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Labeled transition systems

• A labeled transition system, LTS for short, is a 
tuple (S,S0,Σ,T,C,λ) where:

• S is a (finite or infinite) set of states

• S0 ⊆ S is the subset of initial states

• Σ is an event or action set (finite or infinite)

• C is a (finite or infinite) set of colors

• λ : S → C is a labeling function that labels each 
state with a color.
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• Reachability verification problem

Instance: a LTS (S,S0,Σ,T,C,λ), a set Goal⊆ S.
Question: is there an execution of the LTS that starts in S0 and reaches Goal ? 
More formally, is there a sequence s0σ0s1σ1s2σ2...σn-1sn such that 
(1) s0 ∈ S0, (2) ∀i ·0≤i<n ·T(si,σi,si+1), and (3) sn ∈ Goal ? 

• The set of reachable states of a LTS (S,S0,Σ,T,C,λ) is the set of states s ∈ S 
such that 
    there is a sequence s0σ0s1σ1s2σ2...σn-1sn 
    and (1) s0 ∈ S0, (2) ∀i ·0≤i<n ·T(si,σi,si+1), (3) sn=s.

Let Reach(S0) denote the set of reachable states.

• Clearly, there is a path that starts in S0 and reaches G iff Reach(S0)∩Goal≠∅.

Reachability
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• Safety verification problem

Instance: a LTS (S,S0,Σ,T,C,λ), a set of states Safe ⊆ S.
Question: are all paths that starts in S0 staying within Safe. 
More formally, for all sequences s0σ0s1σ1s2σ2...σn-1sn such that 
(1) s0 ∈ S0, (2) ∀i ·0≤i<n ·T(si,σi,si+1), 
is it the case that (3) ∀i ·0≤i≤n ·si ∈ Safe ? 

• Clearly all paths that start in S0 are staying within Safe  
iff Reach(S0)∩(S\Safe)=∅.

• So, the safety and reachability problems are dual problems.

Safety



Safety

S0



Safety
Safe Bad

S0



Safety
Bad

Reach(S0)

S0

Safe



Safety
Bad

Positive 
instance

S0

Reach(S0)

Safe



Safety
Bad

S0

Reach(S0)

Safe



Safety
Bad

Negative 
instance

S0

Reach(S0)

Safe



Büchi condition

• Büchi verification problem

Instance: a LTS (S,S0,Σ,T,C,λ), a set Goal ⊆ S.
Question: is there one execution of the LTS that starts in S0 and 
passes infinitely often by the set Goal ⊆ S ? 
More formally, is there an execution s0σ0s1σ1s2σ2...σn-1sn... such that 
     (1) s0 ∈ S0, 
     (2) ∀i ·0≤i ·T(si,σi,si+1),
     (3) ∀i≥0 ·∃j≥i such that sj ∈ Goal ?
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Post, Pre and Apre operators

• We will design verification algorithms for the 
reachability, safety and Büchi properties.  

• Our algorithms will manipulate sets of 
states. 

• Besides set operations, we will need to 
compute the set of states that are successors 
(Post), or predecessors (Pre and Apre) of a set 
of states.



The Post : 2S × Σ → 2S 
takes (1) a set of states X
        (2) an action σ 
and returns the set of successors of X by σ

Post(X,σ)={ y ∈ X | ∃ x ∈ X ·T(x,σ,y) }
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The Post : 2S × Σ → 2S 
takes (1) a set of states X
        (2) an action σ 
and returns the set of successors of X by σ

Post(X,σ)={ y ∈ X | ∃ x ∈ X ·T(x,σ,y) }



The Pre : 2S × Σ → 2S 
takes (1) a set of states X
        (2) an action σ 
and returns the set of predecessors of X by σ

Pre(X,σ)={ y ∈ S | ∃ x ∈ X ·T(y,σ,x) }
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The Apre : 2S × Σ → 2S 
takes (1) a set of states X
        (2) an action σ 
and returns the set of states that have all their successors by σ in X

Apre(X,σ)={ x ∈ S | ∀ y ∈ S ·T(x,σ,y) ⇒ y ∈ X  }
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From the Pre : 2S × Σ → 2S, the Post : 2S × Σ → 2S, and the Apre : 2S × Σ → 2S,  we can define 
their generalizations over the entire alphabet of actions:

The POST : 2S → 2S takes a set of states X and returns the set of states Y that are reachable in 
one step from X, i.e. :

POST(X)={ y ∈ S | ∃ x ∈ X·∃ σ ∈ Σ ·T(x,σ,y) }

The PRE : 2S → 2S  takes a set of states X and returns the set of states Y that can reach X in one 
step, i.e. :

PRE(X)={ y ∈ S | ∃ x ∈ X·∃ σ ∈ Σ ·T(y,σ,x) }

The APRE: 2S → 2S takes a set of states X and returns the set of states Y that have all their one 
step successors in X, i.e. :

APRE(X)={ y ∈ S | ∀ x ∈ S·∀ σ ∈ Σ ·T(y,σ,x) ⟹ x ∈ X }

Exercise : proof that APRE(X)=S\PRE(S\X).

PRE-POST-APRE
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How can we use the POST operator to solve the following reachability question:
Can we reach the blue states from initial states ?
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How can we use the POST operator to solve the following reachability question:
Can we reach the blue states from initial states ?
... By iterating the POST operator !
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How can we use the POST operator to solve the following reachability question:
Can we reach the blue states from initial states ?
... By iterating the POST operator !
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How can we use the POST operator to solve the following reachability question:
Can we reach the blue states from initial states ?
... By iterating the POST operator !
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How can we use the POST operator to solve the following reachability question:
Can we reach the blue states from initial states ?
... By iterating the POST operator !
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How can we use the POST operator to solve the following reachability question:
Can we reach the blue states from initial states ?
... By iterating the POST operator !



a

a

a a a

a a a

a

a a a

a aa

c

b

b b b

b
a

bb b

b b b
ac

c

d
c

d
a

0,1, 2, 3, 4, 5 steps

How can we use the POST operator to solve the following reachability question:
Can we reach the blue states from initial states ?
... By iterating the POST operator !
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Can we reach the blue states from initial states ?
... By iterating the POST operator !
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How can we use the POST operator to solve the following reachability question:
Can we reach the blue states from initial states ?
... By iterating the POST operator !
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Partial orders

• Let S be a set.  A partial order over S is a relation ≤⊆S×S such that the 
following properties hold: 
 (i) reflexivity: ∀s∈S: s≤s, 
 (ii) transitivity: ∀s1,s2,s3∈S: s1≤s2∧ s2≤s3→s1≤s3, 
 (iii) antisymmetry: ∀s1,s2∈S: s1≤s2∧ s2≤s1→s1=s2.

• A pair (S,≤) such that ≤ is a partial order over S is called a partially 
ordered set.

• Let T be a set, we note P(T) for the set of subsets of T. Example: if T={t1,t2,t3} 
then P(T)={{},{t1},{t2},{t3},{t1,t2},{t2,t3},{t1,t3},{t1,t2,t3}}. Clearly, for any set T, 
(P(T),⊆) is a partially ordered set.



Graphical representation of P(T)

⊆

(P(T), ⊆) is a partially ordered set:
⊆ is reflexive: {} ⊆ {}, {t1}⊆{t1},..., {t1,t2}⊆{t1,t2}, ...
⊆ is transitive: {t1}⊆{t1,t2}∧{t1,t2}⊆{t1,t2,t3}→{t1}⊆{t1,t2,t3} 
and clearly, ⊆ is antisymmetric. 



Lower and upper bounds

• Let (S,≤) be a partially ordered set. Let s∈S and S’⊆S, 
 s is a lower-bound of S’ iff ∀s’∈S’⋅s≤s’. 
 s is a upper-bound of S’ iff ∀s’∈S’⋅s’≤s.

• Let s be lower-bound for S’, we say that s is the greatest lower-
bound (glb) for S’ iff for all lower-bound s’ for S’, we have s’≤s.  We 
note glb(S’) the glb of S’ it it exists. 

• Let s be upper-bound for S’, we say that s is the least upper-bound 
(lub) for S’ iff for all upper-bound s’ for S’, we have s≤s’.  We note 
lub(S’) the lub of S’ it it exists. 



R=

r1=

r2=

r3=

➭ r1 and r2 are upper bounds of R.

➭ r2 is the least upper bound of R.

➭ r3 is the only lower-bound of R and so it is 
the greatest lower bound of R.



R=

The lub of a set of sets Ri is equal to ∪i Ri

ex: lub R = {t1,t2,t3}

The glb of a set of sets Ri is equal to ∩i Ri

ex: glb R = {t3}



A set of elements S’⊆S is a chain 
iff 

∀s,s’∈S’⋅s≤s’∨s’≤s
i.e. all pairs of elements are ordered by ≤

(increasing sequence of elements).

R={{},{t1},{t1,t2}} is a chain in P(T). 
R’={{},{t1,t3}} is a chain in P(T).
R’’= {{},{t1,t3},{t2,t3}} is not a chain in P(T).



• A partially ordered set (S,≤) is a complete partial order
if every chain in S has a lub in S.

• A complete partial order (S,≤) is a complete lattice 
if every subset S’ of S has a lub in (S,≤).

• Note that glb S’= lub{s∈S|∀s’∈S: s≤s’}, so every subset S’ in a 
complete lattice has also a glb.

• Example: (P(T),⊆) is a complete lattice. Indeed, remember that the lub 
of a set of sets Ri is equal to ∪i Ri and the glb of a set of sets Ri is equal 
to ∩i Ri.



The maximal element of P(T), 
i.e. the least upper-bound of P(T),

noted Max(P(T)).
The minimal element of P(T), 

i.e. the greatest lower-bound of P(T),
noted Min(P(T)).

Min and Max elements in a complete lattice



• Let (S,≤) be a partially ordered set.  A function f:S→S is monotone 
(order preserving) iff ∀s,s’∈S⋅s≤s’→f(s)≤f(s’).

• Let (S,≤) be a complete partially ordered set.  A function f:S→S is 
continuous iff f is monotone and for all non-empty chain S’ in S: 

f(lub(S’))=lub(f(S’)).

Remark. In any finite complete partially ordered set S, if f is monotone 
then f is continuous.

• s∈S is a fixed point of f:S→S if f(s)=s.  The set of fixed points of f is 
noted Fx(f).

• Theorem (Tarski)  Any monotone function on a complete lattice 
has a: 
 (i) least fixed point, lfp(f), equal to glb(Fx(f))
 (ii) greatest fixed point, gfp(f), equal to lub(Fx(f))



Let us consider f as depicted by red arrows

Clearly, f is monotone (and so continuous).

 Fx(f)={{t1,t3},{t1,t2,t3}}.
 lfp(f)={t1,t3}=glb(Fx(f)).
 gfp(f)={t1,t2,t3}=lub(Fx(f)).
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• Let fi be defined inductively as 
 - for i=0: f0=f 
 - for all i>0: fi=f(fi-1).

• Theorem (Kleene-Tarski)  Let (S,≤) be a complete lattice, let f:S→S 
be a continuous: 
 lfp(f)=glb { fi(Min(S)) | i≥0 } and
 gfp(f)=lub { fi(Max(S)) | i≥0 }. 

• This gives us an iterative schema to compute the lfp(f) (gfp(f)) of 
a continuous function f: 

➱ iterate the function from the Min (Max) of the set until 
stabilization.
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glb(Fx(f))
=lfp(f)

lub(Fx(f))
=gfp(f)

Max(S)

Min(S)

...

...



Computation of lfp(f)

f0({})={t1,t2}
f1({})=f({t1,t2})={t1,t2}=lfp(f)



Computation of gfp(f)

R0=f0({t1,t2,t3})={t1,t2,t3}=gfp(f)
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Symbolic model-checking

• The reachability, safety, and Büchi objectives can be 
solved using fixed point equations.

• Solving those equations will be done by iteration of 
functions built from the Pre,  Apre or Post 
operators on sets of states.

• Those algorithms are called symbolic because they 
manipulate sets of states directly instead of 
manipulating individual states as it is done in so-
called explicit model-checking algorithms.



Fixed points for reachability

• Let us consider an instance of the reachability 
problem given by the LTS L=(S,S0,Σ,T,C,λ), and a set of 
states Goal ⊆ S;

• Goal is reachable in the LTS 

iff lfp (λX. S0 ∪ POST(X)) ∩ Goal≠∅
             this is a forward algorithm

iff lfp (λX. Goal ∪ PRE(X)) ∩ S0≠∅
             this is a backward algorithm
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lfp (λX. S0 ∪ POST(X)) ∩ Goal≠∅
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Iterative evaluation of lfp (λX. S0 ∪ POST(X))
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Fixed point !
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Fixed point ! It intersects Goal ! Positive instance.
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Reachability - Backward algorithm
lfp (λX. Goal ∪ PRE(X)) ∩ S0≠∅
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Fixed point ! It intersects S0 ! Positive instance.
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Safety - Backward algorithm
S0 ⊆ gfp (λX. Safe ∩ APRE(X))
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Iterative evaluation of  gfp (λX. Safe ∩ APRE(X))
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Fixed point ! Negative instance as S0 ⊈ gfp (λX. Safe ∩ APRE(X)).



Fixed points for Büchi objectives

• Let consider an instance of the Büchi verification 
problem given by the LTS L=(S,S0,Σ,T,C,λ), a set of states 
Goal ⊆ S;

• Goal is reachable infinitely often from an initial states in L 

iff 

gfp(λY. lfp(λX. PRE(X) ∪ ( Goal ∩ PRE(Y)))) ∩ S0≠∅
             this is a backward algorithm
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We want to check if {3} can be reached 
infinitely often from the initial state.
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Fixed points for Büchi objectives

We want to check if {3} can be reached 
infinitely often from the initial state.

For that we evaluate the fixed point expression
gfp(λY. lfp(λX. PRE(X) ∪ ( Goal ∩ PRE(Y))))
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Fixed points for Büchi objectives

We want to check if {3} can be reached 
infinitely often from the initial state.

For that we evaluate the fixed point expression
gfp(λY. lfp(λX. PRE(X) ∪ ( Goal ∩ PRE(Y))))

Y0={1,2,3,4,5}
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Fixed points for Büchi objectives

We want to check if {3} can be reached 
infinitely often from the initial state.

For that we evaluate the fixed point expression
gfp(λY. lfp(λX. PRE(X) ∪ ( Goal ∩ PRE(Y))))

Y0={1,2,3,4,5} lfp(λX. PRE(X) ∪ ( Goal ∩ PRE(Y0)))
= lfp(λX. PRE(X) ∪ ( Goal ))
={1,2,3}=Y1
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Fixed points for Büchi objectives

We want to check if {3} can be reached 
infinitely often from the initial state.

For that we evaluate the fixed point expression
gfp(λY. lfp(λX. PRE(X) ∪ ( Goal ∩ PRE(Y))))

Y0={1,2,3,4,5} lfp(λX. PRE(X) ∪ ( Goal ∩ PRE(Y0)))
= lfp(λX. PRE(X) ∪ ( Goal ))
={1,2,3}=Y1

Y1={1,2,3}
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Fixed points for Büchi objectives

We want to check if {3} can be reached 
infinitely often from the initial state.

For that we evaluate the fixed point expression
gfp(λY. lfp(λX. PRE(X) ∪ ( Goal ∩ PRE(Y))))

Y0={1,2,3,4,5} lfp(λX. PRE(X) ∪ ( Goal ∩ PRE(Y0)))
= lfp(λX. PRE(X) ∪ ( Goal ))
={1,2,3}=Y1

Y1={1,2,3} lfp(λX. PRE(X) ∪ ( Goal ∩ PRE(Y1)))
= lfp(λX. PRE(X) ∪ ( Goal ∩ {1,2,3} ))
={1,2,3}=Y2=Y1
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Fixed points for Büchi objectives

We want to check if {3} can be reached 
infinitely often from the initial state.

For that we evaluate the fixed point expression
gfp(λY. lfp(λX. PRE(X) ∪ ( Goal ∩ PRE(Y))))

Y0={1,2,3,4,5} lfp(λX. PRE(X) ∪ ( Goal ∩ PRE(Y0)))
= lfp(λX. PRE(X) ∪ ( Goal ))
={1,2,3}=Y1

Y1={1,2,3} lfp(λX. PRE(X) ∪ ( Goal ∩ PRE(Y1)))
= lfp(λX. PRE(X) ∪ ( Goal ∩ {1,2,3} ))
={1,2,3}=Y2=Y1

Fixed point !
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Fixed points for Büchi objectives

We want to check if {3} can be reached 
infinitely often from the initial state.

For that we evaluate the fixed point expression
gfp(λY. lfp(λX. PRE(X) ∪ ( Goal ∩ PRE(Y))))

Y0={1,2,3,4,5} lfp(λX. PRE(X) ∪ ( Goal ∩ PRE(Y0)))
= lfp(λX. PRE(X) ∪ ( Goal ))
={1,2,3}=Y1

Y1={1,2,3} lfp(λX. PRE(X) ∪ ( Goal ∩ PRE(Y1)))
= lfp(λX. PRE(X) ∪ ( Goal ∩ {1,2,3} ))
={1,2,3}=Y2=Y1

Fixed point !

As S0 ∩ Y2 ≠ ∅, the Büchi property 
is verified by the LTS L



Trace pre-orders, Trace equivalence, Simulations, 
Bisimulations and quotients



Traces of a LTS

• Let (S,S0,Σ,T,C,λ) be a LTS. Let s0σ0s1σ1s2σ2...σn-1sn...  be such 
that (1) s0 ∈ S0, (2) ∀i ·0≤i·T(si,σi,si+1), the sequence

              λ(s0)σ0 λ(s1)σ1λ(s2)σ2...σn-1λ(sn)... 

is called a trace of the LTS.  

• Note that two different paths in the LTS may generate the 
same trace. 

• The color of a state is meant to  model the important 
properties of that state. So the notion of trace allows us to 
concentrate on the important properties of the system.



• We note Traces(L) the set of traces generated by the LTS L. 

• Two LTS L1 and L2 are trace equivalent if 

                        Traces(L1)=Traces(L2)

• Trace equivalence and verification. 
If we have two LTS L1 and L2 such that Traces(L1)=Traces(L2), 
and L2 is (much) smaller than L1, it may be very advantageous to 
do verification on L2 instead on L1.  As we will see L1 may be infinite 
while L2 is finite. We will illustrate that with TA.

• Unfortunately, minimizing a system using the notion of trace 
equivalence is costly computationally.  We will introduce now 
stronger notions of equivalence than are easier to compute.

Traces of a LTS



Simulation relations



Simulation relations

• Given a LTS (S,S0,Σ,T,C,λ), a simulation relation is a 
relation R⊆S×S such that 

for all (s1,s2) ∈ R :
(1) s1∈S0 iff s2∈S0

(2) λ(s1)=λ(s2)
(3) ∀σ∈Σ•∀s3∈S:  T(s1,σ,s3)⟹∃s4∈S•T(s2,σ,s4)∧(s3,s4)∈R



Simulation relations

• Given a LTS (S,S0,Σ,T,C,λ), a simulation relation is a 
relation R⊆S×S such that 

for all (s1,s2) ∈ R :
(1) s1∈S0 iff s2∈S0

(2) λ(s1)=λ(s2)
(3) ∀σ∈Σ•∀s3∈S:  T(s1,σ,s3)⟹∃s4∈S•T(s2,σ,s4)∧(s3,s4)∈R

• When (s1,s2) ∈ R, we say that s1 is simulated by s2.



Simulation relations

a a a a a

a b a ba b b



Simulation relations

a a a a a

a b a ba b

Who can simulate who ?

b



Simulation relations

a a a a a

a b a ba b

This is a simulation relation

b



Simulation relations

a a a a a

a b a ba b

Is this the largest one ?

b



Simulation relations

a a a a a

a b a ba b

Is this the largest one ? NO.

b
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bisimulations



Simulation relations and 
bisimulations

• Given a LTS (S,S0,Σ,T,C,λ), there exists a unique largest simulation 
relation R⊆S×S;
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relation R⊆S×S;

• A relation R⊆S×S is symmetric iff 
for all s1,s2 such that R(s1,s2) we have also R(s2,s1);
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• Given a LTS (S,S0,Σ,T,C,λ), there exists a unique largest simulation 
relation R⊆S×S;

• A relation R⊆S×S is symmetric iff 
for all s1,s2 such that R(s1,s2) we have also R(s2,s1);

• A simulation relation R which is symmetric is called a 
bisimulation. 



Simulation relations and 
bisimulations

• Given a LTS (S,S0,Σ,T,C,λ), there exists a unique largest simulation 
relation R⊆S×S;

• A relation R⊆S×S is symmetric iff 
for all s1,s2 such that R(s1,s2) we have also R(s2,s1);

• A simulation relation R which is symmetric is called a 
bisimulation. 

• Given a bisimulation relation R and two states s1,s2 such that 
R(s1,s2) (note that we have also R(s2,s1) by definition), we say that s1 
and s2 are bisimilar, this is noted s1 ≈R s2 (or s1 ≈ s2 if R is clear 
from the context). 
The relation ≈R is an equivalence relation.



Bisimulation

a a a

a ba b b



Bisimulation

a a a

a ba b b

This is a bisimulation



Quotient of a LTS using 
bisimulation

• Let L=(S,S0,Σ,T,C,λ) be a LTS, R⊆S×S be a bisimulation 
relation over the state space of L, and let ≈R be the associated 
equivalence relation. 

• The quotient by ≈R of L is the LTS L≈=(S≈,S0≈,Σ,T≈,C,λ≈):
        ➢ S≈ are the equivalence classes for ≈R ;         
        ➢ S0≈ are the equivalence classes s for ≈R 

                         such that for all s∈s, s∈S0 ;
        ➢ T≈ is such that T≈(s1,σ,s2) iff ∃s1∈s1, s2∈s2:T(s1,σ,s2) ;
        ➢ λ≈ is such that λ≈(s)=λ(s) for any s∈s.

• Theorem: 
Let L be a LTS and R a bisimulation over the state space of L, let L≈ 

be the quotient of L by ≈R, then Traces(L)=Traces(L≈).  



Quotient of a LTS using 
bisimulation
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a ba b b

The LTS
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Quotient of a LTS using 
bisimulation
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Bisimulation is not complete for 
trace equivalence

a a a

a ba b b

The LTS

≈

≈ ≈

Clearly, the two initial states
 are trace equivalent 

but they are not bisimilar.



Plan of the talk

• Labelled transition systems

• Properties of labeled transition systems: 
Reachability - Safety - Büchi properties

• Pre-Post operators

• Partial orders - Fixed points 

• Symbolic model-checking

• Application to TA: region equivalence, region automata, 
zones



Algorithmic verification of 
timed automata

• We will show now how to apply the concepts that 
we have introduced so far to obtain algorithms to 
verify properties of timed automata;

• We will show how to use the pre-post 
operators to build fixed points algorithms;

• We will show that those algorithms are 
terminating by showing that they operate over 
finite state time-abstract bisimulation 
quotients.



A timed automaton

Question: Can L3 be reached ?



A timed automaton

Question: Can L3 be reached ?

This question can be reduced to a reachability verification 
problem over the labeled transition system of the TA.



Labeled transition system of a TA

• The LTS=(S,S0,Σ,T,C,λ) of a TA A=(Q,Q0,Σ,P,Cl,E,L,F,Inv), is as follows:

- S is the set of pairs (q,v) where q ∈ Q is a location of A and v : Cl →ℝ≥0 such that v ⊨ Inv(q); 

- S0={(q0,<0,0,...0,>) | q0 ∈ Q0 };

- T ⊆ S x (Σ∪ℝ≥0) x S defined by two types of transitions:

      Discrete transitions: 
(q1,v1)→a(q2,v2) ∈ T iff there exists (q1,a,Φ,Δ,q2) ∈ E, v1 ⊨ Φ, and v2:=v1[Δ:=0].
      Continuous transitions: 
(q1,v1)→δ(q2,v2) ∈ T iff q1=q2, δ∈ℝ≥0, v2=v1+δ, and ∀δ’, 0≤δ’≤δ, v1+δ ⊨ Inv(q1).

- C=2P, λ((q,v))=L(q), for any (q,v)∈Q.

• Clearly, this transition system has a (continuous) infinite number of 
states. How do we handle it ?



• The LTS=(S,S0,Σ,T,C,λ) of a TA A=(Q,Q0,Σ,P,Cl,E,L,F,Inv), is as follows:

- S is the set of pairs (q,v) where q ∈ Q is a location of A and v : Cl →ℝ≥0 such that v ⊨ Inv(q); 

- S0={(q0,<0,0,...0,>) | q0 ∈ Q0 };

- T ⊆ S x (Σ∪{Delay}) x S defined by two types of transitions:

      Discrete transitions: 
(q1,v1)→a(q2,v2) ∈ T iff there exists (q1,a,Φ,Δ,q2) ∈ E, v1 ⊨ Φ, and v2:=v1[Δ:=0].
      Continuous transitions: 
(q1,v1)→Delay(q2,v2) ∈ T iff q1=q2, ∃δ∈ℝ≥0, v2=v1+δ, and ∀δ’, 0≤δ’≤δ, v1+δ ⊨ Inv(q1).

- C=2P, λ((q,v))=L(q), for any (q,v)∈Q.

• Clearly, this transition system has a (continuous) infinite number of 
states. How do we handle it ?

Time abstract-labeled transition system 
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Are there valuations of clocks 
that behaves in a similar way ?
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It is important to know if x or y 
reach the next natural number first.
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• For each variable x∈Cl, let cx be the largest constant with which x is 
compared in the TA. 
Two valuations v1,v2:Cl→ℝ≥0 are region equivalent, noted v1 ≈ v2 iff

• same integer parts: 
for all x∈Cl, int(v1(x))=int(v2(x)), or v1(x)>cx and v2(x)>cx.

• same fractional ordering: 
for all x,y∈Cl with v1(x)≤cx and v1(y)≤cy,  
frac(v1(x)) ≤ frac(v1(y)) iff frac(v2(x)) ≤ frac(v2(y))

• same null fractional parts:  
for all x,y∈Cl with v1(x)≤cx and v1(y)≤cy,  
frac(v1(x))=0 iff frac(v2(x))=0

• Theorem: a Region is a set of valuations that are time abstract 
bisimilar.

Region equivalence: formal definition



• The following theorem is the foundation 
for the automatic verification of timed 
automata.

• Theorem. Let A be a timed automaton, let 
L be its time-abstract labeled transition 
system, let L≈ be its quotient by the region 
equivalence ≈, then L≈ is finite and L≈ is 
trace equivalent to L.

Region equivalence quotient of the 
time-abstract LTS



Post operations in the 
time abstract LTS

• To construct “region based” bisimulation quotient of the time-
abstract LTS of a TA (or to compute on it), we must be able to compute 
the transition relation between regions. 

• We consider the two types of transitions that we find in the time-abstract 
LTS of a TA:

• Discrete transitions that are associated to transition edges in the 
timed automaton. Let (q1,a,Φ,Δ,q2) ∈ E:
(1) Note that given a region r and a guard Φ, all valuations v1,v2∈r is 
such that v1⊨Φ iff v2⊨Φ.
(2) The effect of resetting a clock on a region r gives a region r’.

• Delay transitions. Given a region r, we can compute the set of 
regions r’ that contains v+t for some v∈r and some t∈ℝ.
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TA and the 
backward approach

• The region bisimulation is stable also 
for the operations that explore the state 
space in a backward fashion (Pre, Apre)

• ... and so, we can also use backward 
algorithms to verify TA.



On the use of the region 
equivalence to verify 

reachability properties of TA

Forward reachability analysis on a 
simple example
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Taking the transition from L1 to L2 does not add any new states, so we have reached a fixed point.



Zones

• The region equivalence gives rise to a finite quotient and 
guaranties that our fixed point algorithms are terminating.

• Nevertheless, the number of region is exponential in the 
number of clocks as well as in the binary encoding of 
constants.

• To mitigate this state explosion phenomenon, we can use efficient 
data-structure to represent convex unions of regions.
Zones are such a data-structure.

• Note that the reachability problem for timed automata is 
complete for PSpace, so it is believed that the state explosion 
is unavoidable in the worst case.
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Zones

• Let ℂ be a finite set of clocks, a zone is defined by a set of constraints 
of the form:
      (1) x-y ∼ c where x,y ∈ ℂ and c ∈ ℤ.
      (2) x ∼ c where x ∈ ℂ and c ∈ ℤ.
and ∼ ∈ { ≤,<,=,>,≥ }.

• Zones are closed under the reseting operation, the forward and 
backward time passing operations, and intersection. 

• Unfortunately, zones are not closed under union nor 
complementation. So implementations need to maintain lists of zones.

• Zones can be canonically represented by DBM 
(=Difference Bound Matrices).
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Reseting of y: x≥1 ∧ x≤3 ∧ y=0
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Decidability results

• As a direct consequence of our previous developments, we 
have that: 

• The reachability verification problem for TA w.r.t. a 
set Goal which is defined as a union of regions is 
decidable.

• The safety verification problem for TA w.r.t. a set Safe 
which is defined as a union of regions is decidable.

• The Büchi verification problem for TA w.r.t. a set Goal 
which is defined as a union of regions is decidable.



Decidability results

• As the reachability verification problem for TA is decidable 
then the timed language emptiness problem (finite 
word case) is decidable for TA. 

• As the Büchi verification problem for TA is decidable then the 
timed language emptiness problem (infinite word 
case) is decidable for TA.

Hint to establish the result: construct a set Goal that ensures 
non-zenoness and the Büchi acceptance condition of the TA. 
Show that this set is a finite union of regions.  As an 
intermediary step you will need a generalized Büchi condition.



Undecidability results for TA



Undecidability results for TA

• The timed universality problem, i.e. does a 
TA accepts all possible timed words on a alphabet, 
is undecidable.

• The language inclusion problem between 
timed automata is undecidable. (direct 
consequence of the previous undecidability result).


