
Second Lecture:
Basics of model-checking for

finite and timed systems
Jean-François Raskin

Université Libre de Bruxelles
Belgium

Artist2 Asian Summer School - Shanghai - July 2008

Plan of the talk

• Labelled transition systems

• Properties of labeled transition systems:
Reachability - Safety - Büchi properties

• Pre-Post operators

• Partial orders - Fixed points

• Symbolic model-checking

• Application to TA: region equivalence, region automata,
zones

Plan of the talk

• Labelled transition systems

• Properties of labeled transition systems:
Reachability - Safety - Büchi properties

• Pre-Post operators

• Partial orders - Fixed points

• Symbolic model-checking

• Application to TA: region equivalence, region automata,
zones

Labeled transition systems

• A labeled transition system, LTS for short, is a
tuple (S,S0,Σ,T,C,λ) where:

• S is a (finite or infinite) set of states

• S0 ⊆ S is the subset of initial states

• Σ is an event or action set (finite or infinite)

• C is a (finite or infinite) set of colors

• λ : S → C is a labeling function that labels each
state with a color.

a

a

a a a

a a a

a

a a a

a aa

c

b

b b b

b
a

bb b

b b b
ac

c

d
c

d

A labelled transition system:

a

Plan of the talk

• Labelled transition systems

• Properties of labeled transition systems:
Reachability - Safety - Büchi properties

• Pre-Post operators

• Partial orders - Fixed points

• Symbolic model-checking

• Application to TA: region equivalence, region automata,
zones

• Reachability verification problem

Instance: a LTS (S,S0,Σ,T,C,λ), a set Goal⊆ S.
Question: is there an execution of the LTS that starts in S0 and reaches Goal ?
More formally, is there a sequence s0σ0s1σ1s2σ2...σn-1sn such that
(1) s0 ∈ S0, (2) ∀i ·0≤i<n ·T(si,σi,si+1), and (3) sn ∈ Goal ?

• The set of reachable states of a LTS (S,S0,Σ,T,C,λ) is the set of states s ∈ S
such that
 there is a sequence s0σ0s1σ1s2σ2...σn-1sn
 and (1) s0 ∈ S0, (2) ∀i ·0≤i<n ·T(si,σi,si+1), (3) sn=s.

Let Reach(S0) denote the set of reachable states.

• Clearly, there is a path that starts in S0 and reaches G iff Reach(S0)∩Goal≠∅.

Reachability

Reachability

S0

Reachability
Goal

S0

Reachability
Goal

S0

Reach(S0)

Reachability
Goal

Negative
instance

S0

Reach(S0)

Reachability
Goal

S0

Reach(S0)

Reachability
Goal

Positive
instance

S0

Reach(S0)

• Safety verification problem

Instance: a LTS (S,S0,Σ,T,C,λ), a set of states Safe ⊆ S.
Question: are all paths that starts in S0 staying within Safe.
More formally, for all sequences s0σ0s1σ1s2σ2...σn-1sn such that
(1) s0 ∈ S0, (2) ∀i ·0≤i<n ·T(si,σi,si+1),
is it the case that (3) ∀i ·0≤i≤n ·si ∈ Safe ?

• Clearly all paths that start in S0 are staying within Safe
iff Reach(S0)∩(S\Safe)=∅.

• So, the safety and reachability problems are dual problems.

Safety

Safety

S0

Safety
Safe Bad

S0

Safety
Bad

Reach(S0)

S0

Safe

Safety
Bad

Positive
instance

S0

Reach(S0)

Safe

Safety
Bad

S0

Reach(S0)

Safe

Safety
Bad

Negative
instance

S0

Reach(S0)

Safe

Büchi condition

• Büchi verification problem

Instance: a LTS (S,S0,Σ,T,C,λ), a set Goal ⊆ S.
Question: is there one execution of the LTS that starts in S0 and
passes infinitely often by the set Goal ⊆ S ?
More formally, is there an execution s0σ0s1σ1s2σ2...σn-1sn... such that
 (1) s0 ∈ S0,
 (2) ∀i ·0≤i ·T(si,σi,si+1),
 (3) ∀i≥0 ·∃j≥i such that sj ∈ Goal ?

Büchi condition
Goal

Init

...

...

Plan of the talk

• Labelled transition systems

• Properties of labeled transition systems:
Reachability - Safety - Büchi properties

• Pre-Post operators

• Partial orders - Fixed points

• Symbolic model-checking

• Application to TA: region equivalence, region automata,
zones

Post, Pre and Apre operators

• We will design verification algorithms for the
reachability, safety and Büchi properties.

• Our algorithms will manipulate sets of
states.

• Besides set operations, we will need to
compute the set of states that are successors
(Post), or predecessors (Pre and Apre) of a set
of states.

The Post : 2S × Σ → 2S
takes (1) a set of states X
 (2) an action σ
and returns the set of successors of X by σ

Post(X,σ)={ y ∈ X | ∃ x ∈ X ·T(x,σ,y) }

a

a

a

aa

c

b b

a

bb

b b

a

c

c

a

The Post : 2S × Σ → 2S
takes (1) a set of states X
 (2) an action σ
and returns the set of successors of X by σ

Post(X,σ)={ y ∈ X | ∃ x ∈ X ·T(x,σ,y) }

a

a

a

aa

c

b b

a

bb

b b

a

c

c

a

Post(X,b)=

The Post : 2S × Σ → 2S
takes (1) a set of states X
 (2) an action σ
and returns the set of successors of X by σ

Post(X,σ)={ y ∈ X | ∃ x ∈ X ·T(x,σ,y) }

a

a

a

aa

c

b b

a

bb

b b

a

c

c

a

Post(X,b)=

The Post : 2S × Σ → 2S
takes (1) a set of states X
 (2) an action σ
and returns the set of successors of X by σ

Post(X,σ)={ y ∈ X | ∃ x ∈ X ·T(x,σ,y) }

a

a

a

aa

c

b b

a

bb

b b

a

c

c

a

Post(X,b)=Y

The Post : 2S × Σ → 2S
takes (1) a set of states X
 (2) an action σ
and returns the set of successors of X by σ

Post(X,σ)={ y ∈ X | ∃ x ∈ X ·T(x,σ,y) }

The Pre : 2S × Σ → 2S
takes (1) a set of states X
 (2) an action σ
and returns the set of predecessors of X by σ

Pre(X,σ)={ y ∈ S | ∃ x ∈ X ·T(y,σ,x) }

a

a

a

aa

c

b b

a

bb

b b

a

c

c

a

The Pre : 2S × Σ → 2S
takes (1) a set of states X
 (2) an action σ
and returns the set of predecessors of X by σ

Pre(X,σ)={ y ∈ S | ∃ x ∈ X ·T(y,σ,x) }

a

a

a

aa

c

b b

a

bb

b b

a

c

c

a

Pre(X,b)=

The Pre : 2S × Σ → 2S
takes (1) a set of states X
 (2) an action σ
and returns the set of predecessors of X by σ

Pre(X,σ)={ y ∈ S | ∃ x ∈ X ·T(y,σ,x) }

a

a

a

aa

c

b b

a

bb

b b

a

c

c

a

Pre(X,b)=

The Pre : 2S × Σ → 2S
takes (1) a set of states X
 (2) an action σ
and returns the set of predecessors of X by σ

Pre(X,σ)={ y ∈ S | ∃ x ∈ X ·T(y,σ,x) }

a

a

a

aa

c

b b

a

bb

b b

a

c

c

a

Pre(X,b)=Y

The Pre : 2S × Σ → 2S
takes (1) a set of states X
 (2) an action σ
and returns the set of predecessors of X by σ

Pre(X,σ)={ y ∈ S | ∃ x ∈ X ·T(y,σ,x) }

The Apre : 2S × Σ → 2S
takes (1) a set of states X
 (2) an action σ
and returns the set of states that have all their successors by σ in X

Apre(X,σ)={ x ∈ S | ∀ y ∈ S ·T(x,σ,y) ⇒ y ∈ X }

a

a

a

aa

c

b a

a

bb

a b

a

c

c

a

The Apre : 2S × Σ → 2S
takes (1) a set of states X
 (2) an action σ
and returns the set of states that have all their successors by σ in X

Apre(X,σ)={ x ∈ S | ∀ y ∈ S ·T(x,σ,y) ⇒ y ∈ X }

a

a

a

aa

c

b a

a

bb

a b

a

c

c

a

Apre(X,a)

The Apre : 2S × Σ → 2S
takes (1) a set of states X
 (2) an action σ
and returns the set of states that have all their successors by σ in X

Apre(X,σ)={ x ∈ S | ∀ y ∈ S ·T(x,σ,y) ⇒ y ∈ X }

a

a

a

aa

c

b a

a

bb

a b

a

c

c

a

Apre(X,a)

The Apre : 2S × Σ → 2S
takes (1) a set of states X
 (2) an action σ
and returns the set of states that have all their successors by σ in X

Apre(X,σ)={ x ∈ S | ∀ y ∈ S ·T(x,σ,y) ⇒ y ∈ X }

a

a

a

aa

c

b a

a

bb

a b

a

c

c

a

Apre(X,a)=Y

The Apre : 2S × Σ → 2S
takes (1) a set of states X
 (2) an action σ
and returns the set of states that have all their successors by σ in X

Apre(X,σ)={ x ∈ S | ∀ y ∈ S ·T(x,σ,y) ⇒ y ∈ X }

From the Pre : 2S × Σ → 2S, the Post : 2S × Σ → 2S, and the Apre : 2S × Σ → 2S, we can define
their generalizations over the entire alphabet of actions:

The POST : 2S → 2S takes a set of states X and returns the set of states Y that are reachable in
one step from X, i.e. :

POST(X)={ y ∈ S | ∃ x ∈ X·∃ σ ∈ Σ ·T(x,σ,y) }

The PRE : 2S → 2S takes a set of states X and returns the set of states Y that can reach X in one
step, i.e. :

PRE(X)={ y ∈ S | ∃ x ∈ X·∃ σ ∈ Σ ·T(y,σ,x) }

The APRE: 2S → 2S takes a set of states X and returns the set of states Y that have all their one
step successors in X, i.e. :

APRE(X)={ y ∈ S | ∀ x ∈ S·∀ σ ∈ Σ ·T(y,σ,x) ⟹ x ∈ X }

Exercise : proof that APRE(X)=S\PRE(S\X).

PRE-POST-APRE

a

a

a

aa

c

b b

a

bb

b b

a

c

c

a

POST(X)=

a

a

a

aa

c

b b

a

bb

b b

a

c

c

a

POST(X)=

a

a

a

aa

c

b b

a

bb

b b

a

c

c

a

POST(X)=Y

a

a

a

aa

c

b b

a

bb

b b

a

c

c

a

PRE(X)=

a

a

a

aa

c

b b

a

bb

b b

a

c

c

a

PRE(X)=

a

a

a

aa

c

b b

a

bb

b b

a

c

c

a

PRE(X)=Y

a

a

a

aa

c

b b

a

bb

b b

a

c

c

a

APRE(X)=

a

a

a

aa

c

b b

a

bb

b b

a

c

c

a

APRE(X)=

a

a

a

aa

c

b b

a

bb

b b

a

c

c

a

APRE(X)=Y

How can we use the POST operator to solve the following reachability question:
Can we reach the blue states from initial states ?

a

a

a a a

a a a

a

a a a

a aa

c

b

b b b

b
a

bb b

b b b
ac

c

d
c

d
a

How can we use the POST operator to solve the following reachability question:
Can we reach the blue states from initial states ?
... By iterating the POST operator !

a

a

a a a

a a a

a

a a a

a aa

c

b

b b b

b
a

bb b

b b b
ac

c

d
c

d
a

a

a

a a a

a a a

a

a a a

a aa

c

b

b b b

b
a

bb b

b b b
ac

c

d
c

d
a

0 step

How can we use the POST operator to solve the following reachability question:
Can we reach the blue states from initial states ?
... By iterating the POST operator !

a

a

a a a

a a a

a

a a a

a aa

c

b

b b b

b
a

bb b

b b b
ac

c

d
c

d
a

0 or1 step

How can we use the POST operator to solve the following reachability question:
Can we reach the blue states from initial states ?
... By iterating the POST operator !

a

a

a a a

a a a

a

a a a

a aa

c

b

b b b

b
a

bb b

b b b
ac

c

d
c

d
a

0,1, 2 steps

How can we use the POST operator to solve the following reachability question:
Can we reach the blue states from initial states ?
... By iterating the POST operator !

a

a

a a a

a a a

a

a a a

a aa

c

b

b b b

b
a

bb b

b b b
ac

c

d
c

d
a

0,1, 2, 3 steps

How can we use the POST operator to solve the following reachability question:
Can we reach the blue states from initial states ?
... By iterating the POST operator !

a

a

a a a

a a a

a

a a a

a aa

c

b

b b b

b
a

bb b

b b b
ac

c

d
c

d
a

0,1, 2, 3, 4 steps

How can we use the POST operator to solve the following reachability question:
Can we reach the blue states from initial states ?
... By iterating the POST operator !

a

a

a a a

a a a

a

a a a

a aa

c

b

b b b

b
a

bb b

b b b
ac

c

d
c

d
a

0,1, 2, 3, 4, 5 steps

How can we use the POST operator to solve the following reachability question:
Can we reach the blue states from initial states ?
... By iterating the POST operator !

a

a

a a a

a a a

a

a a a

a aa

c

b

b b b

b
a

bb b

b b b
ac

c

d
c

d
a

0,1, 2, 3, 4, 5, 6 steps

How can we use the POST operator to solve the following reachability question:
Can we reach the blue states from initial states ?
... By iterating the POST operator !

a

a

a a a

a a a

a

a a a

a aa

c

b

b b b

b
a

bb b

b b b
ac

c

d
c

d
a

0,1, 2, 3, 4, 5, 6, ∞ steps - we have reached a fixed point

How can we use the POST operator to solve the following reachability question:
Can we reach the blue states from initial states ?
... By iterating the POST operator !

Plan of the talk

• Labelled transition systems

• Properties of labeled transition systems:
Reachability - Safety - Büchi properties

• Pre-Post operators

• Partial orders - Fixed points

• Symbolic model-checking

• Application to TA: region equivalence, region automata,
zones

Partial orders

• Let S be a set. A partial order over S is a relation ≤⊆S×S such that the
following properties hold:
 (i) reflexivity: ∀s∈S: s≤s,
 (ii) transitivity: ∀s1,s2,s3∈S: s1≤s2∧ s2≤s3→s1≤s3,
 (iii) antisymmetry: ∀s1,s2∈S: s1≤s2∧ s2≤s1→s1=s2.

• A pair (S,≤) such that ≤ is a partial order over S is called a partially
ordered set.

• Let T be a set, we note P(T) for the set of subsets of T. Example: if T={t1,t2,t3}
then P(T)={{},{t1},{t2},{t3},{t1,t2},{t2,t3},{t1,t3},{t1,t2,t3}}. Clearly, for any set T,
(P(T),⊆) is a partially ordered set.

Graphical representation of P(T)

⊆

(P(T), ⊆) is a partially ordered set:
⊆ is reflexive: {} ⊆ {}, {t1}⊆{t1},..., {t1,t2}⊆{t1,t2}, ...
⊆ is transitive: {t1}⊆{t1,t2}∧{t1,t2}⊆{t1,t2,t3}→{t1}⊆{t1,t2,t3}
and clearly, ⊆ is antisymmetric.

Lower and upper bounds

• Let (S,≤) be a partially ordered set. Let s∈S and S’⊆S,
 s is a lower-bound of S’ iff ∀s’∈S’⋅s≤s’.
 s is a upper-bound of S’ iff ∀s’∈S’⋅s’≤s.

• Let s be lower-bound for S’, we say that s is the greatest lower-
bound (glb) for S’ iff for all lower-bound s’ for S’, we have s’≤s. We
note glb(S’) the glb of S’ it it exists.

• Let s be upper-bound for S’, we say that s is the least upper-bound
(lub) for S’ iff for all upper-bound s’ for S’, we have s≤s’. We note
lub(S’) the lub of S’ it it exists.

R=

r1=

r2=

r3=

➭ r1 and r2 are upper bounds of R.

➭ r2 is the least upper bound of R.

➭ r3 is the only lower-bound of R and so it is
the greatest lower bound of R.

R=

The lub of a set of sets Ri is equal to ∪i Ri

ex: lub R = {t1,t2,t3}

The glb of a set of sets Ri is equal to ∩i Ri

ex: glb R = {t3}

A set of elements S’⊆S is a chain
iff

∀s,s’∈S’⋅s≤s’∨s’≤s
i.e. all pairs of elements are ordered by ≤

(increasing sequence of elements).

R={{},{t1},{t1,t2}} is a chain in P(T).
R’={{},{t1,t3}} is a chain in P(T).
R’’= {{},{t1,t3},{t2,t3}} is not a chain in P(T).

• A partially ordered set (S,≤) is a complete partial order
if every chain in S has a lub in S.

• A complete partial order (S,≤) is a complete lattice
if every subset S’ of S has a lub in (S,≤).

• Note that glb S’= lub{s∈S|∀s’∈S: s≤s’}, so every subset S’ in a
complete lattice has also a glb.

• Example: (P(T),⊆) is a complete lattice. Indeed, remember that the lub
of a set of sets Ri is equal to ∪i Ri and the glb of a set of sets Ri is equal
to ∩i Ri.

The maximal element of P(T),
i.e. the least upper-bound of P(T),

noted Max(P(T)).
The minimal element of P(T),

i.e. the greatest lower-bound of P(T),
noted Min(P(T)).

Min and Max elements in a complete lattice

• Let (S,≤) be a partially ordered set. A function f:S→S is monotone
(order preserving) iff ∀s,s’∈S⋅s≤s’→f(s)≤f(s’).

• Let (S,≤) be a complete partially ordered set. A function f:S→S is
continuous iff f is monotone and for all non-empty chain S’ in S:

f(lub(S’))=lub(f(S’)).

Remark. In any finite complete partially ordered set S, if f is monotone
then f is continuous.

• s∈S is a fixed point of f:S→S if f(s)=s. The set of fixed points of f is
noted Fx(f).

• Theorem (Tarski) Any monotone function on a complete lattice
has a:
 (i) least fixed point, lfp(f), equal to glb(Fx(f))
 (ii) greatest fixed point, gfp(f), equal to lub(Fx(f))

Let us consider f as depicted by red arrows

Clearly, f is monotone (and so continuous).

 Fx(f)={{t1,t3},{t1,t2,t3}}.
 lfp(f)={t1,t3}=glb(Fx(f)).
 gfp(f)={t1,t2,t3}=lub(Fx(f)).

S

Fx(f)

glb(Fx(f))
=lfp(f)

lub(Fx(f))
=gfp(f)

• Let fi be defined inductively as
 - for i=0: f0=f
 - for all i>0: fi=f(fi-1).

• Theorem (Kleene-Tarski) Let (S,≤) be a complete lattice, let f:S→S
be a continuous:
 lfp(f)=glb { fi(Min(S)) | i≥0 } and
 gfp(f)=lub { fi(Max(S)) | i≥0 }.

• This gives us an iterative schema to compute the lfp(f) (gfp(f)) of
a continuous function f:

➱ iterate the function from the Min (Max) of the set until
stabilization.

S

Fx(f)

glb(Fx(f))
=lfp(f)

lub(Fx(f))
=gfp(f)

Max(S)

Min(S)

...

...

Computation of lfp(f)

f0({})={t1,t2}
f1({})=f({t1,t2})={t1,t2}=lfp(f)

Computation of gfp(f)

R0=f0({t1,t2,t3})={t1,t2,t3}=gfp(f)

Plan of the talk

• Labelled transition systems

• Properties of labeled transition systems:
Reachability - Safety - Büchi properties

• Pre-Post operators

• Partial orders - Fixed points

• Symbolic model-checking

• Application to TA: region equivalence, region automata,
zones

Symbolic model-checking

• The reachability, safety, and Büchi objectives can be
solved using fixed point equations.

• Solving those equations will be done by iteration of
functions built from the Pre, Apre or Post
operators on sets of states.

• Those algorithms are called symbolic because they
manipulate sets of states directly instead of
manipulating individual states as it is done in so-
called explicit model-checking algorithms.

Fixed points for reachability

• Let us consider an instance of the reachability
problem given by the LTS L=(S,S0,Σ,T,C,λ), and a set of
states Goal ⊆ S;

• Goal is reachable in the LTS

iff lfp (λX. S0 ∪ POST(X)) ∩ Goal≠∅
 this is a forward algorithm

iff lfp (λX. Goal ∪ PRE(X)) ∩ S0≠∅
 this is a backward algorithm

a

a

a a a

a a a

a

a a a

a aa

c

b

b b b

b
a

bb b

b b b
ac

c

d
c

d
a

Reachability - Forward algorithm
lfp (λX. S0 ∪ POST(X)) ∩ Goal≠∅

a

a

a a a

a a a

a

a a a

a aa

c

b

b b b

b
a

bb b

b b b
ac

c

d
c

d
a

Iterative evaluation of lfp (λX. S0 ∪ POST(X))

a

a

a a a

a a a

a

a a a

a aa

c

b

b b b

b
a

bb b

b b b
ac

c

d
c

d
a

Iterative evaluation of lfp (λX. S0 ∪ POST(X))

a

a

a a a

a a a

a

a a a

a aa

c

b

b b b

b
a

bb b

b b b
ac

c

d
c

d
a

Iterative evaluation of lfp (λX. S0 ∪ POST(X))

a

a

a a a

a a a

a

a a a

a aa

c

b

b b b

b
a

bb b

b b b
ac

c

d
c

d
a

Iterative evaluation of lfp (λX. S0 ∪ POST(X))

a

a

a a a

a a a

a

a a a

a aa

c

b

b b b

b
a

bb b

b b b
ac

c

d
c

d
a

Iterative evaluation of lfp (λX. S0 ∪ POST(X))

a

a

a a a

a a a

a

a a a

a aa

c

b

b b b

b
a

bb b

b b b
ac

c

d
c

d
a

Iterative evaluation of lfp (λX. S0 ∪ POST(X))

a

a

a a a

a a a

a

a a a

a aa

c

b

b b b

b
a

bb b

b b b
ac

c

d
c

d
a

Iterative evaluation of lfp (λX. S0 ∪ POST(X))

a

a

a a a

a a a

a

a a a

a aa

c

b

b b b

b
a

bb b

b b b
ac

c

d
c

d
a

Iterative evaluation of lfp (λX. S0 ∪ POST(X))

Fixed point !

a

a

a a a

a a a

a

a a a

a aa

c

b

b b b

b
a

bb b

b b b
ac

c

d
c

d
a

Iterative evaluation of lfp (λX. S0 ∪ POST(X))

Fixed point ! It intersects Goal ! Positive instance.

a

a

a a a

a a a

a

a a a

a aa

c

b

b b b

b
a

bb b

b b b
ac

c

d
c

d
a

Reachability - Backward algorithm
lfp (λX. Goal ∪ PRE(X)) ∩ S0≠∅

a

a

a a a

a a a

a

a a a

a aa

c

b

b b b

b
a

bb b

b b b
ac

c

d
c

d
a

Iterative evaluation of lfp (λX. Goal ∪ PRE(X)) ∩ S0≠∅

a

a

a a a

a a a

a

a a a

a aa

c

b

b b b

b
a

bb b

b b b
ac

c

d
c

d
a

Iterative evaluation of lfp (λX. Goal ∪ PRE(X)) ∩ S0≠∅

a

a

a a a

a a a

a

a a a

a aa

c

b

b b b

b
a

bb b

b b b
ac

c

d
c

d
a

Iterative evaluation of lfp (λX. Goal ∪ PRE(X)) ∩ S0≠∅

a

a

a a a

a a a

a

a a a

a aa

c

b

b b b

b
a

bb b

b b b
ac

c

d
c

d
a

Iterative evaluation of lfp (λX. Goal ∪ PRE(X)) ∩ S0≠∅

a

a

a a a

a a a

a

a a a

a aa

c

b

b b b

b
a

bb b

b b b
ac

c

d
c

d
a

Iterative evaluation of lfp (λX. Goal ∪ PRE(X)) ∩ S0≠∅

a

a

a a a

a a a

a

a a a

a aa

c

b

b b b

b
a

bb b

b b b
ac

c

d
c

d
a

a

a

a a a

a a a

a

a a a

a aa

c

b

b b b

b
a

bb b

b b b
ac

c

d
c

d
a

Iterative evaluation of lfp (λX. Goal ∪ PRE(X)) ∩ S0≠∅

a

a

a a a

a a a

a

a a a

a aa

c

b

b b b

b
a

bb b

b b b
ac

c

d
c

d
a

Iterative evaluation of lfp (λX. Goal ∪ PRE(X)) ∩ S0≠∅

Fixed point ! It intersects S0 ! Positive instance.

a

a

a a a

a a a

a

a a a

a aa

c

b

b b b

b
a

bb b

b b b
ac

c

d
c

d
a

Safety - Backward algorithm
S0 ⊆ gfp (λX. Safe ∩ APRE(X))

a

a

a a a

a a a

a

a a a

a aa

c

b

b b b

b
a

bb b

b b b
ac

c

d
c

d
a

Iterative evaluation of gfp (λX. Safe ∩ APRE(X))

a

a

a a a

a a a

a

a a a

a aa

c

b

b b b

b
a

bb b

b b b
ac

c

d
c

d
a

Iterative evaluation of gfp (λX. Safe ∩ APRE(X))

a

a

a a a

a a a

a

a a a

a aa

c

b

b b b

b
a

bb b

b b b
ac

c

d
c

d
a

Iterative evaluation of gfp (λX. Safe ∩ APRE(X))

a

a

a a a

a a a

a

a a a

a aa

c

b

b b b

b
a

bb b

b b b
ac

c

d
c

d
a

Iterative evaluation of gfp (λX. Safe ∩ APRE(X))

Fixed point ! Negative instance as S0 ⊈ gfp (λX. Safe ∩ APRE(X)).

Fixed points for Büchi objectives

• Let consider an instance of the Büchi verification
problem given by the LTS L=(S,S0,Σ,T,C,λ), a set of states
Goal ⊆ S;

• Goal is reachable infinitely often from an initial states in L

iff

gfp(λY. lfp(λX. PRE(X) ∪ (Goal ∩ PRE(Y)))) ∩ S0≠∅
 this is a backward algorithm

a

a a

a

b

b

1 2

34

5

Fixed points for Büchi objectives

a

a a

a

b

b

1 2

34

5

Fixed points for Büchi objectives

We want to check if {3} can be reached
infinitely often from the initial state.

a

a a

a

b

b

1 2

34

5

Fixed points for Büchi objectives

We want to check if {3} can be reached
infinitely often from the initial state.

For that we evaluate the fixed point expression
gfp(λY. lfp(λX. PRE(X) ∪ (Goal ∩ PRE(Y))))

a

a a

a

b

b

1 2

34

5

Fixed points for Büchi objectives

We want to check if {3} can be reached
infinitely often from the initial state.

For that we evaluate the fixed point expression
gfp(λY. lfp(λX. PRE(X) ∪ (Goal ∩ PRE(Y))))

Y0={1,2,3,4,5}

a

a a

a

b

b

1 2

34

5

Fixed points for Büchi objectives

We want to check if {3} can be reached
infinitely often from the initial state.

For that we evaluate the fixed point expression
gfp(λY. lfp(λX. PRE(X) ∪ (Goal ∩ PRE(Y))))

Y0={1,2,3,4,5} lfp(λX. PRE(X) ∪ (Goal ∩ PRE(Y0)))
= lfp(λX. PRE(X) ∪ (Goal))
={1,2,3}=Y1

a

a a

a

b

b

1 2

34

5

Fixed points for Büchi objectives

We want to check if {3} can be reached
infinitely often from the initial state.

For that we evaluate the fixed point expression
gfp(λY. lfp(λX. PRE(X) ∪ (Goal ∩ PRE(Y))))

Y0={1,2,3,4,5} lfp(λX. PRE(X) ∪ (Goal ∩ PRE(Y0)))
= lfp(λX. PRE(X) ∪ (Goal))
={1,2,3}=Y1

Y1={1,2,3}

a

a a

a

b

b

1 2

34

5

Fixed points for Büchi objectives

We want to check if {3} can be reached
infinitely often from the initial state.

For that we evaluate the fixed point expression
gfp(λY. lfp(λX. PRE(X) ∪ (Goal ∩ PRE(Y))))

Y0={1,2,3,4,5} lfp(λX. PRE(X) ∪ (Goal ∩ PRE(Y0)))
= lfp(λX. PRE(X) ∪ (Goal))
={1,2,3}=Y1

Y1={1,2,3} lfp(λX. PRE(X) ∪ (Goal ∩ PRE(Y1)))
= lfp(λX. PRE(X) ∪ (Goal ∩ {1,2,3}))
={1,2,3}=Y2=Y1

a

a a

a

b

b

1 2

34

5

Fixed points for Büchi objectives

We want to check if {3} can be reached
infinitely often from the initial state.

For that we evaluate the fixed point expression
gfp(λY. lfp(λX. PRE(X) ∪ (Goal ∩ PRE(Y))))

Y0={1,2,3,4,5} lfp(λX. PRE(X) ∪ (Goal ∩ PRE(Y0)))
= lfp(λX. PRE(X) ∪ (Goal))
={1,2,3}=Y1

Y1={1,2,3} lfp(λX. PRE(X) ∪ (Goal ∩ PRE(Y1)))
= lfp(λX. PRE(X) ∪ (Goal ∩ {1,2,3}))
={1,2,3}=Y2=Y1

Fixed point !

a

a a

a

b

b

1 2

34

5

Fixed points for Büchi objectives

We want to check if {3} can be reached
infinitely often from the initial state.

For that we evaluate the fixed point expression
gfp(λY. lfp(λX. PRE(X) ∪ (Goal ∩ PRE(Y))))

Y0={1,2,3,4,5} lfp(λX. PRE(X) ∪ (Goal ∩ PRE(Y0)))
= lfp(λX. PRE(X) ∪ (Goal))
={1,2,3}=Y1

Y1={1,2,3} lfp(λX. PRE(X) ∪ (Goal ∩ PRE(Y1)))
= lfp(λX. PRE(X) ∪ (Goal ∩ {1,2,3}))
={1,2,3}=Y2=Y1

Fixed point !

As S0 ∩ Y2 ≠ ∅, the Büchi property
is verified by the LTS L

Trace pre-orders, Trace equivalence, Simulations,
Bisimulations and quotients

Traces of a LTS

• Let (S,S0,Σ,T,C,λ) be a LTS. Let s0σ0s1σ1s2σ2...σn-1sn... be such
that (1) s0 ∈ S0, (2) ∀i ·0≤i·T(si,σi,si+1), the sequence

 λ(s0)σ0 λ(s1)σ1λ(s2)σ2...σn-1λ(sn)...

is called a trace of the LTS.

• Note that two different paths in the LTS may generate the
same trace.

• The color of a state is meant to model the important
properties of that state. So the notion of trace allows us to
concentrate on the important properties of the system.

• We note Traces(L) the set of traces generated by the LTS L.

• Two LTS L1 and L2 are trace equivalent if

 Traces(L1)=Traces(L2)

• Trace equivalence and verification.
If we have two LTS L1 and L2 such that Traces(L1)=Traces(L2),
and L2 is (much) smaller than L1, it may be very advantageous to
do verification on L2 instead on L1. As we will see L1 may be infinite
while L2 is finite. We will illustrate that with TA.

• Unfortunately, minimizing a system using the notion of trace
equivalence is costly computationally. We will introduce now
stronger notions of equivalence than are easier to compute.

Traces of a LTS

Simulation relations

Simulation relations

• Given a LTS (S,S0,Σ,T,C,λ), a simulation relation is a
relation R⊆S×S such that

for all (s1,s2) ∈ R :
(1) s1∈S0 iff s2∈S0

(2) λ(s1)=λ(s2)
(3) ∀σ∈Σ•∀s3∈S: T(s1,σ,s3)⟹∃s4∈S•T(s2,σ,s4)∧(s3,s4)∈R

Simulation relations

• Given a LTS (S,S0,Σ,T,C,λ), a simulation relation is a
relation R⊆S×S such that

for all (s1,s2) ∈ R :
(1) s1∈S0 iff s2∈S0

(2) λ(s1)=λ(s2)
(3) ∀σ∈Σ•∀s3∈S: T(s1,σ,s3)⟹∃s4∈S•T(s2,σ,s4)∧(s3,s4)∈R

• When (s1,s2) ∈ R, we say that s1 is simulated by s2.

Simulation relations

a a a a a

a b a ba b b

Simulation relations

a a a a a

a b a ba b

Who can simulate who ?

b

Simulation relations

a a a a a

a b a ba b

This is a simulation relation

b

Simulation relations

a a a a a

a b a ba b

Is this the largest one ?

b

Simulation relations

a a a a a

a b a ba b

Is this the largest one ? NO.

b

Simulation relations and
bisimulations

Simulation relations and
bisimulations

• Given a LTS (S,S0,Σ,T,C,λ), there exists a unique largest simulation
relation R⊆S×S;

Simulation relations and
bisimulations

• Given a LTS (S,S0,Σ,T,C,λ), there exists a unique largest simulation
relation R⊆S×S;

• A relation R⊆S×S is symmetric iff
for all s1,s2 such that R(s1,s2) we have also R(s2,s1);

Simulation relations and
bisimulations

• Given a LTS (S,S0,Σ,T,C,λ), there exists a unique largest simulation
relation R⊆S×S;

• A relation R⊆S×S is symmetric iff
for all s1,s2 such that R(s1,s2) we have also R(s2,s1);

• A simulation relation R which is symmetric is called a
bisimulation.

Simulation relations and
bisimulations

• Given a LTS (S,S0,Σ,T,C,λ), there exists a unique largest simulation
relation R⊆S×S;

• A relation R⊆S×S is symmetric iff
for all s1,s2 such that R(s1,s2) we have also R(s2,s1);

• A simulation relation R which is symmetric is called a
bisimulation.

• Given a bisimulation relation R and two states s1,s2 such that
R(s1,s2) (note that we have also R(s2,s1) by definition), we say that s1
and s2 are bisimilar, this is noted s1 ≈R s2 (or s1 ≈ s2 if R is clear
from the context).
The relation ≈R is an equivalence relation.

Bisimulation

a a a

a ba b b

Bisimulation

a a a

a ba b b

This is a bisimulation

Quotient of a LTS using
bisimulation

• Let L=(S,S0,Σ,T,C,λ) be a LTS, R⊆S×S be a bisimulation
relation over the state space of L, and let ≈R be the associated
equivalence relation.

• The quotient by ≈R of L is the LTS L≈=(S≈,S0≈,Σ,T≈,C,λ≈):
 ➢ S≈ are the equivalence classes for ≈R ;
 ➢ S0≈ are the equivalence classes s for ≈R

 such that for all s∈s, s∈S0 ;
 ➢ T≈ is such that T≈(s1,σ,s2) iff ∃s1∈s1, s2∈s2:T(s1,σ,s2) ;
 ➢ λ≈ is such that λ≈(s)=λ(s) for any s∈s.

• Theorem:
Let L be a LTS and R a bisimulation over the state space of L, let L≈

be the quotient of L by ≈R, then Traces(L)=Traces(L≈).

Quotient of a LTS using
bisimulation

a a a

a ba b b

The LTS

Quotient of a LTS using
bisimulation

a a a

a ba b b

The LTS

≈

≈ ≈

Quotient of a LTS using
bisimulation

a a a

a ba b b

The LTS

≈

≈ ≈

The quotient by ≈

Quotient of a LTS using
bisimulation

a a a

a ba b b

The LTS

≈

≈ ≈

The quotient by ≈

Quotient of a LTS using
bisimulation

a a a

a ba b b

The LTS

≈

≈ ≈

The quotient by ≈

Quotient of a LTS using
bisimulation

a a a

a ba b b a b

a aa

b

The LTS

≈

≈ ≈

The quotient by ≈

Bisimulation is not complete for
trace equivalence

a a a

a ba b b

The LTS

≈

≈ ≈

Clearly, the two initial states
 are trace equivalent

but they are not bisimilar.

Plan of the talk

• Labelled transition systems

• Properties of labeled transition systems:
Reachability - Safety - Büchi properties

• Pre-Post operators

• Partial orders - Fixed points

• Symbolic model-checking

• Application to TA: region equivalence, region automata,
zones

Algorithmic verification of
timed automata

• We will show now how to apply the concepts that
we have introduced so far to obtain algorithms to
verify properties of timed automata;

• We will show how to use the pre-post
operators to build fixed points algorithms;

• We will show that those algorithms are
terminating by showing that they operate over
finite state time-abstract bisimulation
quotients.

A timed automaton

Question: Can L3 be reached ?

A timed automaton

Question: Can L3 be reached ?

This question can be reduced to a reachability verification
problem over the labeled transition system of the TA.

Labeled transition system of a TA

• The LTS=(S,S0,Σ,T,C,λ) of a TA A=(Q,Q0,Σ,P,Cl,E,L,F,Inv), is as follows:

- S is the set of pairs (q,v) where q ∈ Q is a location of A and v : Cl →ℝ≥0 such that v ⊨ Inv(q);

- S0={(q0,<0,0,...0,>) | q0 ∈ Q0 };

- T ⊆ S x (Σ∪ℝ≥0) x S defined by two types of transitions:

 Discrete transitions:
(q1,v1)→a(q2,v2) ∈ T iff there exists (q1,a,Φ,Δ,q2) ∈ E, v1 ⊨ Φ, and v2:=v1[Δ:=0].
 Continuous transitions:
(q1,v1)→δ(q2,v2) ∈ T iff q1=q2, δ∈ℝ≥0, v2=v1+δ, and ∀δ’, 0≤δ’≤δ, v1+δ ⊨ Inv(q1).

- C=2P, λ((q,v))=L(q), for any (q,v)∈Q.

• Clearly, this transition system has a (continuous) infinite number of
states. How do we handle it ?

• The LTS=(S,S0,Σ,T,C,λ) of a TA A=(Q,Q0,Σ,P,Cl,E,L,F,Inv), is as follows:

- S is the set of pairs (q,v) where q ∈ Q is a location of A and v : Cl →ℝ≥0 such that v ⊨ Inv(q);

- S0={(q0,<0,0,...0,>) | q0 ∈ Q0 };

- T ⊆ S x (Σ∪{Delay}) x S defined by two types of transitions:

 Discrete transitions:
(q1,v1)→a(q2,v2) ∈ T iff there exists (q1,a,Φ,Δ,q2) ∈ E, v1 ⊨ Φ, and v2:=v1[Δ:=0].
 Continuous transitions:
(q1,v1)→Delay(q2,v2) ∈ T iff q1=q2, ∃δ∈ℝ≥0, v2=v1+δ, and ∀δ’, 0≤δ’≤δ, v1+δ ⊨ Inv(q1).

- C=2P, λ((q,v))=L(q), for any (q,v)∈Q.

• Clearly, this transition system has a (continuous) infinite number of
states. How do we handle it ?

Time abstract-labeled transition system

x

y

0
0

1

2

1

3

2 3 4

Continuous state space

x

y

0
0

1

2

1

3

2 3 4

Continuous state space

Are there valuations of clocks
that behaves in a similar way ?

x

y

0
0

1

2

1

3

2 3 4

Continuous state space

First, let us note that
clocks are compared to constants
(that are natural numbers).

x

y

0
0

1

2

1

3

2 3 4

Continuous state space

First, let us note that
clocks are compared to constants
(that are natural numbers).

Max. value over
which y is compared

Max. value over
which x is compared

x

y

0
0

1

2

1

3

2 3 4

Continuous state space

It is important to know if x or y
reach the next natural number first.

Max. value over
which y is compared

Max. value over
which x is compared

x

y

0
0

1

2

1

3

2 3 4

Continuous state space

This partition is fine enough

Max. value over
which y is compared

Max. value over
which x is compared

x

y

0
0

1

2

1

3

2 3 4

Continuous state space

This partition is fine enough

Max. value over
which y is compared

Max. value over
which x is compared

each triangle is a region

x

y

0
0

1

2

1

3

2 3 4

Continuous state space

This partition is fine enough

Max. value over
which y is compared

Max. value over
which x is compared

each segment is a region

x

y

0
0

1

2

1

3

2 3 4

Continuous state space

This partition is fine enough

Max. value over
which y is compared

Max. value over
which x is compared

each segment is a region

x

y

0
0

1

2

1

3

2 3 4

Continuous state space

This partition is fine enough

Max. value over
which y is compared

Max. value over
which x is compared

each segment is a region

x

y

0
0

1

2

1

3

2 3 4

Continuous state space

This partition is fine enough

Max. value over
which y is compared

Max. value over
which x is compared

each of those points
is a region

x

y

0
0

1

2

1

3

2 3 4

Continuous state space

This partition is fine enough

Max. value over
which y is compared

Max. value over
which x is compared

Time passing

x

y

0
0

1

2

1

3

2 3 4

Continuous state space

This partition is fine enough

Max. value over
which y is compared

Max. value over
which x is compared

Time passing

x

y

0
0

1

2

1

3

2 3 4

Continuous state space

This partition is fine enough

Max. value over
which y is compared

Max. value over
which x is compared

Reseting of y

x

y

0
0

1

2

1

3

2 3 4

Continuous state space

This partition is fine enough

Max. value over
which y is compared

Max. value over
which x is compared

Reseting of y

x
0

0

1

2

1 2

Continuous state space

This partition is fine enough

L1

x
0

0

1

2

1 2
L2

discrete transition
from L1 to L2

x
0

0

1

2

1 2

Continuous state space

This partition is fine enough

L1

x
0

0

1

2

1 2
L2

discrete transition
from L1 to L2

x
0

0

1

2

1 2

Continuous state space

This partition is fine enough

L1

x
0

0

1

2

1 2
L2

discrete transition
from L1 to L2 with

reset of y

x
0

0

1

2

1 2

Continuous state space

This partition is fine enough

L1

x
0

0

1

2

1 2
L2

discrete transition
from L1 to L2 with

reset of y

• For each variable x∈Cl, let cx be the largest constant with which x is
compared in the TA.
Two valuations v1,v2:Cl→ℝ≥0 are region equivalent, noted v1 ≈ v2 iff

• same integer parts:
for all x∈Cl, int(v1(x))=int(v2(x)), or v1(x)>cx and v2(x)>cx.

• same fractional ordering:
for all x,y∈Cl with v1(x)≤cx and v1(y)≤cy,
frac(v1(x)) ≤ frac(v1(y)) iff frac(v2(x)) ≤ frac(v2(y))

• same null fractional parts:
for all x,y∈Cl with v1(x)≤cx and v1(y)≤cy,
frac(v1(x))=0 iff frac(v2(x))=0

• Theorem: a Region is a set of valuations that are time abstract
bisimilar.

Region equivalence: formal definition

• The following theorem is the foundation
for the automatic verification of timed
automata.

• Theorem. Let A be a timed automaton, let
L be its time-abstract labeled transition
system, let L≈ be its quotient by the region
equivalence ≈, then L≈ is finite and L≈ is
trace equivalent to L.

Region equivalence quotient of the
time-abstract LTS

Post operations in the
time abstract LTS

• To construct “region based” bisimulation quotient of the time-
abstract LTS of a TA (or to compute on it), we must be able to compute
the transition relation between regions.

• We consider the two types of transitions that we find in the time-abstract
LTS of a TA:

• Discrete transitions that are associated to transition edges in the
timed automaton. Let (q1,a,Φ,Δ,q2) ∈ E:
(1) Note that given a region r and a guard Φ, all valuations v1,v2∈r is
such that v1⊨Φ iff v2⊨Φ.
(2) The effect of resetting a clock on a region r gives a region r’.

• Delay transitions. Given a region r, we can compute the set of
regions r’ that contains v+t for some v∈r and some t∈ℝ.

x

y

0
0

1

2

1

3

2 3 4

Continuous state space

Max. value over
which y is compared

Max. value over
which x is compared

The transitions of the time-abstract transition system
can be rephrased on the regions

x

y

0
0

1

2

1

3

2 3 4

Continuous state space

Max. value over
which y is compared

Max. value over
which x is compared

Reseting of y

The transitions of the time-abstract transition system
can be rephrased on the regions

x

y

0
0

1

2

1

3

2 3 4

Continuous state space

Max. value over
which y is compared

Max. value over
which x is compared

Reseting of y

The transitions of the time-abstract transition system
can be rephrased on the regions

x

y

0
0

1

2

1

3

2 3 4

Continuous state space

Max. value over
which y is compared

Max. value over
which x is compared

Time passing

The transitions of the time-abstract transition system
can be rephrased on the regions

x

y

0
0

1

2

1

3

2 3 4

Continuous state space

Max. value over
which y is compared

Max. value over
which x is compared

Time passing

The transitions of the time-abstract transition system
can be rephrased on the regions

TA and the
backward approach

• The region bisimulation is stable also
for the operations that explore the state
space in a backward fashion (Pre, Apre)

• ... and so, we can also use backward
algorithms to verify TA.

On the use of the region
equivalence to verify

reachability properties of TA

Forward reachability analysis on a
simple example

Question: Can L3 be reached ?

x

y

2

1

0
1 2 x

y

2

1

0
1 2 x

y

2

1

0
1 2

L0 L1 L2

Question: Can L3 be reached ?

x

y

2

1

0
1 2 x

y

2

1

0
1 2 x

y

2

1

0
1 2

L0 L1 L2

Question: Can L3 be reached ?

x

y

2

1

0
1 2 x

y

2

1

0
1 2 x

y

2

1

0
1 2

L0 L1 L2

Question: Can L3 be reached ?

x

y

2

1

0
1 2 x

y

2

1

0
1 2 x

y

2

1

0
1 2

L0 L1 L2

Question: Can L3 be reached ?

x

y

2

1

0
1 2 x

y

2

1

0
1 2 x

y

2

1

0
1 2

L0 L1 L2

Question: Can L3 be reached ?

x

y

2

1

0
1 2 x

y

2

1

0
1 2 x

y

2

1

0
1 2

L0 L1 L2

Question: Can L3 be reached ?

x

y

2

1

0
1 2 x

y

2

1

0
1 2 x

y

2

1

0
1 2

L0 L1 L2

Question: Can L3 be reached ?

x

y

2

1

0
1 2 x

y

2

1

0
1 2 x

y

2

1

0
1 2

L0 L1 L2

...

...

Question: Can L3 be reached ?

x

y

2

1

0
1 2 x

y

2

1

0
1 2 x

y

2

1

0
1 2

L0 L1 L2

...

...

Taking the transition from L1 to L2 does not add any new states, so we have reached a fixed point.

Zones

• The region equivalence gives rise to a finite quotient and
guaranties that our fixed point algorithms are terminating.

• Nevertheless, the number of region is exponential in the
number of clocks as well as in the binary encoding of
constants.

• To mitigate this state explosion phenomenon, we can use efficient
data-structure to represent convex unions of regions.
Zones are such a data-structure.

• Note that the reachability problem for timed automata is
complete for PSpace, so it is believed that the state explosion
is unavoidable in the worst case.

x

y

0
0

1

2

1

3

2 3 4

Zones

x≥1∧ x≤3 ∧ y≤ 3 ∧ y≥1 ∧ x-y≥-2 ∧ y-x≥1

Zones

• Let ℂ be a finite set of clocks, a zone is defined by a set of constraints
of the form:
 (1) x-y ∼ c where x,y ∈ ℂ and c ∈ ℤ.
 (2) x ∼ c where x ∈ ℂ and c ∈ ℤ.
and ∼ ∈ { ≤,<,=,>,≥ }.

• Zones are closed under the reseting operation, the forward and
backward time passing operations, and intersection.

• Unfortunately, zones are not closed under union nor
complementation. So implementations need to maintain lists of zones.

• Zones can be canonically represented by DBM
(=Difference Bound Matrices).

x

y

0
0

1

2

1

3

2 3 4

Zones

x≥1∧ x≤3 ∧ y≤ 3 ∧ y≥1 ∧ x-y≥-2 ∧ y-x≥1

x

y

0
0

1

2

1

3

2 3 4

Zones

Reseting of y: x≥1 ∧ x≤3 ∧ y=0

x

y

0
0

1

2

1

3

2 3 4

Zones

Conjunction with the guard: x≤2∧y≤3

x

y

0
0

1

2

1

3

2 3 4

Zones

Conjunction with the guard: x≤2∧y≤3

x

y

0
0

1

2

1

3

2 3 4

Zones

Conjunction with the guard: x≤2∧y≤3

x

y

0
0

1

2

1

3

2 3 4

Zones

Conjunction with the guard: x≤2∧y≤3

x

y

0
0

1

2

1

3

2 3 4

Zones

x≥1∧x≤2∧y≥1∧y≤3∧x-y≥-1

Decidability results for TA

Decidability results

• As a direct consequence of our previous developments, we
have that:

• The reachability verification problem for TA w.r.t. a
set Goal which is defined as a union of regions is
decidable.

• The safety verification problem for TA w.r.t. a set Safe
which is defined as a union of regions is decidable.

• The Büchi verification problem for TA w.r.t. a set Goal
which is defined as a union of regions is decidable.

Decidability results

• As the reachability verification problem for TA is decidable
then the timed language emptiness problem (finite
word case) is decidable for TA.

• As the Büchi verification problem for TA is decidable then the
timed language emptiness problem (infinite word
case) is decidable for TA.

Hint to establish the result: construct a set Goal that ensures
non-zenoness and the Büchi acceptance condition of the TA.
Show that this set is a finite union of regions. As an
intermediary step you will need a generalized Büchi condition.

Undecidability results for TA

Undecidability results for TA

• The timed universality problem, i.e. does a
TA accepts all possible timed words on a alphabet,
is undecidable.

• The language inclusion problem between
timed automata is undecidable. (direct
consequence of the previous undecidability result).

