
First Lecture:
Modeling with

Finite, Timed and Hybrid Automata

Jean-François Raskin
Université Libre de Bruxelles

Belgium

Artist2 Asian Summer School - Shanghai - July 2008

Plan of the talk

• Reactive and Embedded Systems

• Modeling with Communicating Finite State
Machines

• Modeling with Timed Automata

• Modeling with Hybrid Automata

Plan of the talk

• Reactive and Embedded Systems

• Modeling with Communicating Finite State
Machines

• Modeling with Timed Automata

• Modeling with Hybrid Automata

What are critical
embedded systems ?

French Guniea, june 4, 1996

Mars, December 3, 1999

Crash caused by an uninitialized variable

300 horses power
100 processors

more and more software

Concurrency: several hardware and software components
Heterogeneity: digital (discrete time) and analog (continuous time)
Uncertainty: environment, exeptions handling

Text

Cellular Phone

Concurrency : 300 000 logical gates

11
10 stars

10 states
100,000

Reactive and embedded systems

• Reactive systems are systems that maintain a continuous interaction with their
environment, and they usually have several of the following properties:

• they are non-terminating systems (processes);

• they have to respect or enforce real-time properties;

• they have to cope with concurrency (several processes are executing
concurrently);

• they are often embedded into an complex (continuous) and safety critical
environments.

• ... as a result: the specifications that have to meet ES are often very complex and as a
result ES are difficult to design correctly ! Furthermore, testing them is difficult: the
environment in which they are embedded does not preexist or/and is difficult to
simulate (e.g. rocket, medical equipment, ...), and even when errors are found, their
diagnostic is diffult, we may not be able to replay the error.

Need for verification

• ... as they are difficult to develp correctly !

• ... and often safety critical !

⇒ we should verify them !

System

ModelCompute

abstracts Predict

Mathematics

Bridge
Plane

Software ?

How do we cope with
complexity in science ?

• Model construction: capture the essential aspects
of the system (sometimes automatically);

• Model verification: algorithms to analyze models.

Avantage de l’analyse de modèle par rapport à une analyse du système : le coût;
Avantage de l’analyse de modèle par rapport à la simulation : la couverture.

CAV of reactive systems

• Model-Checking: does M logically entails Φ ?

Clarke, Emerson and Sifakis received the 2008 Turing Award for their seminal works on the
subject.

• M describes what happens during the (infinite) execution of the system (environment+program).

M is usually given as a finite transition system.

• Φ is a property that refers to the entire computation: we are interested in temporal behaviors of
the system.

Φ is often expressed using a temporal logic.

• quite different from traditional (historical) approach to verification in CS where focus was on
input-output behavior of programs, and as a consequence specifications were given as Pre-Post
conditions.

Plan of the talk

• Reactive and Embedded Systems

• Modeling with Communicating Finite State
Machines

• Modeling with Timed Automata

• Modeling with Hybrid Automata

Models for reactive
systems :

Communicating Finite
State Machines

and Temporal Logic

• Traces
= infinite sequences of pairs state-event
s0→a0→s1→a1→s2→a2→...→sn→an→...

• each si is a subset of P (a finite set of
propositions over the system);

• each ai is an element of Σ, a finite set of
events;

• Semantics of the system = (infinite) set of
traces = ω-regular language.

Models = set of traces

• Properties of a reactive can also be
expressed as ω-regular languages;

• Verification of finite-state reactive systems =
manipulate, compare, test properties of ω-
regular languages;

• There exists a well-established and rich
theory on which CAV is based:

• Temporal logics [Pnu77];

• Büchi automata [Büc62];

• Classical theories [Kam68].

Communicating Finite
State Machines

(a.k.a. Büchi Automata)

CFSM are finite state machines (also called finite state
automata) that communicate via shared events.

x

y

A running example

Train model

Snapshot from UppAal
http://www.uppaal.com

http://www.uppaal.com
http://www.uppaal.com

State

Transition

State label

Transition label
Initial state

Train model

Snapshot from UppAal
http://www.uppaal.com

http://www.uppaal.com
http://www.uppaal.com

• Formally: A=(Q,Q0,Σ,E,P,L,F) where:

• Q is a finite set of states (locations); Q0 is the subset of
initial states;

• Σ is a finite set of transition labels (events, actions);
E ⊆ Q x Σ x Q is the transition relation;

• P is a finite set of propositions; L : Q → 2P is a labelling
function, this function defines state labels;

• F ⊆ 2Q is a set of sets of accepting states (generalized Büchi
condition).

Syntax

The automaton A=(Q,Q0,Σ,E,P,L,F) accepts the trace
s0→a0→s1→a1→s2→a2→...→sn→an→...

iff there exists an infinite sequence of states
q0q1...qn...

such that for any i ≥ 0 :
(1) (qi,ai,qi+1) ∈ E, (2) L(qi)=si, and

(3) for all f ∈ F there exist infinitely many j≥0 such that

qj ∈ f (generalized Büchi condition).

Such a sequence is called an accepted run.

The language of a automaton A is the set of traces that A
accepts. This set is noted Lang(A).

Semantics

Here is one execution (the only in this special case) of the train:

Far ⎯App!→ Near ⎯ε→Passing ⎯Exit!→Far ...

So the language of this automaton is

{Far ⎯App!→ Near ⎯ε→Passing ⎯Exit!→Far ...}

Gate model

Open ⎯Lower?→Down ⎯ε→Closed ⎯Raise?→Up ...
Open ⎯Lower?→Down ⎯Raise?→Up ⎯Lower?→Down ...
...

The language of the gate is:

{Open ⎯Lower?→Down ⎯ε→Closed ⎯Raise?→Up ...,
Open ⎯Lower?→Down ⎯Raise?→Up ⎯Lower?→Down ...
...}

Controller model

➢ Finite state machine are building blocks that allow us to
model components of complex systems.

➢ Systems are best modeled compositionally as a product of
communicating finite state machines.

➢ We will define a synchronized product of finite state
machines in which communication is performed via
synchronization on common events

Modeling reactive systems

Product of two finite state machines

Let A=(Qa,Qa0,Σa,Ea,Pa,La,Fa) and let B=(Qb,Qb0,Σb,Eb,Pb,Lb,Fb) such that
Pa∩Pb= ∅. We define the product of A and B, noted A⊗B, as the
automaton C=(Q,Q0,Σ,E,P,L,F) where :

(1) Q=QaxQb (2) Q0=Qa0xQb0 (3) Σ=Σa∪Σb

(4) E contains ((qa1,qb1),a,(qa2,qb2)) iff one of the three following conditions
holds:

 -a∈Σa, a∉Σb, (qa1,a,qa2)∈Ea, qb1=qb2

 -a∈Σb, a∉Σa, (qb1,a,qb2)∈Eb, qa1=qa2

 -a∈Σa, a∈Σb, (qa1,a,qa2)∈Ea, (qb1,a,qb2)∈Eb

(5) P=Pa∪Pb

(6) for any (qa,qb)∈Q, L((qa,qb))=La(qa)∪Lb(qb)
(7) F={ {(qa,qb) | qa ∈ fa} | fa ∈Fa} } ∪ { {(qa,qb) | qb ∈ fb} | fb ∈Fb} }

Example: the product of Gate and Controller

Their product:

Example: the product of Gate and Controller

Their product:

Example: the product of Gate and Controller

Their product:

Example: the product of Gate and Controller

Their product:

Example: the product of Gate and Controller

Their product:

Example: the product of Gate and Controller

Their product:

Example: the product of Gate and Controller

Their product:

Example: the product of Gate and Controller

Their product:

Generalized Büchi condition
An example

Let us consider our example with the following generalized Büchi
condition: F={{Open},{Closed}}.

This condition excludes words that imposes to its runs to loop for ever
between Up and Down.

So, the word “Open Lower? (Down Raise? Up Lower?)∞” is not part of the
language of the automaton with this generalized Büchi condition.

How to express specifications of
reactive systems ?

Linear Temporal Logic

The syntax of the logic LTL is given by the following grammar:

Φ::= p ｜¬Φ1 ｜Φ1∨Φ2 ｜X Φ ｜Φ1UΦ2

where Φ1,Φ2∈Φ.

Formula of LTL are evaluated over states of traces.

LTL - Semantics
Let η=s0→a0→s1→a1→s2→a2→...→sn→an→... be a infinite trace over
the set of propositions P (and events Σ). We refer to si by using the
notation η(i).

For any i≥0, we have :
-η(i) models p iff p ∈ η(i)
-η(i) models ¬Φ1 iff η(i) does not model Φ1

-η(i) models Φ1∨Φ2 iff

 η(i) models Φ1 or η(i) models Φ2

-η(i) models X Φ iff η(i+1) models Φ
-η(i) models Φ1UΦ2 iff there exists j≥i, such that

 η(j) models Φ2 and

 for all k, i≤k<j, η(k) models Φ1

LTL - Semantics (cont’d)

A formula Φ is true over a trace η
iff

“η(0) models Φ”.

A formula Φ is true over a set of traces H iff for all η ∈
H, Φ is true over η.

LTL - Abbreviations

The following abbreviations are useful:

 F Φ ≡ True U Φ, “Eventually Φ”.

 G Φ ≡ ¬ F ¬ Φ, “Always Φ”.

Examples of properties
expressed in LTL

The gate should always be closed when the train is
within the crossing :

G (past → closed)

At any time, the gate will eventually be open:

G F open

The LTL model-checking problem

Given a product of n CFSMs M1⊗M2⊗...⊗Mn, given a

formula of LTL Φ, determine if the set of traces defined
by M1⊗M2⊗...⊗Mn satisfies the formula Φ.

There are algorithms and implementations that solve
this problem but it is problem is provably hard:
it is complete for PSpace.

Question : are the two following formulas

G (past → closed)

G F open

true in our model of the rail-road crossing system ?

UppAal Demo (FSM-Train-Simple)

Our model of the rail-road crossing system is not
correct !

Is the controller strategy that we propose flawed ?

Is your model too coarse ? not precise enough ?

Plan of the talk

• Reactive and Embedded Systems

• Modeling with Communicating Finite State
Machines

• Modeling with Timed Automata

• Modeling with Hybrid Automata

Models = set of timed traces

A timed trace is an infinite sequence of the form

s0→(a0,t0)→s1→(a1,t1)→s2→(a2,t2)→...→sn→(an,tn)→...

where :

 -each si is a subset of the set of propositions P;

 -each ai is an element of Σ, the set of events;

 -each ti is a positive real number, and we verify :

 (1) for each i≥0 : ti≤ti+1 (monotonicity) and

 (2) for any positive real r, there exists a

 position i≥0 such that ti≥r (non-zenoness).

Timed Automata
[AD94]

• Timed Automata = Finite State Machines +
Clocks;

• Clocks = continuous variables that count
time;

• Operations on clocks = resetting and
comparison to constants.

TA for the train

TA for the train

Clock resetting

TA for the train

Clock resetting

Invariants

TA for the train

Clock resetting

Invariants

Guard

TA, Syntax
• A timed automata is a tuple A=(Q,Q0,Σ,P,Cl,E,L,F,Inv), where:

• Q,Q0,Σ,P,L,F are as for CFSMs;

• Cl is a finite set of clocks;

• E ⊆ Q x Σ x GF(Cl) x 2Cl x Q is the set of transitions,

where GF(Cl) is the set of constraints of the form:

Φ::= x ~ c | Φ∨Φ | ¬Φ
where x∈Cl and c∈ℕ.

• Inv : Q → GF(C) assigns invariants over clocks to locations.

TA, Semantics - Timed traces

TA A=(Q,Q0,Σ,E,P,Cl,L,F,Inv) accepts the timed trace
s0→(a0,t0)→s1→(a1,t1)→s2→(a2,t2)→...→sn→(an,tn)→...

iff there exists an infinite sequence
(q0,v0)→d0→(q1,v1)→d1→...→dn-1→(qn,vn)→dn→...

such that:
(1) v0(x)=0 for any x∈Cl;
(2) d0=t0, and for any i>0, di=ti-ti-1;
(3) for any i ≥ 0, there exists (qi,ai,Φ,Δ,qi+1) ∈ E such that :
 (a) vi ⊨ Φ,
 (b) vi+1=vi+di[Δ:=0],
 (c) for any t, 0 ≤ t ≤ di, vi+t ⊨ Inv(qi).
(4) for any i ≥ 0, L(qi)=si and
(5) there exist infinitely many j≥0 such that qj ∈ F (Büchi condition).

Such a sequence is called an accepted timed run.

The set of timed traces accepted by a TA forms its timed language.

Example of timed words

Let us consider the following timed word:

Open ⎯ (1.5,Lower?) ➝ Down ⎯ (8.75,ε) ➝ Closed ⎯ (13,57,Raise?) ➝ Up ...

Is it in the timed language of the Gate ?
Yes, here is a run:

(Open,0) ⎯ (1.5,Lower?) ➝ (Down,0) ⎯ (7.25,ε) ➝ (Closed,7.25) ⎯ (4,82,Raise?) ➝ (Up,12,07) ...

TA, Semantics - LTS
• The LTS=(S,S0,Σ,T,C,λ) of a TA A=(Q,Q0,Σ,P,Cl,E,L,F,Inv), is as follows:

- S is the set of pairs (q,v) where q ∈ Q is a location of A and v : Cl →ℝ≥0 such that v ⊨ Inv(q);

- S0={(q0,<0,0,...0,>) | q0 ∈ Q0 };

- T ⊆ S x (Σ∪ℝ≥0) x S defined by two types of transitions:

 Discrete transitions:
(q1,v1)→a(q2,v2) ∈ T iff there exists (q1,a,Φ,Δ,q2) ∈ E, v1 ⊨ Φ, and v2:=v1[Δ:=0].
 Continuous transitions:
(q1,v1)→δ(q2,v2) ∈ T iff q1=q2, δ∈ℝ≥0, v2=v1+δ, and ∀δ’, 0≤δ’≤δ, v1+δ ⊨ Inv(q1).

- C=2P, λ((q,v))=L(q), for any (q,v)∈Q.

• Clearly, this transition system has a (continuous) infinite number of states.
How do we handle it ? (see second lecture)

UppAal Demo (FSM-Train-TA)

Real-time logics

• Real-time logics are extensions of temporal
logics able to express real-time properties.

• Example of a real-time property:

“it is always the case that when the the train
is near, the gate is closed

within 10 seconds”.

The logic MTL
• MTL ∋ Φ,Φ1,Φ2

:= p | ¬Φ | Φ1∨Φ2 | Φ1 UI Φ2

where I is an interval with rational bounds

• Example :
p U[2,3] q

“p is true until q is true
within 2 to 3 time units”

MTL semantics

• MTL formulas are evaluated in positions along timed traces;

• Let η=s0→(a0,t0)→s1→(a1,t1)→s2→(a2,t2)→...→sn→(an,tn)→... be a
timed trace:

• a pair (i,t) is a position of η provided that ti ≤ t ≤ ti+1.

• Given two positions (i,t), (i’,t’), we have that (i,t) < (i’,t’)
provided that i<i’, or i=i’ and t<t’.

• Given a position (i,t) of η, we write η(i,t) for the suffix of η
starting in (i,t), that is the trace si→(ai,ti-t)→si+1→(ai+1,ti+1-
t)→s2→(a2,ti+2-t)→...

MTL semantics

The semantics of MTL is inductively defined as
follows:

- propositional operators have their usual meaning.
- η models Φ1 UI Φ2 iff there exists a position (i,t)
of η such that:

 - t ∈ I

 - η(i,t) models Φ2

 - for all positions (0,0) < (i’,t’) < (i,t),

 we have that η(i’,t’) models Φ1

MTL Semantics

Time t

p UI q

Interval t+I

MTL abbreviations

• “Bounded Eventually”:
FI Φ ≡ True UI Φ

• “Bounded Invariance”:
GI Φ ≡ ¬ FI ¬ Φ

• Examples :

G (near → F[0,10] closed)

Theorem [AH96-Ras99]: the satisfiability problem for
MTL is undecidable.

MITL is the subset of MTL where only non-singular
intervals can be used.

Theorem [Ras99]: the satisfiability and model-
checking problems for MITL are ExpSpace complete.
There exists an expressively complete fragment of
MITL which is PSpace complete.

Plan of the talk

• Reactive and embedded systems

• Modeling with CFSM

• Modeling with timed automata

• Modeling with hybrid automata

Motivations

• Embedded controllers are often reacting
within a complex environment with
continuous components;

• We want a formalism that can naturally
describe hybrid systems, that is systems with
both discrete and continuous evolutions.

Models for reactive
systems :

Hybrid Automata

far

x’∈[-50,-40]

x ≥ 1000

near

x’∈[-50,-30]

x ≥ 0

past

x’∈[30,50]

x ≤ 100

x = 1000

x = 0x = 100 →
x :∈ [2000,∞)

app!

exit!

app

exit

Train

x: initialized rectangular variable

HA for the train

far

x’∈[-50,-40]

x ≥ 1000

near

x’∈[-50,-30]

x ≥ 0

past

x’∈[30,50]

x ≤ 100

x = 1000

x = 0x = 100 →
x :∈ [2000,∞)

app!

exit!

app

exit

Train

x: initialized rectangular variable

HA for the train

Rectangular guards and updates

Rectangular invariants

Rectangular flow
constraints

up
y’ = 9

open

y’ = 0
raise

lower

Gate

y: uninitialized singular variable

y ≤ 90

y = 90

down
y’ = -9

closed

y’ = 0
y ≥ 0

y = 0

raise? lower? raise?

lower?

HA for the gate

t’ = 1
t ≤ α

t := 0

app?

lower!

t’ = 1
t ≤ α

t := 0

exit?

raise!

app exit

idle

Controller

raiselower

t: clock variable α:
design parameter

HA for the controller

t’ = 1
t ≤ α

t := 0

app?

lower!

t’ = 1
t ≤ α

t := 0

exit?

raise!

app exit

idle

Controller

raiselower

t: clock variable α:
design parameter

HA for the controller

Parameters

HA, Syntax

• Loc is a finite set {l1,l2,...,lm} of control locations that represent control modes of
the hybrid system;

• Edge ⊆ Loc x Σ x Loc is a finite set of labelled edges that represent discrete

changes of control mode in the hybrid system. Those changes are labelled by
event names taken from the finite set of labels Σ;

• X is a finite set {x1,x2,...,xn} of real numbered variables. We write X’ for the
primed version of those variables, X’ for the first derivative of those variables.

An hybrid automaton A=(Loc,Edge,Σ,X,Init,Flow,Jump) where:

• Init, Inv, Flow are functions that assign to each location l three predicates:

 -Init(l) is a predicate whose free variables are from X and which states what
are the possibles valuations for those variables when the hybrid system starts in
l.
 -Inv(l) is a predicate whose free variables are from X and which states what
are the possible valuations for those variables when the control of the hybrid
system is in l;
 -Flow(l) is a predicate whose free variables are from X∪X• and which states

what are the possible continuous evolutions when the control of the hybrid
system is in location l.

• Jump is a function that assigns to each labelled edge a predicate whose free
variables are from X∪X’. Jump(e) states when the discrete change modeled by e

is possible and what are the possible updates of the variables when the hybrid
system makes the discrete change.

HA, Semantics
• The LTS=(S,S0,Σ,→) of a HA H=(Loc,Edge,Σ,X,Init,Flow,Jump) is defined as

follows:

• S is the set of pairs (l,v) where l∈Loc, v∈[X→R] such that v models Inv(l);

• S0 ⊆ S such that (l,v) ∈ S0 if v models Init(l);

• the transitions are either:

• discrete: for each edge (l,σ,l’)∈Edge, (l,v)→σ(l’,v’) iff (l,v), (l’,v’) ∈S, and

(v,v’) models Jump(e).

• continuous: for each nonnegative real δ, we have (l,v)→δ(l’,v’) iff l=l’ and
there is a differentiable function f:[0,δ]→Rn, such that the three following
conditions holds: (1) f(0)=v, (2) f(δ)=v’, (3) for all reals ε ∈ (0,δ): f(ε)

models Inv(l), and (f(ε),f•(ε)) models Flow(l).

Model Checker

HA Model Property

Conditions under which a
property is verified

Exhaustive search of the state space

What we would like to do...

• Difficult problem:

• we do not have general methods to solve differential equations;

• the interplay between discrete and continuous transitions make the analysis of
those systems difficult (problems are usually undecidable);

• the number of reachable states is uncountable, we must use symbolic methods.

• ... We concentrate on subclasses that are interesting in practice (reactangular HA, for
example).

• ... We define approximated analysis methods (abstract interpretation).

Rectangular HA

• Rect(X) ∋ Φ1,Φ2

:=True, False, x ∈ I, Φ1∧Φ2

where x∈X, and I is an interval with rational bounds.

• UpdateRect(X,X’) ∋ Φ1,Φ2

:=True, False, x ∈ I, x’ ∈ I, x’=x, Φ1∧Φ2

where x∈X, x’∈X’, and I is an interval with rational bounds

• An hybrid automaton H=(Loc,Edge,Σ,X,Init,Flow,Jump) is
rectangular iff for any location l ∈ Loc, Init(l), Inv(l) are in

Rect(X), for any edge e ∈ Edge, Jump(e) is in UpdateRect(X,X’),

and for any location , Flow(l) is in Rect(X•).

far

x’∈[-50,-40]

x ≥ 1000

near

x’∈[-50,-30]

x ≥ 0

past

x’∈[30,50]

x ≤ 100

x = 1000

x = 0x = 100 →
x :∈ [2000,∞)

app!

exit!

app

exit

Train

x: initialized rectangular variable

HA for the train

Rectangular guards and updates

Rectangular invariants

Rectangular flow
constraints

Demo HyTech

Conclusion

• Timed and hybrid automata are well-suited
models for embedded systems;

• Towards a model based methodology for the
development of safety critical embedded
controllers.

• In the second lecture, we will see the
foundations for the analysis of timed models.

