2) (2) (2) (2) (2)

Intro (3 Layers) –

context

– L1 – L2 – L3

5

Task τ

= (e,d,p)
- execution requirement
- relative deadline
- minimum inter-arrival separation (“period”)

Jobs
-

first job arrives at any time
- consecutive arrivals ≥

p time units apart
- each task has execution requirement ≤

e
- each job has its deadline dd

time units after arrival

Example: τ

=(2, 3, 5)

The sporadic

task model

0 5 10 15 20

(2) (2) (2) (2) (2)

Intro (3 Layers) –

context

– L1 – L2 – L3

6

A DAG-based

task model

(2,5)

(4,4)

(3,6)

(1,5)

(2,5)

10

8

12

10

5

7

15

Period = 25

A task is represented by
•a directed acyclic graph
•a period

(0,0)

Intro (3 Layers) –

context

– L1 – L2 – L3

7

Multiprocessor scheduling: the current landscape

Liu & Layland

model Sporadic model DAG-based model

Uniproc.

Multiproc.
Uniprocessor
results, metrics,
and models do

generalize

Example: Feasibility analysis

of systems of sporadic tasks:
Can a specified system be scheduled to always

meet all

deadlines?

WELL UNDERSTOOD

Intro (3 Layers) –

context

– L1 – L2 – L3

8

Layer 1. Techniques & concepts

The multi-layered perspective

Layer 1. Techniques & concepts

Layer 2. Metrics

Layer 3. Task and machine models

Intro (3 Layers) –

context

– L1 – L2 – L3

9

INTUITIVELY APPEALING!!

Layer 1: Techniques and concepts

On

uniprocessors:

1. identify worst-case arrival sequence
- each τi

generates one job at t=0; subsequent arrivals exactly pi

time-units apart. (SYNCHRONOUS ARRIVAL SEQUENCE)

2. validate

its schedulability
- EDF is an optimal preemptive uniprocessor scheduling
algorithm

Feasibility analysis algorithm: Simulate

EDF on the
synchronous arrival sequence until (at most) lcm { p1

, p2

, …, pn

}

Example: Feasibility analysis

of systems of sporadic tasks

Intro (3 Layers) –

context –

L1

– L2 – L3

10

Layer 1: Techniques and concepts

τ1

=(1,1,2), τ2

=(1,1,3), τ3

=(5,6,6), 2 Procs

τ2

0 2 4 6

τ1

τ3

Synchronous Arrival Sequence

RESULT: The

Synch. Arrival Sequence not

worst-case arrival
sequence

τi

=(ei

, di

, pi

)

Intro (3 Layers) –

context –

L1

– L2 – L3

11

Synchronous Arrival Sequence

Layer 1: Techniques and concepts

τ1

=(1,1,2), τ2

=(1,1,3), τ3

=(5,6,6), 2 Procs

RESULT: The

Synch. Arrival Sequence not

worst-case arrival
sequence

Intro (3 Layers) –

context –

L1

– L2 – L3

τ2

0 2 4 6

τ1

τ3

P1

P2 P1

P2 P2 P2 P2 P2

P1??

Infeasible on 2 processors

τi

=(ei

, di

, pi

)

11

Layer 1: Techniques and concepts

On

multiprocessors:

1.

identify

worst-case arrival sequence:
- each τi

generates one job at t=0; subsequent jobs are exactly
pi

time-units apart.(SYNCHRONOUS

ARRIVAL SEQUENCE)

2. validate its schedulability
- EDF is an optimal preemptive uniprocessor scheduling
algorithm

Feasibility analysis algorithm: Simulate EDF on the
synchronous arrival sequence until (at most) lcm { p1

, p2

, …, pn

}

Feasibility analysis

of systems of sporadic tasks

Intro (3 Layers) –

context –

L1

– L2 – L3

All sporadic task

systems can be shown to either be infeasible

on m
speed-1 processors, or feasible

on m speed-(2 –

1/m) processors.

Bonifaci, Marchotti-Spaccamela, and Stiller. A constant-approx.
feasibility test for multiprocessor real-time scheduling. (ESA-2008)

Worst-case arrival sequence[s] remain unknown

12

The multi-layered perspective

Layer 1. Techniques & concepts

Layer 2. Metrics

Layer 3. Task and machine models

Intro (3 Layers) –

context –

L1 –

L2

– L3

13

?????

Layer 2: Metrics

Example

(Rate-Monotonic

utilization bound).
A Liu and Layland

task system τ

is Rate-

 Monotonic schedulable on a uniprocessor if
U(τ) ≤

0.69

What makes a good

metric? (di

=pi

for all tasks)

utilization: e1

/p1

+ e2

/p2

+ ... + en

/pn

1.00

infeasible

0.00

0.69

RM-schedulable

U(τ)

A good metric minimizes the region of uncertainty

Intro (3 Layers) –

context –

L1 –

L2

– L3

14

infeasible

m

0.00

feasible

Layer 2: Metrics

Result. A Liu and Layland

task system τ

with

 U(τ) ≤

m is feasible

on m unit-capacity
processors.

U(τ)

No

region of uncertainty: utilization is a good
metric for multiprocessor feasibility of Liu and
Layland

task systems

Intro (3 Layers) –

context –

L1 –

L2

– L3

15

Layer 2: Metrics
U(τ)

But, utilization is a poor metric for sporadic task
systems

(even on uniprocessors)

Example: {τ1

=(1, 1, p), τ2

= (ε, 1, p) }
has utilization

= (1 + ε)/p
- (very small for large p)

but infeasible

on a preemptive uniprocessor

X

region of
uncertainty

1

0.00

Intro (3 Layers) –

context –

L1 –

L2

– L3

16

Layer 2: Metrics

Example: {τ1

=(1, 1, p), τ2

= (ε, 1, p) }
has utilization

= (1 + ε)/p
-

(very small for large p)
but infeasible on a preemptive uniprocessor

0.00

density: e1

/d1

+ e2

/d2

+ ... + en

/dn

density = 1/1 + ε/1 = (1+ ε) > 1

But, density is a poor metric for sporadic task
systems

(even on uniprocessors)

Intro (3 Layers) –

context –

L1 –

L2

– L3

17

feasible

Layer 2: Metrics

0.00

density: e1

/d1

+ e2

/d2

+ ... + en

/dn

But, density is a poor metric for sporadic task
systems

(even on uniprocessors)

Example: {τ1

=(1, 1, n), τ2

= (1, 2, n), τ3

= (1,3,n), .. τi

=(1,i,n),.., τn

=(1,n,n) }

- has density

= 1/1 + 1/2 + 1/3 + ... + 1/n ≈

loge

n;

-

but is feasible

on a preemptive uniprocessor

X

region of uncertainty

density bound
τ1 τ2 τi τn

0 1 2 i-1 i n-1 n

… …

Intro (3 Layers) –

context –

L1 –

L2

– L3

17

DEMAND BOUND FUNCTION
DBF(τi

, t)

≡

maximum cumulative execution requirement of jobs of
sporadic task τi

in any interval of length t

∑
τi

∈ τ

DBF(τi

, t)load(τ)

≡

maxall

t
t

Maximum total

execution requirement by jobs of sporadic
task system τ

over any time-interval of length t

Layer 2: Metrics

infeasible

1

0.00

feasible

load(τ)

Intro (3 Layers) –

context –

L1 –

L2

– L3

18

DEMAND BOUND FUNCTION
DBF(τi

, t)

≡

maximum cumulative execution requirement of jobs of
sporadic task τi

in any interval of length t

RESULT: Any sporadic task system τ

is feasible on a
preemptive multiprocessor

comprised of m unit-capacity
procs

only if

load(τ) ≤

m

∑
τi

∈ τ

DBF(τi

, t)load(τ)

≡

maxall

t
t

Layer 2: Metrics

infeasible

load(τ)

m

RESULT: Any sporadic task system τ

is feasible on a
preemptive uniprocessor if and only if load(τ) ≤

1

Intro (3 Layers) –

context –

L1 –

L2

– L3

RESULT: Any sporadic task system τ

is feasible on a
preemptive uniprocessor if and only if

load(τ) ≤

1

19

X

Layer 2: Metrics

Example: {τ1

=(1, 1, ∞), τ2

= (10, 10, ∞), τ3

= (100, 100, ∞), }

(Time-axis not to scale)

τ1

=(1,1,∞)

0 1

τ2

=(10,10,∞)

10

•

infeasible

on 2

processors
•

load =

max(1/1, 11/10, 111/100)
= 1.11

RESULT: Any sporadic task system τ

is feasible on a
preemptive multiprocessor comprised of m unit-capacity
procs

only if load(τ) ≤

mload(τ) ≤

m

is not

sufficient for feasibility

Intro (3 Layers) –

context –

L1 –

L2

– L3

100

τ3

=(100,100,∞)

infeasible

load(τ)

0

m

1

m

20

X

Layer 2: Metrics

Example: {τ1

=(1, 1, ∞), τ2

= (10, 10, ∞), τ3

= (100, 100, ∞), }

(Time-axis not to scale)

τ1

=(1,1,∞)

0 1

τ2

=(10,10,∞)

10

•

infeasible

on 2

processors
•

load =

max(1/1, 11/10, 111/100)
= 1.11

RESULT: Any sporadic task system τ

is feasible on a
preemptive multiprocessor comprised of m unit-capacity
procs

only if load(τ) ≤

mload(τ) ≤

m

is not

sufficient for feasibility

Intro (3 Layers) –

context –

L1 –

L2

– L3

100

τ3

=(100,100,∞)
For any

number of processors, there are infeasible
systems with load = (1+ε), for arbitrarily small ε

infeasible

load(τ)

0

m

1

m

20

Layer 2: Metrics

region of
uncertainty

Load is a

poor metric for sporadic task systems on
multiprocessors

Intro (3 Layers) –

context –

L1 –

L2

– L3

X

m
infeasible

load(τ)

0

m

1

21

Layer 2: Metrics –

current status

Intro (3 Layers) –

context –

L1 –

L2

– L3

0 di pi pi

+di 2pi 2pi

+di 3pi 3pi

+di

DBF(τi

, t)

≡

maximum cumulative execution requirement of jobs of sporadic
task τi

in any interval of length t

DBF(τi

, t)

t
ei

ei

2ei

3ei

4ei

t

ei ei ei

22

Layer 2: Metrics –

current status

Intro (3 Layers) –

context –

L1 –

L2

– L3

Maxmin

demand bound function

0 di pi pi

+di 2pi 2pi

+di 3pi 3pi

+di

DBF(τi

, t)

t
ei

ei

2ei

3ei

4ei

t

Baker and Cirinei. A necessary and sometimes sufficient condition for
the feasibility of sets of sporadic hard-deadline tasks. RTSS 2006.

ei ei ei

MAXMIN LOAD

23

1.

the “no-parallelism”

assumption

2.

multiple-instance workloads

3.

cache

considerations:

-

the hierarchical arrangement of processors

Layer 1. Techniques & concepts

Layer 2. Metrics

Layer 3. Task and machine models

Intro (3 Layers) –

context –

L1 –

L2 –

L3

The multi-layered perspective
24

Layer 3: Task and machine models

“The simple fact that a [job] can use only one processor even when
several processors are free at the same time

adds a surprising

amount of difficulty to the scheduling of multiple processors.”

-

Liu (1969)

Contributes to difficulty

of multiprocessor analysis:

Assumption: No job-level parallelism

May not be valid any longer : extend the job model

Intro (3 Layers) –

context –

L1 –

L2 –

L3

25

execution rate

number of processors
1 2 3 4 5

1

2

3

4

5

Layer 3: Task and machine models

“divisible loads”
current models

arbitrary speedups

Intro (3 Layers) –

context –

L1 –

L2 –

L3

Incorporating job-level parallelism

26

Layer 3: Task and machine models

Incorporating job-level parallelism: current status

Intro (3 Layers) –

context –

L1 –

L2 –

L3

Steve

Goddard and colleagues –

University of Nebraska

* Anwar Mamat, Ying Lu, Jitender

Deogun

and Steve Goddard. Real-time
divisible load scheduling with advance reservations. ECRTS 2008

Joel Goossens

and colleagues –

Université

Libre

de Bruxelles

* S. Collette and L. Cucu

and J. Goossens. Integrating job parallelism in
real-time scheduling theory. IPL 2008.

27

Layer 3: Task and machine models

1.

the “no-parallelism”

assumption

2.

all tasks are distinct

3.

cache considerations:

-

the hierarchical

arrangement of processors

Intro (3 Layers) –

context –

L1 –

L2 –

L3

28

Summary

Multiprocessor systems are increasingly important
⇒

need a theory of

multiprocessor RT scheduling

Uniprocessors

to Multiprocessors:
an

evolutionary change? or a paradigm shift?

Extend

uniprocessor scheduling theory to multiprocessors?

Yes

(for an approximate

theory)
-

currently sufficient for practical purposes

Long term, probably not
-

conjecture:

fundamental new theory is needed

29

	Slide Number 1
	Multiprocessor real-time computing: formal foundations
	A multi-layered perspective
	Task model
	The Liu & Layland task model
	The sporadic task model
	A DAG-based task model
	Multiprocessor scheduling: the current landscape
	The multi-layered perspective
	Layer 1: Techniques and concepts
	Layer 1: Techniques and concepts
	Layer 1: Techniques and concepts
	Layer 1: Techniques and concepts
	The multi-layered perspective
	Layer 2: Metrics
	Layer 2: Metrics
	Layer 2: Metrics
	Layer 2: Metrics
	Layer 2: Metrics
	Layer 2: Metrics
	Layer 2: Metrics
	Layer 2: Metrics
	Layer 2: Metrics
	Layer 2: Metrics
	Layer 2: Metrics – current status
	Layer 2: Metrics – current status
	The multi-layered perspective
	Layer 3: Task and machine models
	Layer 3: Task and machine models
	Layer 3: Task and machine models
	Layer 3: Task and machine models
	Summary

