
http://www.artist-embedded.org/

ARTIST2 Summer School 2008 in Europe
Autrans (near Grenoble), France

September 8-12, 2008

Lecturer: Michael González Harbour
Professor

Universidad de Cantabria, Spain

Contract-based resource
reservation and scheduling

2

General assumptions of real-time theory
WCETs are measured and enforced

All timing requirements are hard

Industry is familiar with the details of real-time theory

Industry has real-time analysis tools integrated into their design processes

Operating systems provide adequate scheduling services

3

Is real-time theory useful?
What industry does in reality
• no WCET estimation
• mixture of requirements: hard real-time part is small
• maximum use of the available resources
• no protection or fault detection due to added complexity
• no real-time analysis

- independently developed components make it difficult
- timing requirements “proven” by testing
- “develop and hope for the best” methodology
- hard real-time analysis is too pessimistic

4

Is real-time theory useful?
Composition of independently-developed modules makes analysis difficult

Hard real-time scheduling techniques are extremely pessimistic for
components with high execution time variability
• for instance, multimedia components

It is necessary to use techniques that let the system resources be fully
utilized
• to achieve the highest possible quality

Real-time scheduling theory regarded as “the solution to the wrong
problem”

5

Yes: real-time theory is useful!
Vision:
• real-time scheduling theory is the right solution to the problem,
• but needs proper abstractions
• and needs to be integrated into the design process

6

Vision: Requirements-based scheduling
Instead of asking the developers to map the application requirements into:
• fixed priorities
• EDF
• aperiodic servers
• timers
• execution-time timers
• complex analysis techniques

Just ask them to specify the application requirements

7

Vision: Requirements-based scheduling
Application developer:
• “tell me what you need”

- platform independent
• integrated with a component-based design methodology

- support the composability of independently developed components

System:
• uses the most advanced scheduling methods in real-time theory

- built-in analysis
- tells you if the minimum requirements can be guaranteed
- handles overload in a safe way

• distributes spare capacity to maximize quality
- high-level quality of service management

• resource reservation and protection
- processors, networks, memory, disk bandwidth, power, ...

8

Solution: service contracts

Contract Contract

Operating System

Contract-based scheduler

Application

Application
Requirements

Application
Requirements

Negotiation

Virtual resource
Copy of contract

Consumed resources
OS resources

Virtual resource
Copy of contract

Consumed resources
OS resources

9

Service contracts (cont’d)
Contract-based scheduling
• Contract specifies:

- minimum requirements for a given resource
- how to make use of any spare capacity
- minimum contract duration
- minimum stability times

• Online or offline acceptance test
• Spare resources are distributed according to importance and weight

- statically,
- and dynamically

• Renegotiation possible
- dynamic reconfiguration

10

Service contracts (cont’d)
Contracts support the following features
• Coverage of application requirements

- mixture of hard and soft real-time
• Platform independent API

- independent of OS
- independent of underlying scheduler

• Support for multiple resources
- processors, networks
- memory, energy, disk bandwidth, ...

• Ease of building advanced real-time applications
- by having time and timing requirements in the API

11

Contract-based resource
reservation and scheduling

1- Introduction
2- FRESCOR
3- Resource reservation contracts
4- Core services
5- Advanced services
6- Distribution
7- Component-based design
8- Implementation
9- Conclusion

12

2. The FRESCOR approach
FRESCOR: EU IST project in FP6
• Framework for Real-time Embedded Systems

based on COntRacts

ENEA

UC

VT
UPV

Thales
CTUTUKL

UoY

SSSA

UoYUoYUoYUoYUoYUoYUoY
Rapita

UoYUoY

Evidencehttp://frescor.org

13

FRESCOR objectives
• Define a contract model that specifies application requirements

- required to be guaranteed
- usable to increase quality of service

• Build and underlying implementation manages & enforces contracts: FRSH
- integrated resources (processor, network, power, disk bandwidth, multiprocessor,

reconfigurable hardware)
• Adaptive QoS Manager
• Distributed transaction manager
• Performance analysis via simulation
• Component-based framework bridges the gap with design methods

- tools allow independent analysis
- tools calculate contract parameters
- tools obtain timing properties of the overall system

• Test & evaluate on three application domains
- software-defined radio, multimedia application on a mobile phone, video

surveillance

14

3. Resource Reservation Contracts
• Contract specifies:

- minimum requirements: budget and period
- how to make use of any spare capacity: other budgets and periods

• QoS Parameters
- spare resources are distributed according to importance and weight

• Deadlines
- Max interval to receive the reserved budget

• Support for multiple resources through a resource type
- CPU
- network
- memory (special type of contract)
- disk bandwidth

• Resource usage under different power levels

15

Resource Reservation Contracts
Features
• API is independent of underlying scheduler
• Ease of building advanced real-time applications

- by having time and timing requirements in the API
• Renegotiation possible

16

The application model: negotiation

Operating System

FRESCOR scheduler

Vres
Vres

Vres Vres

Vres

ContractContract
Contract Contract Contract

Subapplication 1 Subapplication 2 Subappl. X

17

The application model: binding threads to vres

Operating System

FRESCOR scheduler

Subapplication 1

Vres
Vres

Vres Vres

Vres

Thread
Thread

Thread

Subapplication 2

Thread Thread

Subappl. X

Thread

ContractContract
Contract Contract Contract

18

FRESCOR modules

Core

Shared resources

Spare capacity
sharing

Implementation
Specific

Dynamic
reclamation

Distributed

Hierarchical
scheduling

Memory
management

Energy
management

Feedback
control

Disk
bandwidth

19

4. Core services
Minimum resource reservation
• Minimum budget
• Maximum period
• Vres deadline

Workload type, specifying different job models
• indeterminate (may use all extra time assigned)
• bounded: stream of jobs (may return unused capacity)
• synchronized with the virtual resource period

Different contract types
• regular, for tasks with resource requirements
• background, for non-real-time tasks
• dummy, to account for overheads

20

Core Attributes
Attribute Data

Label global id (string)
Resource type processor, network, memory
Resource id number
Minimum budget Ci,min
Maximum period Ti,max
Workload Bounded / Indeterminate /Synchronized
D=T Yes / No
Deadline vres Di
Budget overrun signal Signal number and data
Deadline miss signal Signal number and data
Type of contract regular, background, dummy

21

FRESCOR API: Core

Negotiation and Binding Functions

contract_negotiate
contract_cancel
contract_renegotiate (synch, asynch)
vres_get_renegotiation_status

Obtaining information from a Vres
vres_get_usage
vres_get_remaining_budget

thread_create_in_background
thread_bind

General Management

init
service_thread_set(get)_data

vres_get_contract
thread_create_and_bind

Contract Creation and Initialization

contract_init
contract_set(get)_basic_params

vres_get_budget_and_period

config_is_admission_test_enabled
thread_unbind

contract_set(get)_resource_and_label
contract_set(get)_timing_reqs

Group Contract Negotiation

group_negotiate
group_change_mode (synch, asynch)

thread_get_vres_id
resource_get_vres_from_label

vres_get_job_usage

22

FRESCOR API: Core (cont’d)

Synchronization objects

synchobj_create
synchobj_destroy
synchobj_signal
synchobj_wait
synchobj_wait_with_timeout
timed_wait
vresperiod_wait
vres_get_period

23

Example: Periodic task with budget and deadline
control

set priority
create budget signal handler
create deadline signal handler
create budget timer
create deadline timer

while (true) {
reset deadline timer
set budget timer
do useful things
reset budget timer
set deadline timer
wait for next period

}

create contract with {C,T}
negotiate the contract
while (true) {

do useful things
frsh_timed_wait

}

With OS API With FRSH API

24

5. Advanced services
5.1 Shared objects

Two kinds of shared objects
• unprotected: trusted, guaranteed WCET for critical sections

- no monitoring mechanism, analysis assumes WCETS are OK
• protected: good estimates, but no guaranteed WCET for critical sections

- monitoring mechanism
- rollback mechanism when budget is overrun

Critical sections can be
• unchecked: WCET not monitored, but used for analysis
• read: WCET enforced; can be interrupted with no consequences
• write: WCET enforced; they require a rollback mechanism

- save the part of the object that will be written
- restore it if necessary

25

Shared objects attributes

A critical section may have:
• reference to shared object
• WCET
• kind of operation
• memory areas to be saved and restored

Attribute Data
List of critical sections Set of {Critical_Section}

26

Shared objects API

Shared Objects

contract_set(get)_csects
sharedobj_init
sharedobj_get_handle
sharedobj_get_mutex
sharedobj_get_obj_kind
sharedobj_remove

Critical sections

csect_destroy
csect_get_sharedobj_handle
csect_get_wcet
csect_register(get)_read_op
csect_register(get)_write_op
csect_get_op_kind
csect_invoke
csect_get_blocking_time
csect_register_thread
csect_deregister_thread

csect_init

27

5.2. Spare capacity and dynamic reclamation
Granularity: two ways of specifying how to make use of extra resources
available
• continuous range between a minimum and a maximum, for budget and period
• discrete sets of budgets, periods and deadlines

Stability times
• minimum interval during which assigned resources must be guaranteed

- to avoid fast interactions with control loops
- to avoid fast changes in the perception of quality obtained by the user

28

Spare capacity attributes
Attribute Data

Granularity Continuous or Discrete
Maximum budget Ci,max
Minimum period Ti,min
Discrete Utilization Set Set of {C,T,D} ordered by utilization
Weight Wi (relative weight)
Importance Ii (absolute importance)
Stability time Minimum stability time for assigned

resources

29

Spare Capacity API

Spare Capacity

contract_set(get)_reclamation_params
resource_get_capacity
resource_get_total_weight
vres_set_stability_time
vres_get_remaining_stability_time
vres_drecrease capacity

30

Example: 3-version algorithm

create contract with
{discrete {C1,T},{C2,T},{C3,T}}

negotiate the contract
while (1) {

if (current_budget<C2) {
do_version_1

} else if (current_budget<C3) {
do_version_2

} else {
do_version_3

}
frsh_timed_wait

}

31

Example: anytime algorithm

create contract with
{continuous {Cmin,T},{Cmax,T}}

negotiate the contract
while (1) {

while (current_budget enough for one loop) do {
refine solution

}
output result
frsh_timed_wait

}

32

5.3. Hierarchical scheduling: library level

Operating System

FRESCOR implementation

Application

Server Server

LT1 LT2 LT3

T1: Local scheduler T2

33

5.4 Hierarchical scheduling: "kernel" threads

Operating System

FRESCOR scheduler

Application

Vres Vres

T11 T12 T13

T2

Local scheduler

34

Hierarchical scheduling attributes
Attribute Data

Scheduling policy none,
fixed_priority,
EDF,
table_driven

Scheduler init info for table driven: table with the
schedule

35

Hierarchical scheduling API

Hierarchical scheduling

contract_set(get)_sched_policy
local_scheduler_init
thread_create_local
thread_set(get)_local_sched_params
thread_bind_local

36

5.5. Feedback control
Contracts represent "slow" resource reservations
• negotiation is complex
• a more dynamic mechanism can be used additionally

QoS manager uses a feedback control algorithm to reallocate budgets
assigned to virtual resources
• the objective is to maximize the quality perceived by the user

A percentage of utilization is allocated to the QoS manager
• through a regular contract: the spare bucket

The QoS manager may allocate additional budget to its virtual resources
• according to their specified desired budget

37

Feedback control API
No specific parameters

Reservation of a spare bucket through a regular contract

Control policies and parameters through specific API

Operations:

Feedback control

feedback_set(get)_spare
feedback_set(get)_desired_budget
feedback_get_actual_budget

38

5.6. Memory management
Memory is a scarce resource that can be shared and influences quality of
service

A memory contract can specify a minimum memory requirement

Spare capacity distribution can be applied to memory resources
• using the FRESCOR spare capacity parameters

- importance and weight
- stability times

• the resource is specified as min-max memory
- not budget & period

39

Memory management API
Attribute Data

Label global id (string)
Resource type processor, network, memory
Resource id number
Minimum memory Mmin
Maximum memory Mmax
Weight Wi (relative weight)
Importance Ii (absolute importance)
Stability time Minimum stability time for assigned

resources

40

Memory management API

Memory contract management

contract_set(get)_min_memory

Allocate memory from a vres

vres_get_memory_reqs
vres_memalloc
vres_memfree

contract_set(get)_max_memory

41

5.7. Energy management
Energy is a global resource associated with a particular platform
• initial focus is on execution platforms

Discrete power levels
• as worst-case execution times do not scale linearly

For each power level we need to specify in the contract
• budgets
• worst-case duration of critical sections

An API can be used to switch to a new power level
• the request may be rejected; spare capacity may be reassigned

Battery duration as another resource
• minimum battery expiration time is part of contract

42

Energy management API

A utilization level is a triple
• {array[power level] of budget, period, deadline}

Attribute Data
Minimum expiration time
Minimum budget per power level array[power level] of budget
Maximum budget per power level array[power level] of budget
Utilization set per power level array[1-N] of utilization levels

43

 Energy management API

Battery duration

resource_get_battery_expiration

Contract parameters

contract_set(get)_min_duration
contract_set(get)_min_budget_pow
contract_set(get)_max_budget_pow
contract_set(get)_utilizations_pow

Managing the power level

resource_set(get)_power_levelCritical section parameters

csect_set(get)_wcet_pow
resource_num_power_levels

44

5.8 Hard disk bandwidth
Initial attempt to use FRESCOR contracts to reserve disk bandwidth
• changes to disk access functions in the OS
• new type of resource: FRSH_RT_DISK
• no new APIs

Preliminary work being done
• The objective is to gain experience

45

6. Distribution
A network contract is specified for a resource of type network

Define specific communication mechanism
• send endpoints

- they are bound to a network vres
- they keep track of consumed bandwidth
- they are connected to one or more receive endpoints, through the destination_id &

stream_id
• receive endpoints

Receive endpointSend Endpoint

receive

send
Application

thread

network

vres
Application

threadcontract

46

Send and receive endpoints
Send endpoint
• Object used to send messages of a particular stream id, through a given network, to a

given destination id
• It is bound to a network vres
• Attributes

- queue-size
- rejection policy: new, oldest, next-newest

Receive endpoint
• Object used to receive messages of a particular stream id, through a given network
• Attributes

- queue-size
- rejection policy: new, oldest, next-newest

47

Distributed attributes
Attribute Data

protocol-dependent information parameters used to negotiate the
contract for a particular network pro-
tocol

queuing info Size and rejection policy (oldest,
newcomer) of queue used to send
messages

48

Distributed API
Distribution: basic

contract_set(get)_protocol_info
contract_set(get)_queueing_info

Distribution: send endpoints

send_endpoint_create
send_endpoint_get_params
send_endpoint_get_status
send_endpoint_destroy
send_endpoint_bind
send_endpoint_unbind
send_endpoint_get_vres

Distribution: receive endpoints

receive_endpoint_create
receive_endpoint_destroy
receive_endpoint_get_status

Distribution: information

network_bytes_to_budget
network_budget_to_bytes
network_get_message_max_size
network_get_min_effective_budget

receive_endpoint_get_params

49

Distributed API (cont’d)

Two-step contract negotiation

contract_negotiate_reservation
vres_commit_reservation

Distribution: send & receive

send_async
send_sync
receive_async
receive_sync

50

Example: Distributed sensor

Controller
thread

Sensor
thread

CPU-2CPU-1

CAN-Bus

51

Example: implementation

create CPU contract
negotiate the CPU contract
create Network contract
negotiate the Network contract
create send_endpoint
bind server to send_endpoint

while (1) {
read sensor
send message
frsh_timed_wait

}

create contract
negotiate the contract
create receive endpoint

while (1) {
read message
process message

}

Sensor thread Controller thread

52

Distributed transaction manager

App thread
App thread

App. thread

FR
SH

FN
A

Protocol 1

Protocol 2

DTM agent

DTM

App thread
App thread

App. thread
FR

SH

FN
A

Protocol 1

Protocol 2

network 1

network 2

DTM agent

DTM data data

invocation

logical link

53

7. Container-Component framework (CCM)
• Reusable components with passive operations
• Threads for executing the operations offered and managed by the container
• Connectors used for communication management
• FRESCOR management achieved by interception

Client instance Server instance
Connector instance

Proxy
side

Servant
side

Client
wrapper

Server
wrapper

Interceptor

Execution environment

Activation
interface

Business
interface

Environment services

Thread Service
Sched Attr
Service

54

Interceptors
Support the real-time
model:
• Assign scheduling

attributes to invoking
threads

• Differentiates invocations
based on global activities

Interceptor

ServerClient

SchedAttrService

addSchedAttr(..)
bind(…)
unbind(…)

SchedAttrList
InputStimID OutputStimID SchedAttrID

Reactive model

14 212
25 223

18 33
45 737

5

Receive_Request

Send_Reply

Environment

Automatically
generated
according to
deployment data

55

8. Implementation
Implementation on RTOS

FRESCOR independent of underlying OS
• but underlying FRSH implementation is not
• preliminary implementations:

- prototype based on fixed priorities + immediate priority ceilings (MaRTE OS)
- prototype based on EDF + bandwidth inheritance (Shark)

56

Case study: distributed robot controller

RT-EP Ethernet

Video acquisition
Robot Controller Man-Machine Interface

Video Monitor
Tile simulator core Image Analyser

57

Scheduling services required from OS
• RT scheduling (threads, mutexes, condition variables, ...)
• Notification mechanism (signals)
• execution time budgeting
• general purpose timers
• long jumps

- asynchronous notification mechanism, to abort a sequence of statements
• user-defined scheduling

- with hooks to operations when a thread gets blocked, and when a thread gets
ready

58

Current FRSH implementations
Main implementation based on fixed priorities and immediate priority
ceilings

Defined a POSIX-like OS adaptation layer: FOSA
• make the implementation independent of underlying fixed-priority OS
• requires OS adaptation (user-defined scheduling)

Current implementations of FOSA
• Partikle/ RT-Linux GPL
• OSE
• MaRTE OS native
• MaRTE OS as a user linux process
• RapiTime simulator

A second implementation exists on Linux/AQUOSA

59

Implementation on networks
RT-EP
• token passing fixed priority on standard ethernet
• uses fixed priorities & sporadic servers

CAN bus
• using fixed priorities & sporadic servers

WiFi
• using reduced set of priorities

Switched ethernet & TCP/IP
• using industrial switches that support priorities and traffic shaping

60

9. Conclusion
Contract based scheduling brings flexibility and resource reservations

The contracts provide independence among the different components of
the application

They help the application developer by raising the level of abstraction of
the real-time scheduling services.

Coexistence and cooperation of diverse real-time scheduling schemes
• hard real-time
• quality of service

Temporal encapsulation of subsystems
• support the composability of independently developed components
• reusability legacy subsystems

61

Learn more
http://frescor.org

Documents available

First public release expected within a year

