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What are critical 
embedded systems ?
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Concurrency:      several hardware and software components                        
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Uncertainty:        environment, exeptions handling
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Reactive and embedded systems

• Reactive systems are systems that maintain a continuous interaction with their 
environment, and they usually have several of the following properties:

• they are non-terminating systems (processes);

• they have to respect or enforce real-time properties;

• they have to cope with concurrency (several processes are executing 
concurrently);

• they are often embedded into an complex (continuous) and safety critical 
environments.

• ... as a result: the specifications that have to meet ES are often very complex and as a 
result ES are difficult to design correctly ! Furthermore, testing them is difficult:  the 
environment in which they are embedded does not preexist or/and is difficult to 
simulate (e.g.  rocket, medical equipment, ...), and even when errors are found, their 
diagnostic is diffult, we may not be able to replay the error.



Need for verification

• ... as they are difficult to develp correctly !

• ... and often safety critical !

⇒ we should verify them !



System

ModelCompute
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Software ?

How do we cope with 
complexity in science ?



• Model construction: capture the essential aspects 
of the system (sometimes automatically);

• Model verification: algorithms to analyze models.

Avantage de l’analyse de modèle par rapport à une analyse du système : le coût;
Avantage de l’analyse de modèle par rapport à la simulation : la couverture.



CAV of reactive systems

• Model-Checking:  does M  logically entails Φ ?

Clarke, Emerson and Sifakis received the 2008 Turing Award for their seminal works on the 
subject.

• M describes what happens during the (infinite) execution of the system (environment+program).

M is usually given as a finite transition system.

• Φ is a property that refers to the entire computation: we are interested in temporal behaviors of 
the system.

Φ is often expressed using a temporal logic.

• quite different from traditional (historical) approach to verification in CS where focus was on 
input-output behavior of programs, and as a consequence specifications were given as Pre-Post 
conditions.



Plan of the talk

• Reactive and Embedded Systems

• Modeling with Communicating Finite State 
Machines

• Modeling with Timed Automata

• Modeling with Hybrid Automata



Models for reactive 
systems :

Communicating Finite 
State Machines

and Temporal Logic



• Traces 
= infinite sequences of pairs state-event
s0→a0→s1→a1→s2→a2→...→sn→an→...

• each si is a subset of P (a finite set of 
propositions over the system);

• each ai is an element of Σ, a finite set of 
events;

• Semantics of the system = (infinite) set of 
traces = ω-regular language.

Models = set of traces



• Properties of a reactive can also be 
expressed as ω-regular languages;

• Verification of finite-state reactive systems = 
manipulate, compare, test properties of ω-
regular languages;

• There exists a well-established and rich 
theory on which CAV is based:

• Temporal logics [Pnu77];

• Büchi automata [Büc62];

• Classical theories [Kam68].



Communicating Finite 
State Machines

(a.k.a. Büchi Automata)

CFSM are finite state machines (also called finite state 
automata) that communicate via shared events.
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Train model

Snapshot from UppAal
http://www.uppaal.com
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• Formally: A=(Q,Q0,Σ,E,P,L,F) where:

• Q is a finite set of states (locations); Q0 is the subset of 
initial states;

• Σ is a finite set of transition labels (events, actions); 
E ⊆ Q x Σ x Q is the transition relation;

• P is a finite set of propositions; L : Q → 2P is a labelling 
function, this function defines state labels;

• F ⊆ 2Q is a set of sets of accepting states (generalized Büchi 
condition).

Syntax



The automaton A=(Q,Q0,Σ,E,P,L,F) accepts the trace 
s0→a0→s1→a1→s2→a2→...→sn→an→... 

iff there exists an infinite sequence of states 
q0q1...qn... 

such that for any i ≥ 0 : 
(1) (qi,ai,qi+1) ∈ E, (2) L(qi)=si, and 

(3) for all f ∈ F there exist infinitely many j≥0 such that 

qj ∈ f (generalized Büchi condition).  

Such a sequence is called an accepted run.

The language of a automaton A is the set of traces that A 
accepts. This set is noted Lang(A).

Semantics



Here is one execution (the only in this special case) of the train:

Far ⎯App!→ Near ⎯ε→Passing ⎯Exit!→Far ...

So the language of this automaton is

{Far ⎯App!→ Near ⎯ε→Passing ⎯Exit!→Far ...}



Gate model



Open ⎯Lower?→Down ⎯ε→Closed ⎯Raise?→Up ...
Open ⎯Lower?→Down ⎯Raise?→Up ⎯Lower?→Down ...
...

The language of the gate is:

{Open ⎯Lower?→Down ⎯ε→Closed ⎯Raise?→Up ...,
Open ⎯Lower?→Down ⎯Raise?→Up ⎯Lower?→Down ...
...}



Controller model



➢ Finite state machine are building blocks that allow us to 
model components of complex systems.

➢ Systems are best modeled compositionally as a product of 
communicating finite state machines.

➢ We will define a synchronized product of finite state 
machines in which communication is performed via 
synchronization on common events

Modeling reactive systems



Product of two finite state machines

Let A=(Qa,Qa0,Σa,Ea,Pa,La,Fa) and let B=(Qb,Qb0,Σb,Eb,Pb,Lb,Fb) such that 
Pa∩Pb= ∅. We define the product of A and B, noted A⊗B, as the 
automaton C=(Q,Q0,Σ,E,P,L,F) where :

(1) Q=QaxQb      (2) Q0=Qa0xQb0    (3) Σ=Σa∪Σb

(4) E contains ((qa1,qb1),a,(qa2,qb2)) iff one of the three following conditions 
holds:

 -a∈Σa, a∉Σb, (qa1,a,qa2)∈Ea, qb1=qb2


 -a∈Σb, a∉Σa, (qb1,a,qb2)∈Eb, qa1=qa2


 -a∈Σa, a∈Σb, (qa1,a,qa2)∈Ea, (qb1,a,qb2)∈Eb

(5) P=Pa∪Pb

(6) for any (qa,qb)∈Q, L((qa,qb))=La(qa)∪Lb(qb)
(7) F={ {(qa,qb) | qa ∈ fa} | fa ∈Fa} } ∪ { {(qa,qb) | qb ∈ fb} | fb ∈Fb} }



Example: the product of Gate and Controller

Their product:
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Example: the product of Gate and Controller

Their product:



Generalized Büchi condition
An example

Let us consider our example with the following generalized Büchi 
condition: F={{Open},{Closed}}.

This condition excludes words that imposes to its runs to loop for ever 
between Up and Down.

So, the word “Open Lower? (Down Raise? Up Lower?)∞” is not part of the 
language of the automaton with this generalized Büchi condition. 



How to express specifications of 
reactive systems ?



Linear Temporal Logic

The syntax of the logic LTL is given by the following grammar:

Φ::= p ｜¬Φ1 ｜Φ1∨Φ2 ｜X Φ ｜Φ1UΦ2

where Φ1,Φ2∈Φ.

Formula of LTL are evaluated over states of traces.



LTL - Semantics
Let η=s0→a0→s1→a1→s2→a2→...→sn→an→... be a infinite trace over 
the set of propositions P (and events Σ). We refer to si by using the 
notation η(i).

For any i≥0, we have :
-η(i) models p iff p ∈ η(i)
-η(i) models ¬Φ1 iff η(i) does not model Φ1

-η(i) models Φ1∨Φ2 iff 

 η(i) models Φ1 or η(i) models Φ2

-η(i) models X Φ iff η(i+1) models Φ
-η(i) models Φ1UΦ2 iff there exists j≥i, such that

 η(j) models Φ2 and 

 for all k, i≤k<j, η(k) models Φ1  



LTL - Semantics (cont’d)

A formula Φ is true over a trace η 
iff

“η(0) models Φ”.

A formula Φ is true over a set of traces H iff for all η ∈ 
H, Φ is true over η.



LTL - Abbreviations

The following abbreviations are useful:


 F Φ ≡ True U Φ, “Eventually Φ”.


 G Φ ≡ ¬ F ¬ Φ, “Always Φ”.



Examples of properties 
expressed in LTL

The gate should always be closed when the train is 
within the crossing :

G ( past → closed ) 

At any time, the gate will eventually be open:

G F open 



The LTL model-checking problem

Given a product of n CFSMs M1⊗M2⊗...⊗Mn, given a 

formula of LTL Φ, determine if the set of traces defined 
by M1⊗M2⊗...⊗Mn satisfies the formula Φ.

There are algorithms and implementations that solve 
this problem but it is problem is provably hard: 
it is complete for PSpace.



Question : are the two following formulas

G ( past → closed ) 

G F open

true in our model of the rail-road crossing system ?



UppAal Demo (FSM-Train-Simple)



Our model of the rail-road crossing system is not 
correct !

Is the controller strategy that we propose flawed ?

Is your model too coarse ? not precise enough ?  
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Models = set of timed traces

A timed trace is an infinite sequence of the form

s0→(a0,t0)→s1→(a1,t1)→s2→(a2,t2)→...→sn→(an,tn)→...

where : 

 -each si is a subset of the set of propositions P;

 -each ai is an element of Σ, the set of events;

 -each ti is a positive real number, and we verify :

 (1) for each i≥0 : ti≤ti+1  (monotonicity) and 

 (2) for any positive real r, there exists a 

 position i≥0 such that ti≥r (non-zenoness).



Timed Automata 
[AD94]

• Timed Automata = Finite State Machines + 
Clocks;

• Clocks = continuous variables that count 
time;

• Operations on clocks = resetting and 
comparison to constants.



TA for the train



TA for the train

Clock resetting



TA for the train

Clock resetting

Invariants



TA for the train

Clock resetting

Invariants

Guard



TA, Syntax
• A timed automata is a tuple A=(Q,Q0,Σ,P,Cl,E,L,F,Inv), where:

• Q,Q0,Σ,P,L,F are as for CFSMs;

• Cl is a finite set of clocks;

• E ⊆ Q x Σ x GF(Cl) x 2Cl x Q is the set of transitions, 

where GF(Cl) is the set of constraints of the form:

Φ::= x ~ c | Φ∨Φ | ¬Φ
where x∈Cl and c∈ℕ.

• Inv : Q → GF(C) assigns invariants over clocks to locations.



TA, Semantics - Timed traces

TA A=(Q,Q0,Σ,E,P,Cl,L,F,Inv) accepts the timed trace 
s0→(a0,t0)→s1→(a1,t1)→s2→(a2,t2)→...→sn→(an,tn)→...

iff there exists an infinite sequence 
(q0,v0)→d0→(q1,v1)→d1→...→dn-1→(qn,vn)→dn→... 

such that: 
(1) v0(x)=0 for any x∈Cl; 
(2) d0=t0, and for any i>0, di=ti-ti-1; 
(3) for any i ≥ 0, there exists (qi,ai,Φ,Δ,qi+1) ∈ E such that :     
     (a) vi ⊨ Φ, 
     (b) vi+1=vi+di[Δ:=0], 
     (c) for any t, 0 ≤ t ≤ di, vi+t ⊨ Inv(qi). 
(4) for any i ≥ 0, L(qi)=si and 
(5) there exist infinitely many j≥0 such that qj ∈ F (Büchi condition). 

Such a sequence is called an accepted timed run.

The set of timed traces accepted by a TA forms its timed language.



Example of timed words

Let us consider the following timed word:

Open ⎯ (1.5,Lower?) ➝ Down ⎯ (8.75,ε) ➝ Closed ⎯ (13,57,Raise?) ➝ Up ...

Is it in the timed language of the Gate ? 
Yes, here is a run:

(Open,0) ⎯ (1.5,Lower?) ➝ (Down,0) ⎯ (7.25,ε) ➝ (Closed,7.25) ⎯ (4,82,Raise?) ➝ (Up,12,07) ...



TA, Semantics - LTS
• The LTS=(S,S0,Σ,T,C,λ) of a TA A=(Q,Q0,Σ,P,Cl,E,L,F,Inv), is as follows:

- S is the set of pairs (q,v) where q ∈ Q is a location of A and v : Cl →ℝ≥0 such that v ⊨ Inv(q); 

- S0={(q0,<0,0,...0,>) | q0 ∈ Q0 };

- T ⊆ S x (Σ∪ℝ≥0) x S defined by two types of transitions:

      Discrete transitions: 
(q1,v1)→a(q2,v2) ∈ T iff there exists (q1,a,Φ,Δ,q2) ∈ E, v1 ⊨ Φ, and v2:=v1[Δ:=0].
      Continuous transitions: 
(q1,v1)→δ(q2,v2) ∈ T iff q1=q2, δ∈ℝ≥0, v2=v1+δ, and ∀δ’, 0≤δ’≤δ, v1+δ ⊨ Inv(q1).

- C=2P, λ((q,v))=L(q), for any (q,v)∈Q.

• Clearly, this transition system has a (continuous) infinite number of states. 
How do we handle it ? (see second lecture)



UppAal Demo (FSM-Train-TA)



Real-time logics

• Real-time logics are extensions of temporal 
logics able to express real-time properties.

• Example of a real-time property: 

“it is always the case that when the the train 
is near, the gate is closed 

within 10 seconds”.



The logic MTL
• MTL ∋ Φ,Φ1,Φ2

:= p | ¬Φ | Φ1∨Φ2 | Φ1 UI Φ2

where I is an interval with rational bounds

• Example :
p U[2,3] q

“p is true until q is true 
within 2 to 3 time units”



MTL semantics

• MTL formulas are evaluated in positions along timed traces;

• Let η=s0→(a0,t0)→s1→(a1,t1)→s2→(a2,t2)→...→sn→(an,tn)→... be a 
timed trace: 

• a pair (i,t) is a position of η provided that ti ≤ t ≤ ti+1.

• Given two positions (i,t), (i’,t’), we have that (i,t) < (i’,t’) 
provided that i<i’, or i=i’ and t<t’. 

• Given a position (i,t) of η, we write η(i,t) for the suffix of η 
starting in (i,t), that is the trace si→(ai,ti-t)→si+1→(ai+1,ti+1-
t)→s2→(a2,ti+2-t)→...



MTL semantics

The semantics of MTL is inductively defined as 
follows:

- propositional operators have their usual meaning.
- η models Φ1 UI Φ2 iff there exists a position (i,t) 
of η such that:

 - t ∈ I

 - η(i,t) models Φ2


 - for all positions (0,0) < (i’,t’) < (i,t), 

 we have that η(i’,t’) models Φ1



MTL Semantics

Time t

p UI q

Interval t+I



MTL abbreviations

• “Bounded Eventually”:
FI Φ ≡ True UI Φ

• “Bounded Invariance”:
GI Φ ≡ ¬ FI ¬ Φ

• Examples :

G ( near → F[0,10] closed )



Theorem [AH96-Ras99]: the satisfiability problem for 
MTL is undecidable.

MITL is the subset of MTL where only non-singular 
intervals can be used.

Theorem [Ras99]: the satisfiability and model-
checking problems for MITL are ExpSpace complete. 
There exists an expressively complete fragment of 
MITL which is PSpace complete.
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Motivations

• Embedded controllers are often reacting 
within a complex environment with 
continuous components;

• We want a formalism that can naturally 
describe hybrid systems, that is systems with 
both discrete and continuous evolutions.



Models for reactive 
systems :

Hybrid Automata
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app
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x: initialized rectangular variable

HA for the train
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open
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raise
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t’ = 1
t ≤ α
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t:   clock variable        α:  
design parameter

HA for the controller



t’ = 1
t ≤ α
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t := 0

exit?
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app exit

idle

Controller
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t:   clock variable        α:  
design parameter

HA for the controller

Parameters



HA, Syntax

• Loc is a finite set {l1,l2,...,lm} of control locations that represent control modes of 
the hybrid system;

• Edge ⊆ Loc x Σ x Loc is a finite set of labelled edges that represent discrete 

changes of control mode in the hybrid system. Those changes are labelled by 
event names taken from the finite set of labels Σ;

• X is a finite set  {x1,x2,...,xn} of real numbered variables. We write X’ for the 
primed version of those variables, X’ for the first derivative of those variables.

An hybrid automaton A=(Loc,Edge,Σ,X,Init,Flow,Jump) where:



• Init, Inv, Flow are functions that assign to each location l three predicates:

      -Init(l) is a predicate whose free variables are from X and which states what 
are the possibles valuations for those variables when the hybrid system starts in 
l.
      -Inv(l) is a predicate whose free variables are from X and which states what 
are the possible valuations for those variables when the control of the hybrid 
system is in l; 
      -Flow(l) is a predicate whose free variables are from X∪X• and which states 

what are the possible continuous evolutions when the control of the hybrid 
system is in location l.

• Jump is a function that assigns to each labelled edge a predicate whose free 
variables are from X∪X’. Jump(e) states when the discrete change modeled by e 

is possible and what are the possible updates of the variables when the hybrid 
system makes the discrete change. 



HA, Semantics
• The LTS=(S,S0,Σ,→) of a HA H=(Loc,Edge,Σ,X,Init,Flow,Jump) is defined as 

follows:

• S is the set of pairs (l,v) where l∈Loc, v∈[X→R] such that v models Inv(l);

• S0 ⊆ S such that (l,v) ∈ S0 if v models Init(l);

• the transitions are either:

• discrete: for each edge (l,σ,l’)∈Edge, (l,v)→σ(l’,v’) iff (l,v), (l’,v’) ∈S, and 

(v,v’) models Jump(e).

• continuous: for each nonnegative real δ, we have (l,v)→δ(l’,v’) iff l=l’ and 
there is a differentiable function f:[0,δ]→Rn, such that the three following 
conditions holds: (1) f(0)=v, (2) f(δ)=v’, (3) for all reals ε ∈ (0,δ): f(ε) 

models Inv(l), and (f(ε),f•(ε)) models Flow(l).



Model Checker

HA Model Property

Conditions under which a 
property is verified

Exhaustive search of the state space

What we would like to do...



• Difficult problem: 

• we do not have general methods to solve differential equations;

• the interplay between discrete and continuous transitions make the analysis of 
those systems difficult (problems are usually undecidable);

• the number of reachable states is uncountable, we must use symbolic methods.

• ... We concentrate on subclasses that are interesting in practice (reactangular HA, for 
example).

• ... We define approximated analysis methods (abstract interpretation).



Rectangular HA

• Rect(X) ∋ Φ1,Φ2

:=True, False, x ∈ I, Φ1∧Φ2

where x∈X, and I is an interval with rational bounds.

• UpdateRect(X,X’) ∋ Φ1,Φ2

:=True, False, x ∈ I, x’ ∈ I, x’=x, Φ1∧Φ2

where x∈X, x’∈X’, and I is an interval with rational bounds

• An hybrid automaton H=(Loc,Edge,Σ,X,Init,Flow,Jump) is 
rectangular iff for any location l ∈ Loc, Init(l), Inv(l) are in 

Rect(X), for any edge e ∈ Edge, Jump(e) is in UpdateRect(X,X’), 

and for any location , Flow(l) is in Rect(X•).
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Demo HyTech



Conclusion

• Timed and hybrid automata are well-suited 
models for embedded systems;

• Towards a model based methodology for the 
development of safety critical embedded 
controllers.

• In the second lecture, we will see the 
foundations for the analysis of timed models.


