Second Lecture: Basics of model-checking for finite and timed systems Jean-François Raskin Université Libre de Bruxelles

Belgium

Artist2 Asian Summer School - Shanghai - July 2008

Plan of the talk

- Labelled transition systems
- Properties of labeled transition systems: Reachability - Safety - Büchi properties
- Pre-Post operators
- Partial orders Fixed points
- Symbolic model-checking
- Application to TA: region equivalence, region automata, zones

Plan of the talk

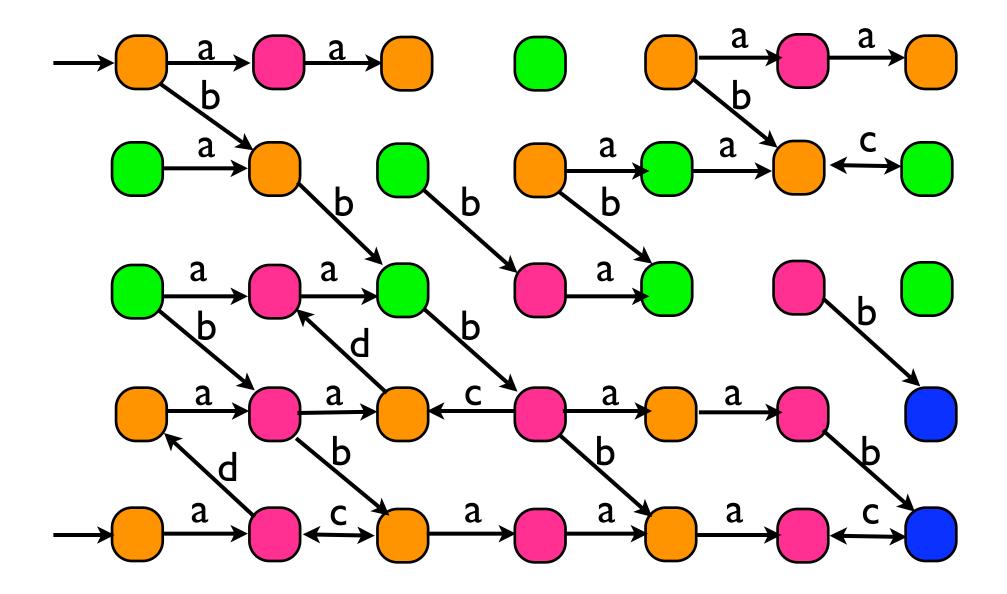
• Labelled transition systems

- Properties of labeled transition systems: Reachability - Safety - Büchi properties
- Pre-Post operators
- Partial orders Fixed points
- Symbolic model-checking
- Application to TA: region equivalence, region automata, zones

Labeled transition systems

- A **labeled transition system**, LTS for short, is a tuple $(S,S_0,\Sigma,T,C,\lambda)$ where:
 - S is a (finite or infinite) set of states
 - $S_0 \subseteq S$ is the subset of initial states
 - Σ is an event or action set (finite or infinite)
 - C is a (finite or infinite) set of colors
 - $\lambda : S \rightarrow C$ is a labeling function that labels each state with a color.

A labelled transition system:



Plan of the talk

- Labelled transition systems
- Properties of labeled transition systems: Reachability - Safety - Büchi properties
- Pre-Post operators
- Partial orders Fixed points
- Symbolic model-checking
- Application to TA: region equivalence, region automata, zones

• Reachability verification problem

Instance: a LTS $(S,S_0,\Sigma,T,C,\lambda)$, a set **Goal** \subseteq S.

Question: is there an execution of the LTS that starts in S₀ and reaches Goal ? More formally, is there a sequence $s_0\sigma_{0s_1}\sigma_{1s_2}\sigma_{2}...\sigma_{n-1}s_n$ such that (1) $s_0 \in S_0$, (2) $\forall i \cdot 0 \le i \le n \cdot T(s_i,\sigma_i,s_{i+1})$, and (3) $s_n \in Goal$?

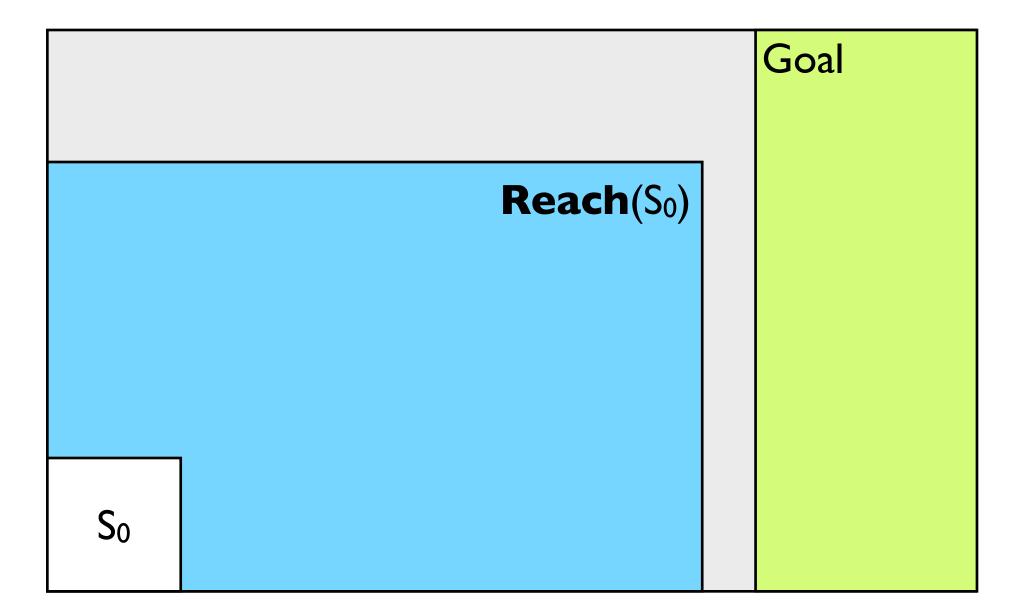
• The **set of reachable states** of a LTS $(S,S_0,\Sigma,T,C,\lambda)$ is the set of states $s \in S$ such that

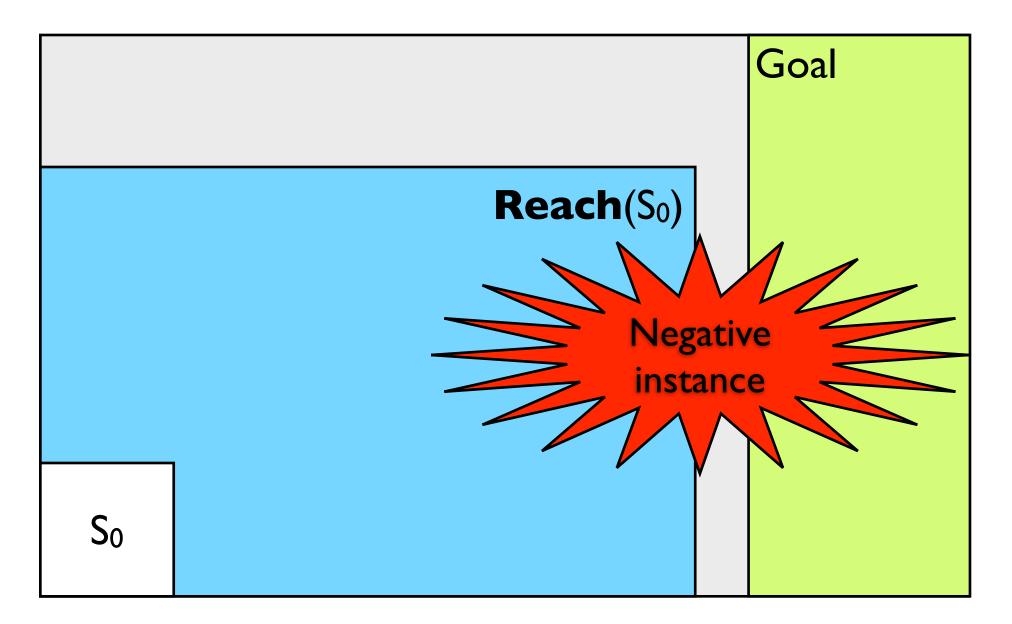
there is a sequence $s_0\sigma_{0s_1}\sigma_{1s_2}\sigma_{2}...\sigma_{n-1}s_n$ and (1) $s_0 \in S_0$, (2) $\forall i \cdot 0 \leq i \leq n \cdot T(s_i,\sigma_i,s_{i+1})$, (3) $s_n=s$.

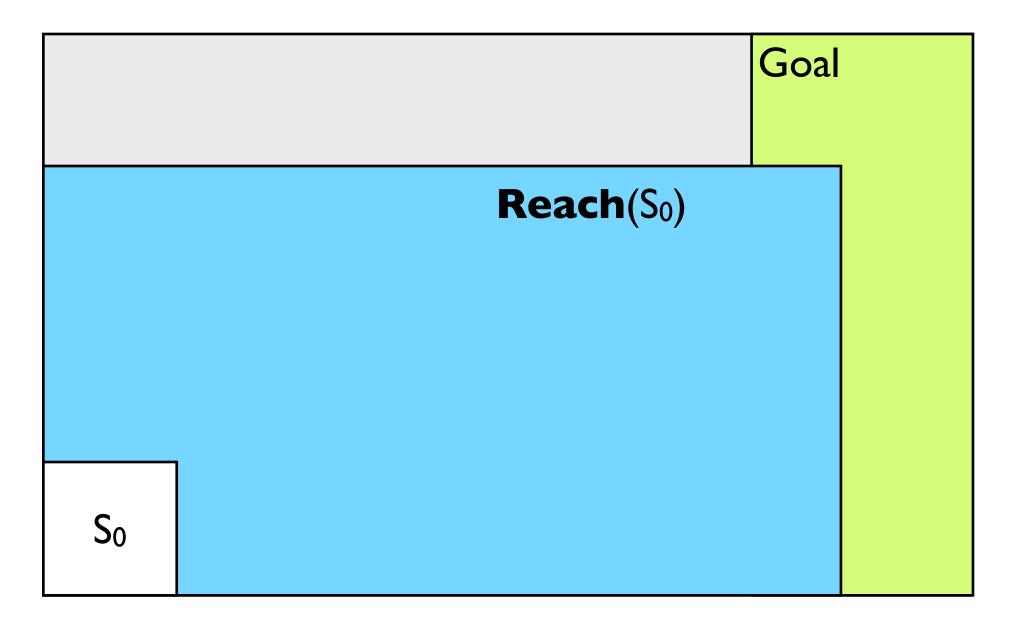
Let **Reach**(S_0) denote the set of reachable states.

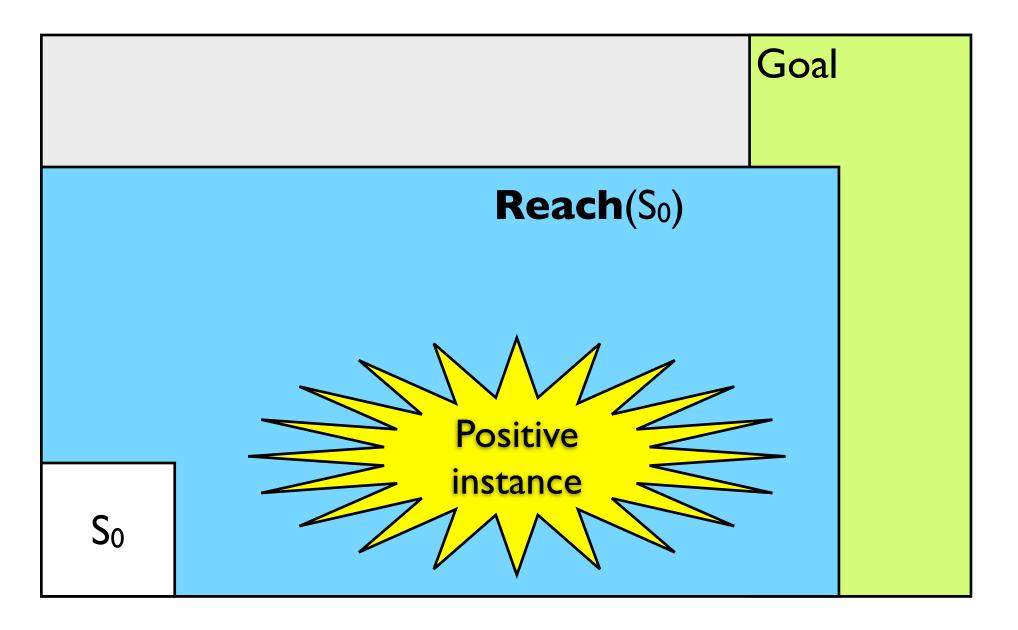
• Clearly, there is a path that starts in S₀ and reaches G iff **Reach(S₀)** \cap **Goal** $\neq \emptyset$.

	Goal
S ₀	
-0	









Safety

• Safety verification problem

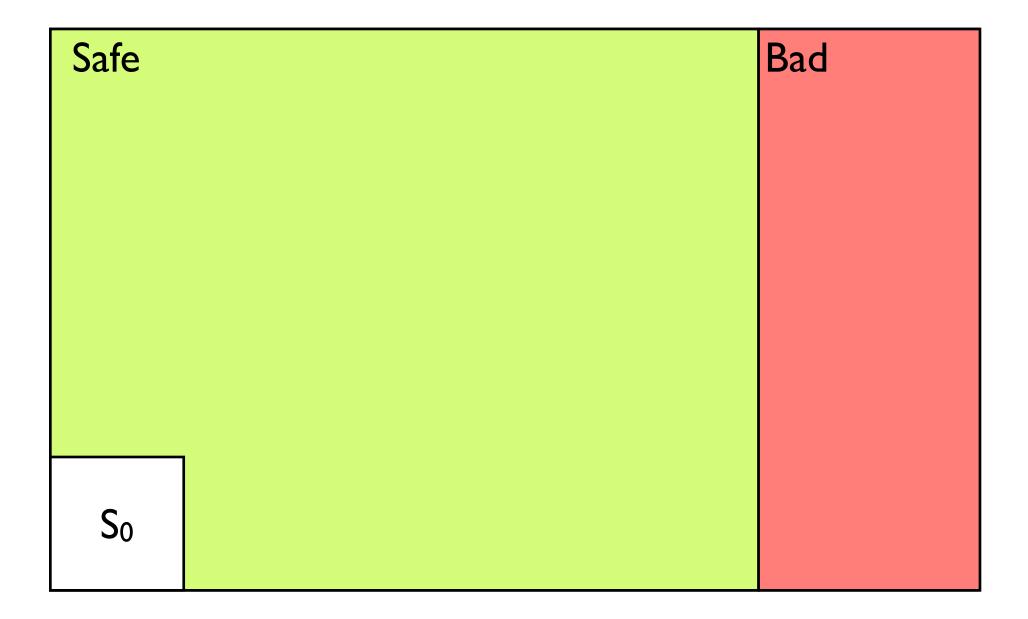
Instance: a LTS $(S,S_0,\Sigma,T,C,\lambda)$, a set of states Safe $\subseteq S$. **Question**: are all paths that starts in S₀ staying within Safe. More formally, for all sequences $s_0\sigma_0s_1\sigma_1s_2\sigma_2...\sigma_{n-1}s_n$ such that (1) $s_0 \in S_0$, (2) $\forall i \cdot 0 \leq i \leq n \cdot T(s_i,\sigma_i,s_{i+1})$, is it the case that (3) $\forall i \cdot 0 \leq i \leq n \cdot s_i \in Safe$?

- Clearly all paths that start in S_0 are staying within Safe <u>iff</u> **Reach(S_0)** \cap (**S****Safe)**= \emptyset .
- So, the safety and reachability problems are **dual problems**.

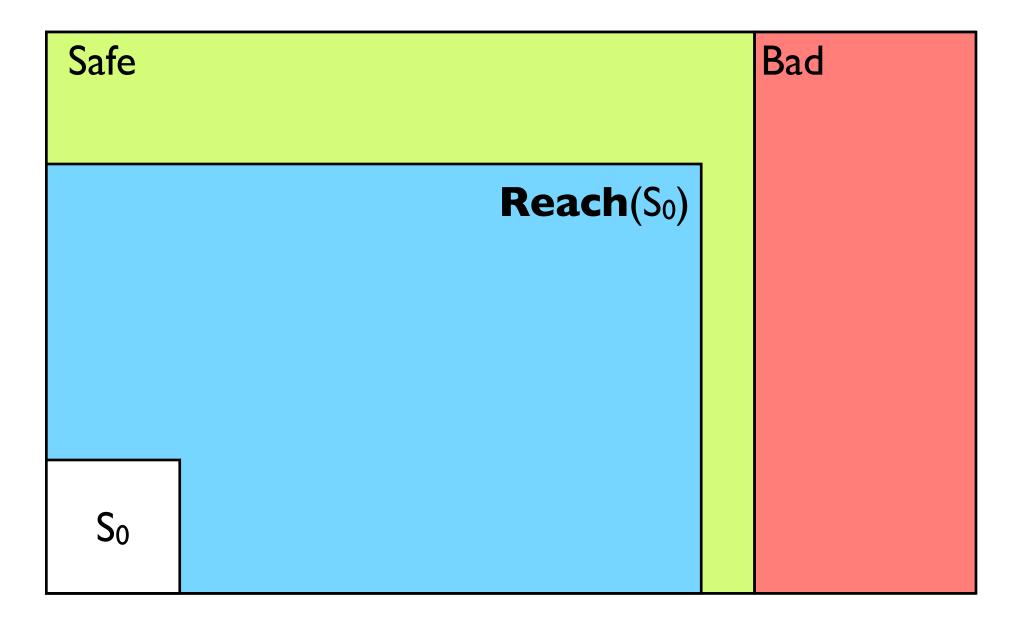
Safety



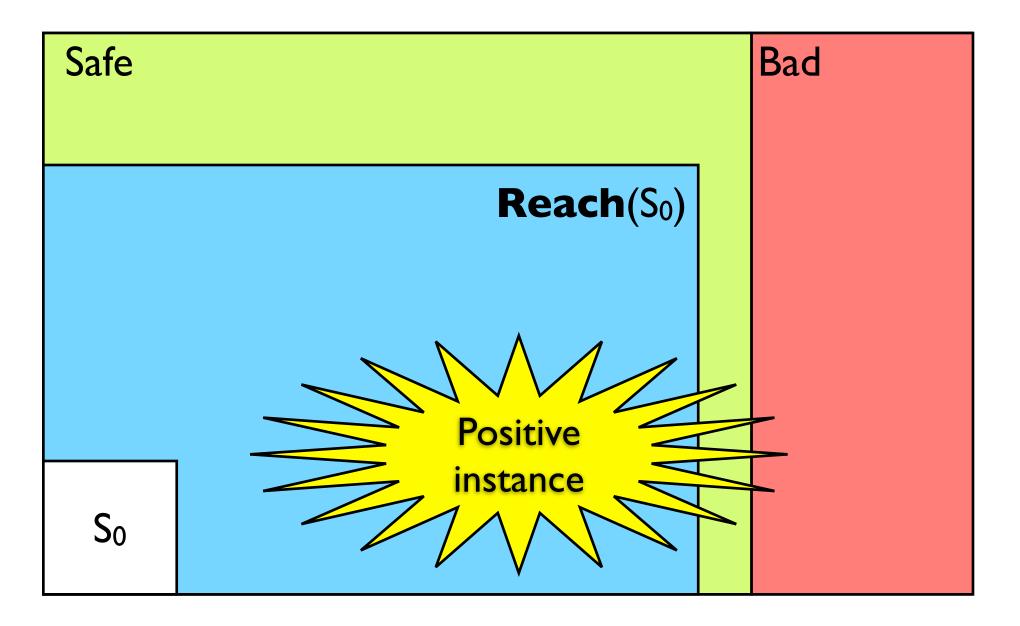
Safety



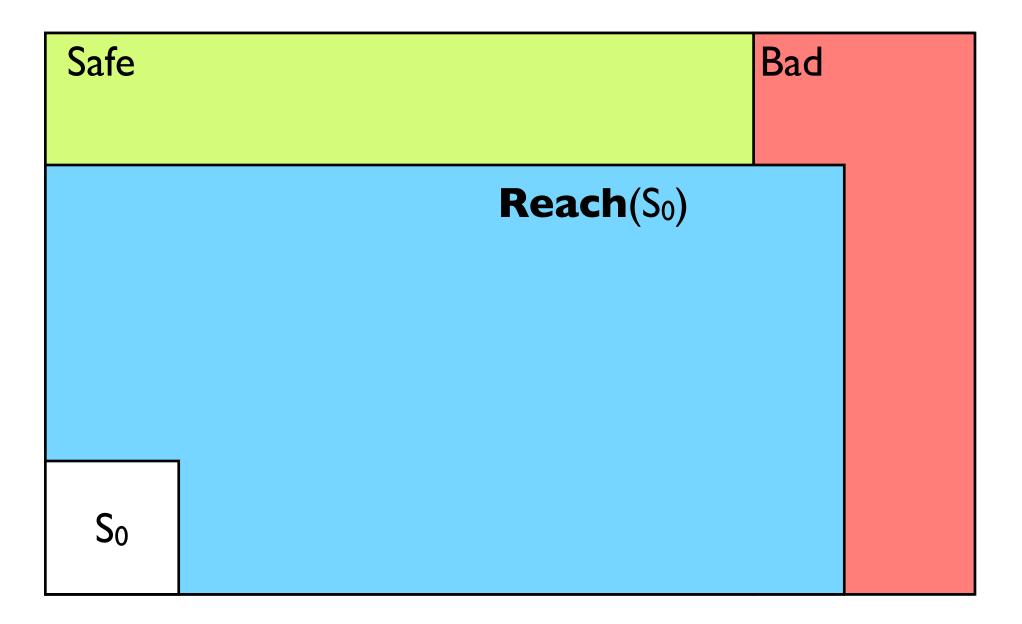
Safety



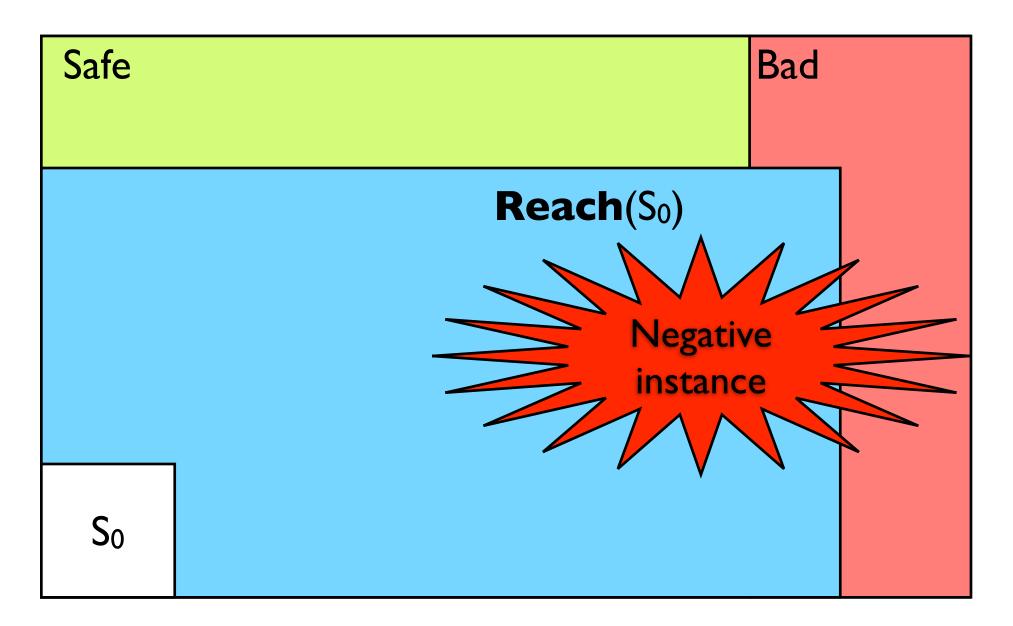
Safety



Safety



Safety



Büchi condition

Büchi verification problem

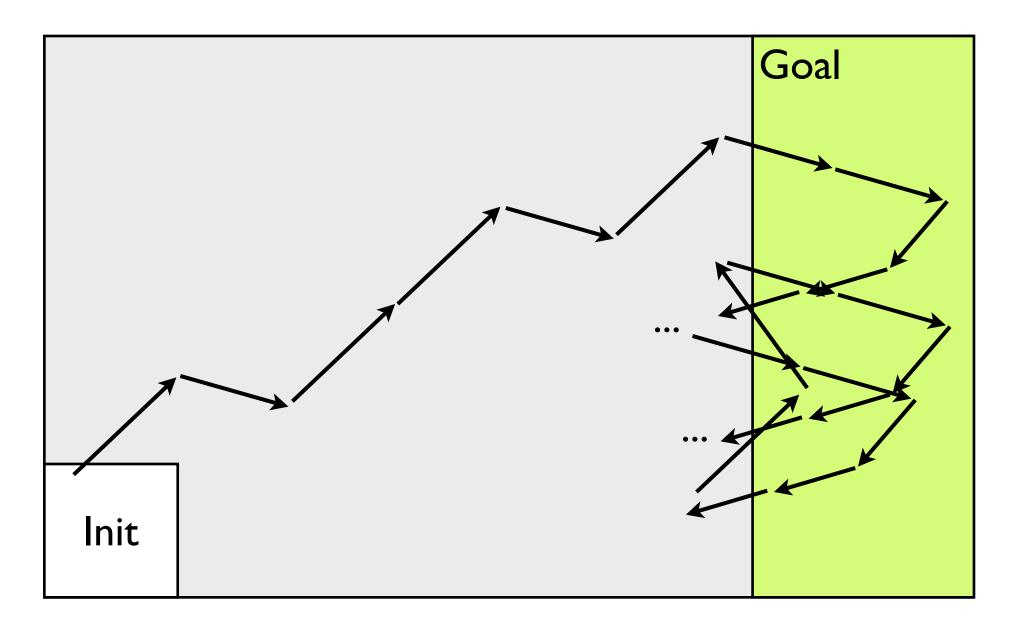
Instance: a LTS $(S,S_0,\Sigma,T,C,\lambda)$, a set Goal \subseteq S.

Question: is there one execution of the LTS that starts in S₀ and passes infinitely often by the set Goal \subseteq S?

More formally, is there an execution $s_0\sigma_0s_1\sigma_1s_2\sigma_2...\sigma_{n-1}s_n...$ such that

- (1) $s_0 \in S_0$,
- (2) $\forall i \cdot 0 \leq i \cdot T(s_i, \sigma_i, s_{i+1}),$
- (3) $\forall i \ge 0 \quad \exists j \ge i \text{ such that } s_j \in Goal$?

Büchi condition

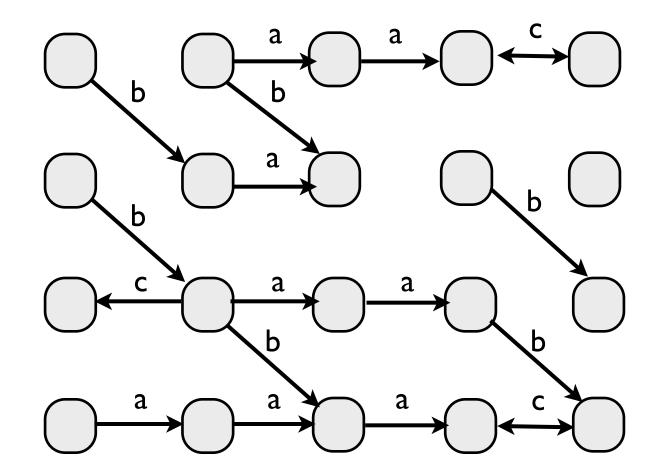


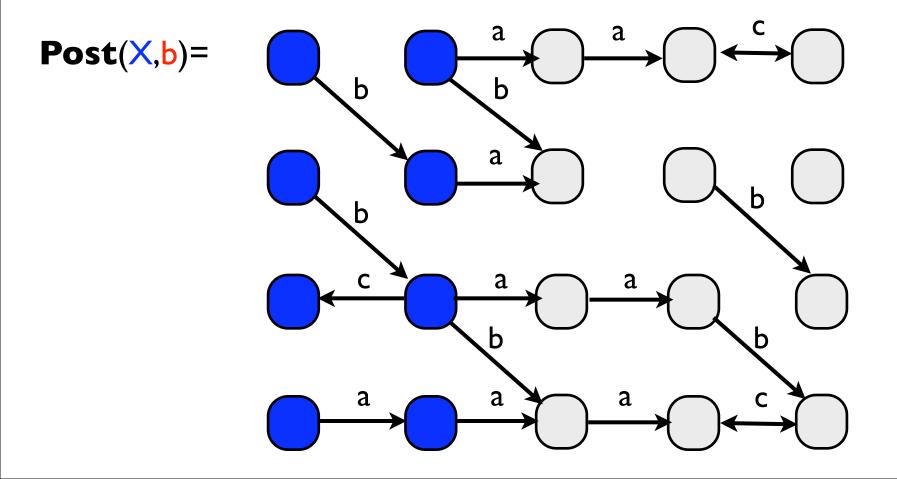
Plan of the talk

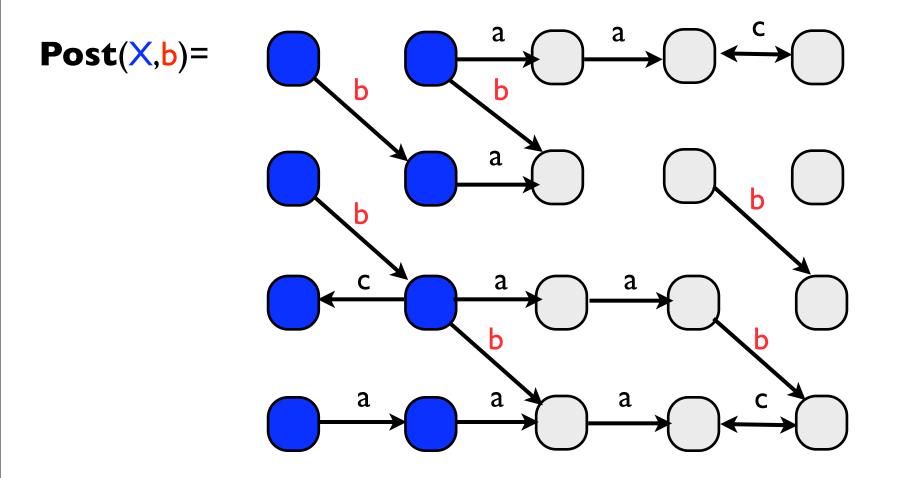
- Labelled transition systems
- Properties of labeled transition systems: Reachability - Safety - Büchi properties
- Pre-Post operators
- Partial orders Fixed points
- Symbolic model-checking
- Application to TA: region equivalence, region automata, zones

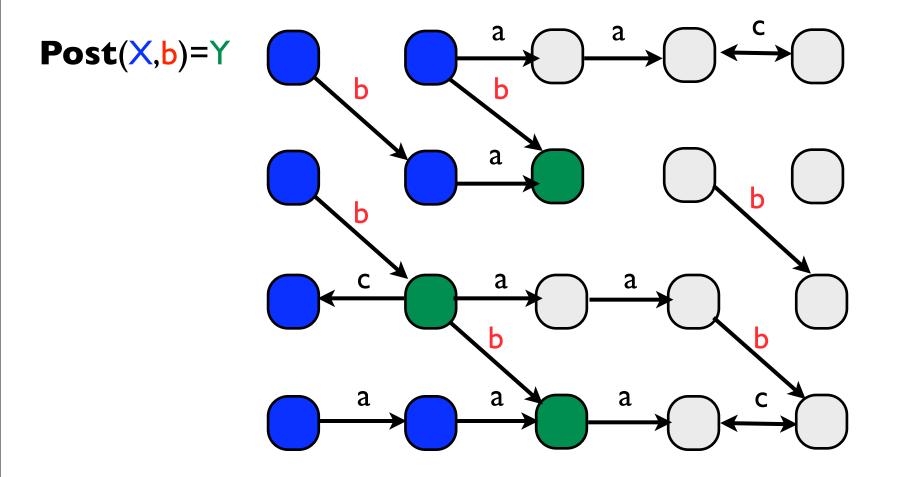
Post, Pre and Apre operators

- We will design verification algorithms for the reachability, safety and Büchi properties.
- Our algorithms will manipulate sets of states.
- Besides set operations, we will need to compute the set of states that are successors (Post), or predecessors (Pre and Apre) of a set of states.



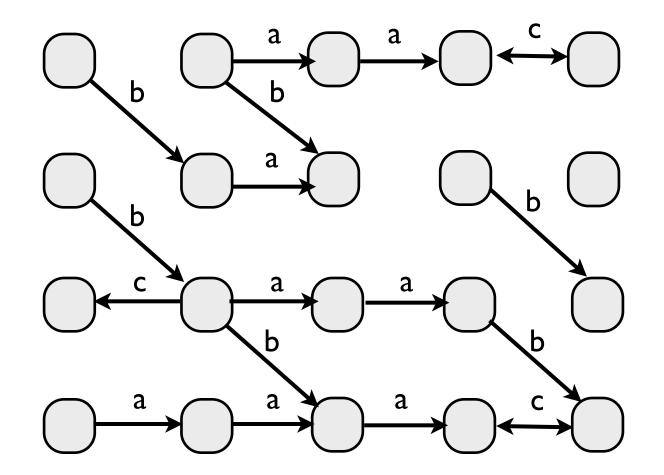


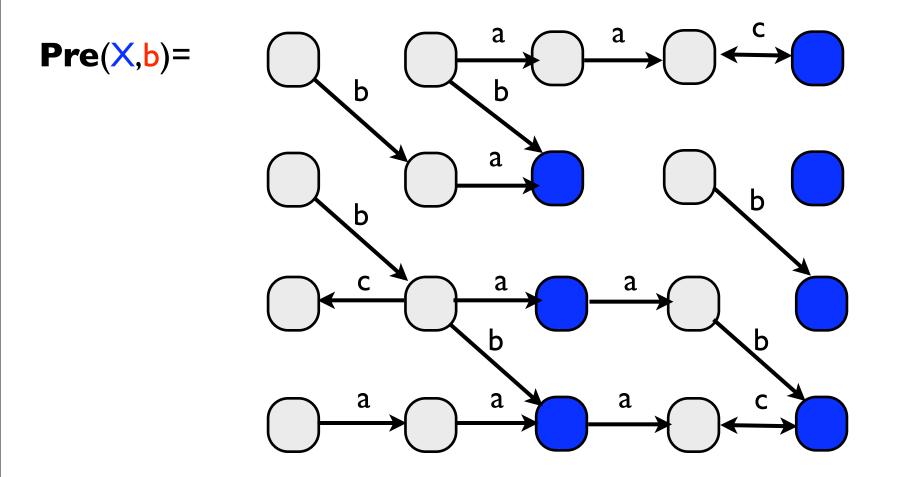


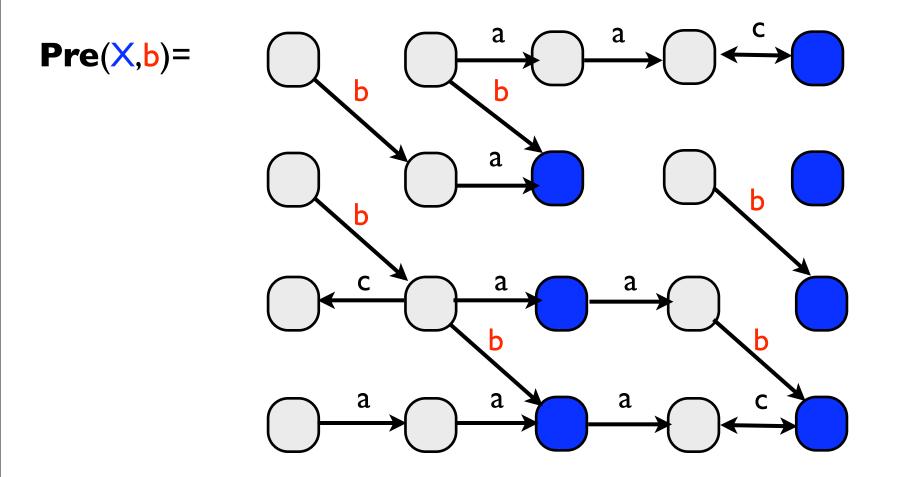


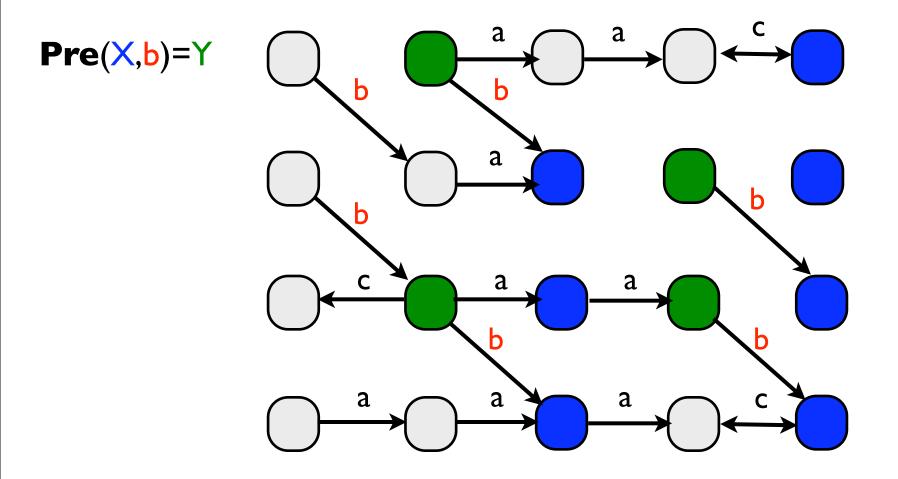
```
\textbf{Pre}(X,\sigma) = \{ \ y \in S \ | \ \exists \ x \in X \ \cdot \ T(y,\sigma,x) \ \}
```

 $\textbf{Pre}(X,\sigma) = \{ \ y \in S \ | \ \exists \ x \in X \ \cdot \ T(y,\sigma,x) \ \}$







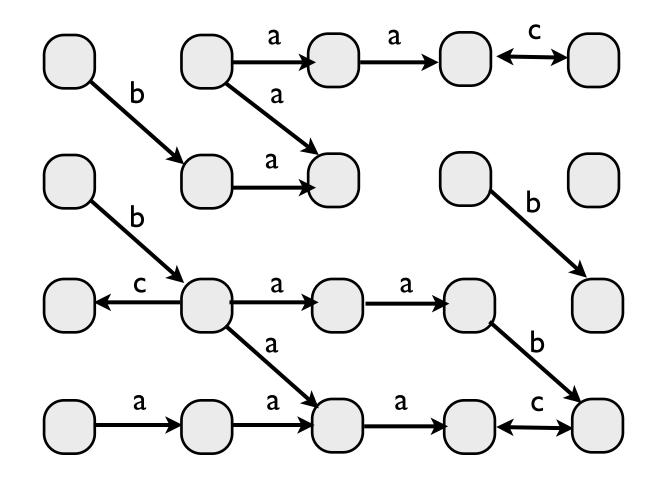


The **Apre** : $2^{s} \times \Sigma \rightarrow 2^{s}$ takes (1) a set of states X (2) an action σ and returns the set of states that have all their successors by σ in X

 $\textbf{Apre}(X,\sigma) = \{ x \in S \mid \forall y \in S \ \cdot T(x,\sigma,y) \Rightarrow y \in X \}$

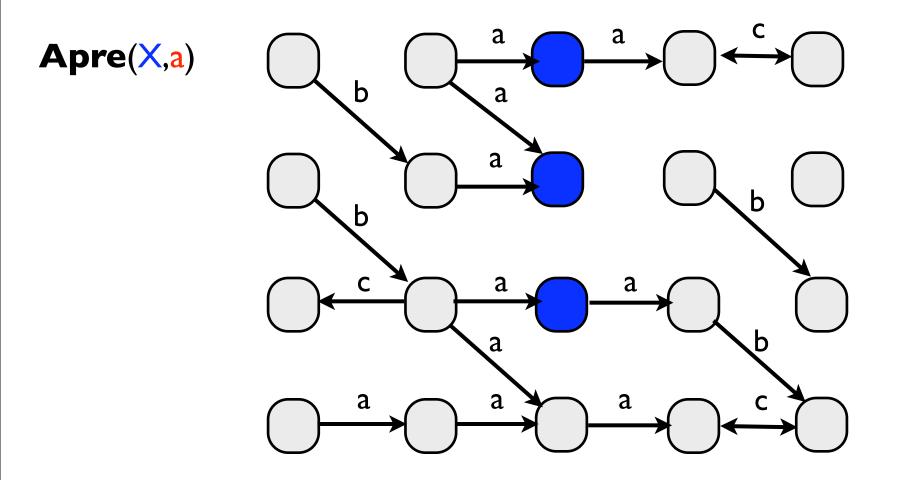
The **Apre** : $2^{s} \times \Sigma \rightarrow 2^{s}$ takes (1) a set of states X (2) an action σ and returns the set of states that have all their successors by σ in X

 $\textbf{Apre}(X,\sigma)=\{ x \in S \mid \forall y \in S : T(x,\sigma,y) \Rightarrow y \in X \}$



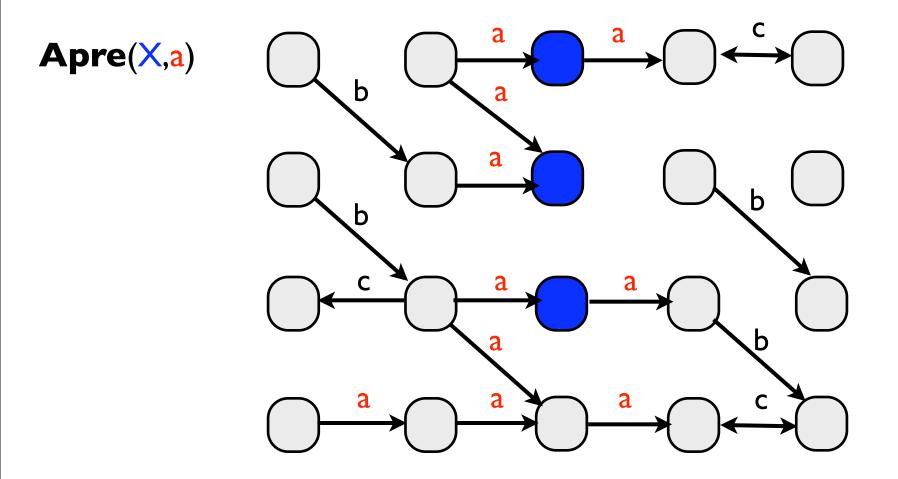
The **Apre** : $2^{s} \times \Sigma \rightarrow 2^{s}$ takes (1) a set of states X (2) an action σ and returns the set of states that have all their successors by σ in X

 $\mathbf{Apre}(\mathsf{X},\!\sigma)\!=\!\{\,\mathsf{x}\in\mathsf{S}\mid\forall\;\mathsf{y}\in\mathsf{S}\,\cdot\mathsf{T}(\mathsf{x},\!\sigma,\!\mathsf{y})\Rightarrow\mathsf{y}\in\mathsf{X}\,\,\}$



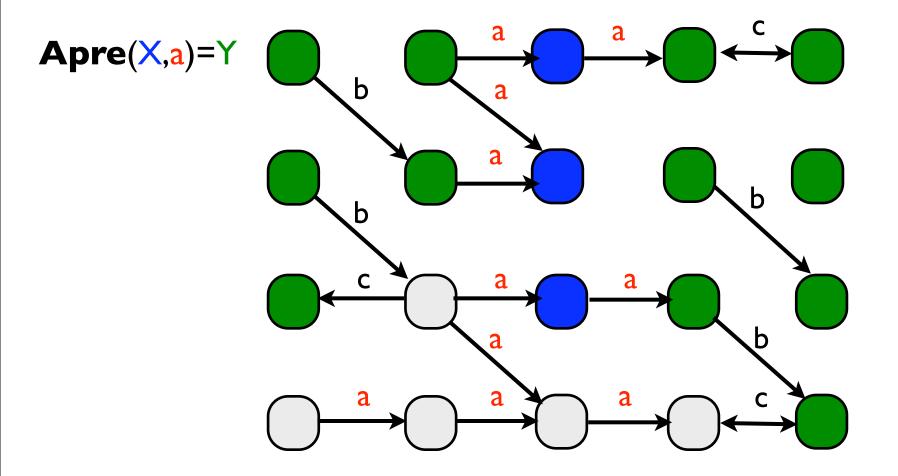
The **Apre** : $2^{s} \times \Sigma \rightarrow 2^{s}$ takes (1) a set of states X (2) an action σ and returns the set of states that have all their successors by σ in X

 $\textbf{Apre}(X,\sigma)=\{ x \in S \mid \forall y \in S : T(x,\sigma,y) \Rightarrow y \in X \}$



The **Apre** : $2^{s} \times \Sigma \rightarrow 2^{s}$ takes (1) a set of states X (2) an action σ and returns the set of states that have all their successors by σ in X

 $\mathbf{Apre}(\mathsf{X},\!\sigma)\!=\!\{\,\mathsf{x}\in\mathsf{S}\mid\forall\;\mathsf{y}\in\mathsf{S}\,\cdot\mathsf{T}(\mathsf{x},\!\sigma,\!\mathsf{y})\Rightarrow\mathsf{y}\in\mathsf{X}\,\,\}$



PRE-POST-APRE

From the **Pre** : $2^{s} \times \Sigma \rightarrow 2^{s}$, the **Post** : $2^{s} \times \Sigma \rightarrow 2^{s}$, and the **Apre** : $2^{s} \times \Sigma \rightarrow 2^{s}$, we can define their generalizations over the entire alphabet of actions:

The **POST** : $2^{S} \rightarrow 2^{S}$ takes a set of states X and returns the set of states Y that are reachable in one step from X, i.e. :

 $\textbf{POST}(X) = \{ \ y \in S \ | \ \exists \ x \in X \cdot \exists \ \sigma \in \Sigma \ \cdot T(x, \sigma, y) \ \}$

The **PRE** : $2^{S} \rightarrow 2^{S}$ takes a set of states X and returns the set of states Y that can reach X in one step, i.e. :

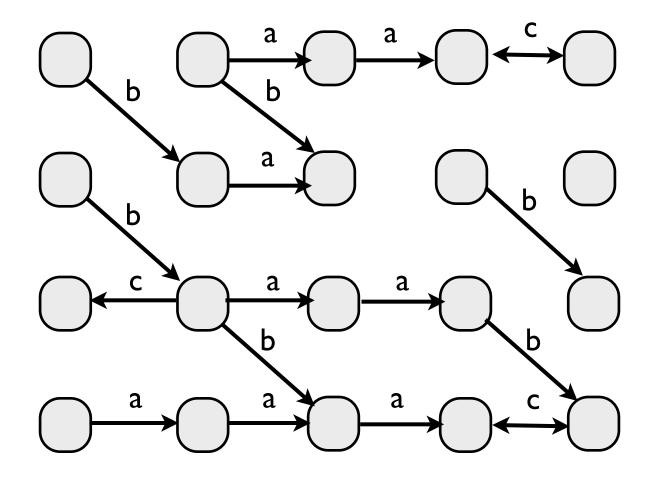
 $\mathbf{PRE}(X) = \{ y \in S \mid \exists x \in X \cdot \exists \sigma \in \Sigma \cdot T(y,\sigma,x) \}$

The **APRE**: $2^{s} \rightarrow 2^{s}$ takes a set of states X and returns the set of states Y that have all their one step successors in X, i.e.:

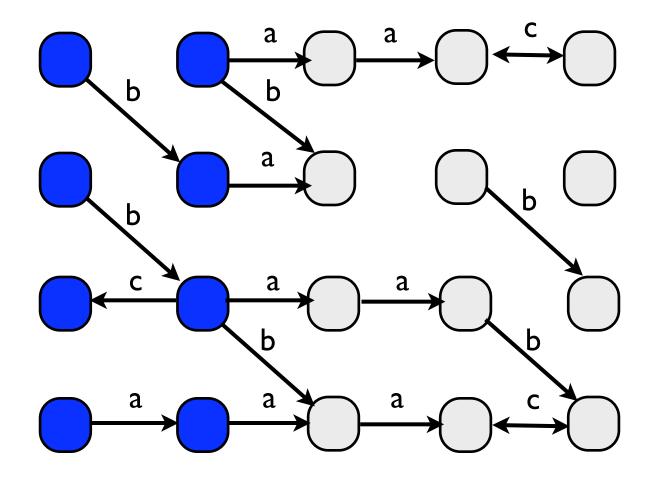
 $\textbf{APRE}(X) = \{ y \in S \mid \forall x \in S \cdot \forall \sigma \in \Sigma : T(y,\sigma,x) \Longrightarrow x \in X \}$

Exercise : proof that $APRE(X)=S\setminus PRE(S\setminus X)$.

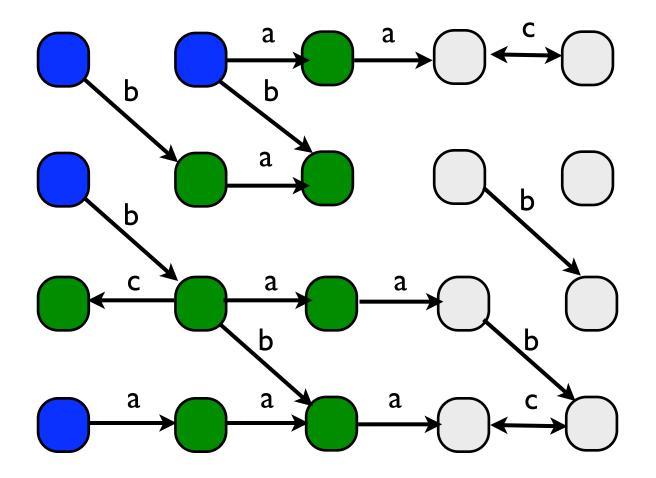
POST(X) =



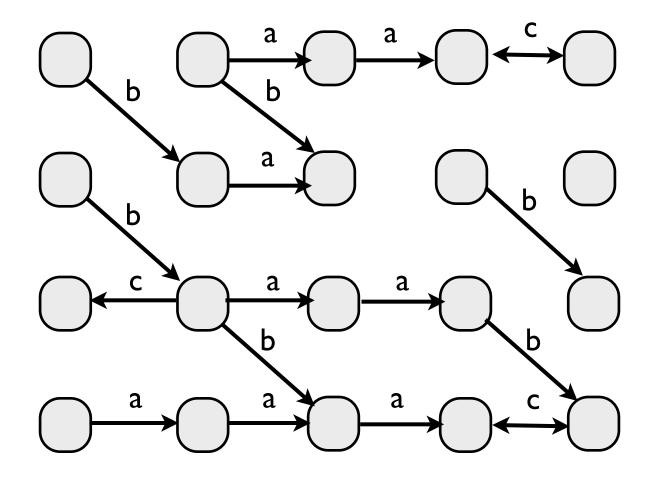
POST(X) =



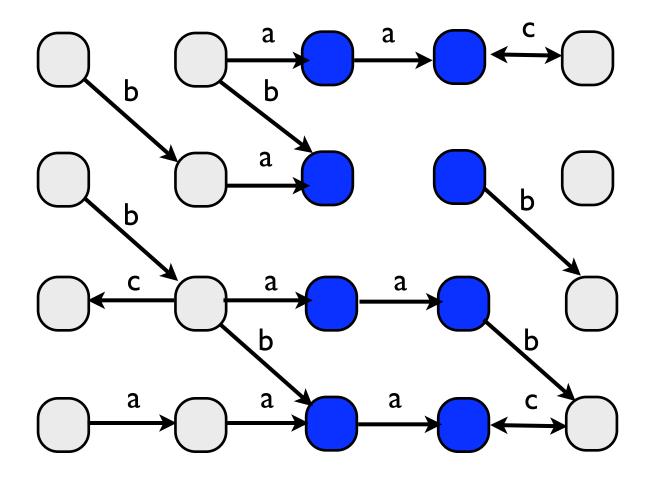
POST(X)=Y

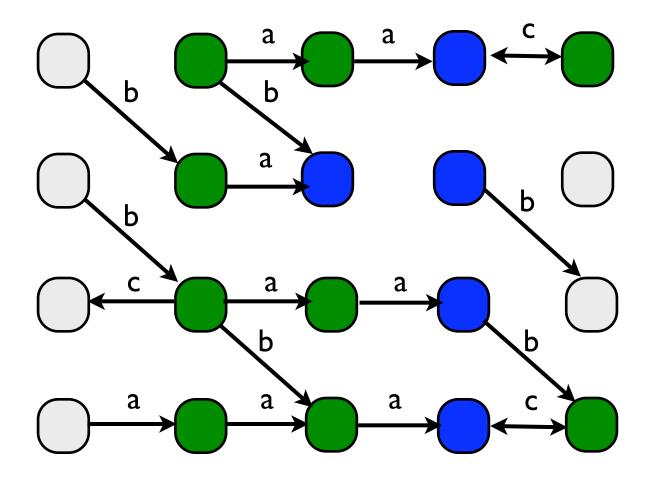


PRE(X) =

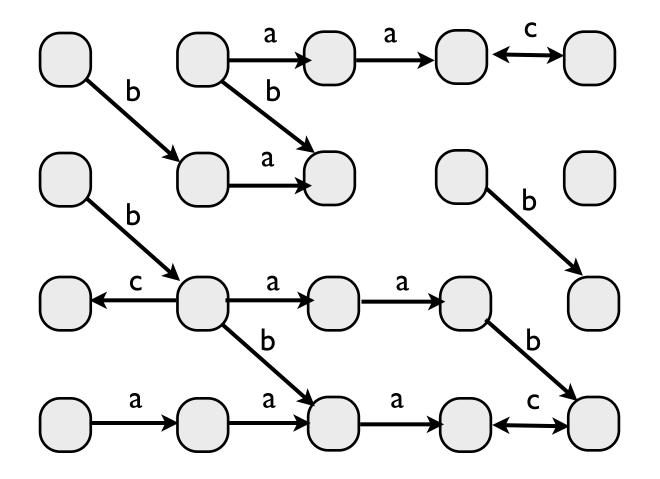


 $PRE(\times)=$

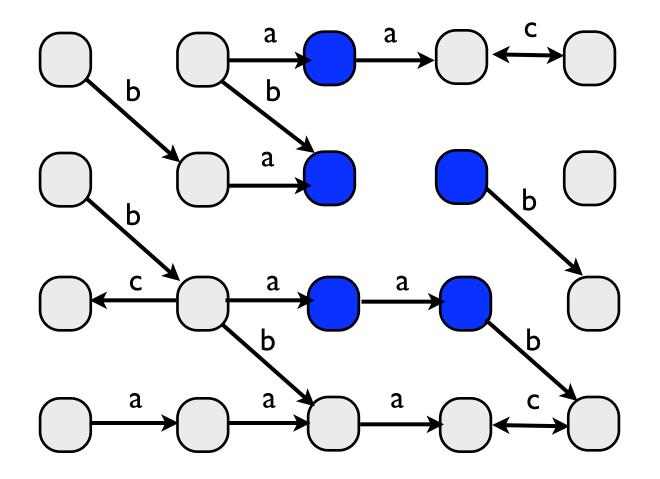




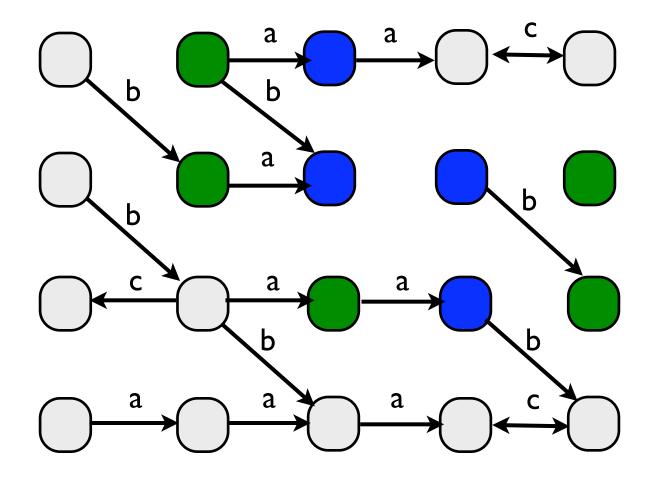
APRE(X) =



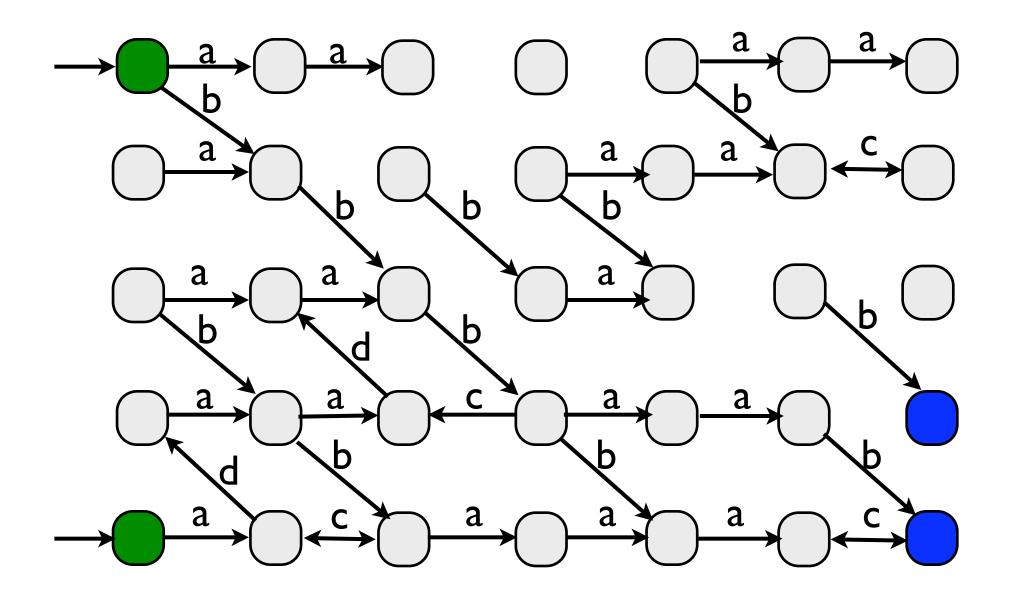
APRE(X) =

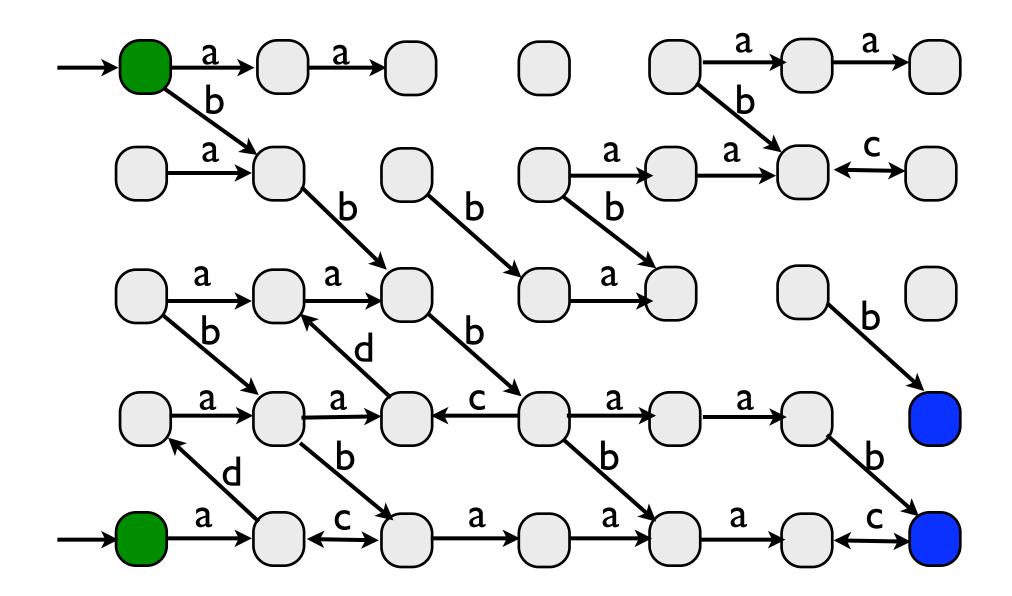


APRE(X)=Y

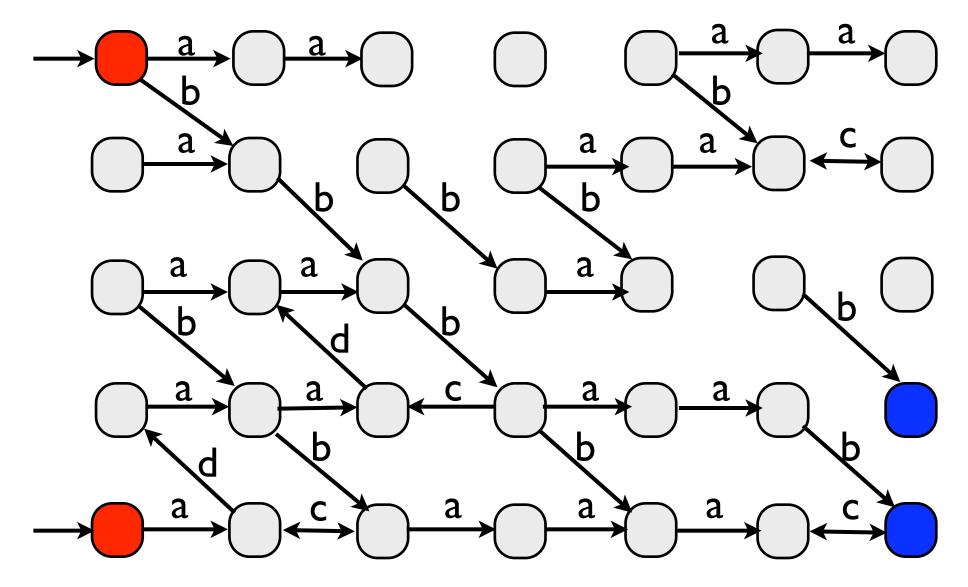


How can we use the **POST** operator to solve the following **reachability** question: Can we reach the blue states from initial states ?

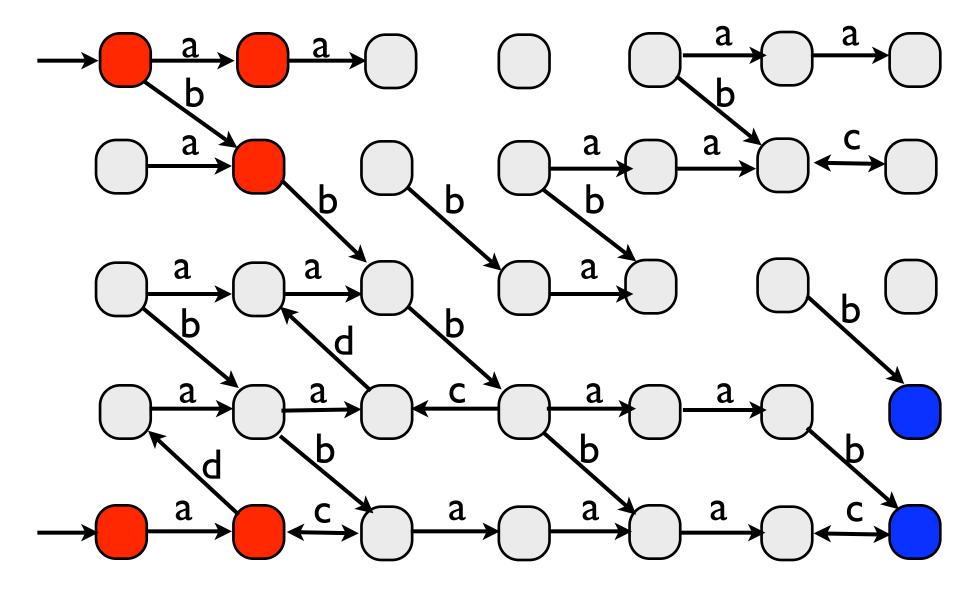




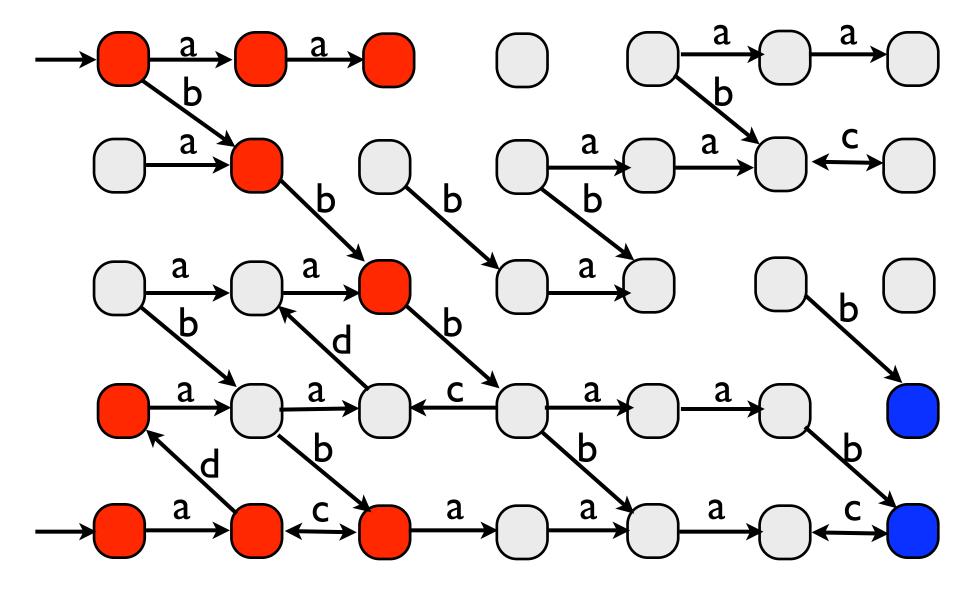
0 step



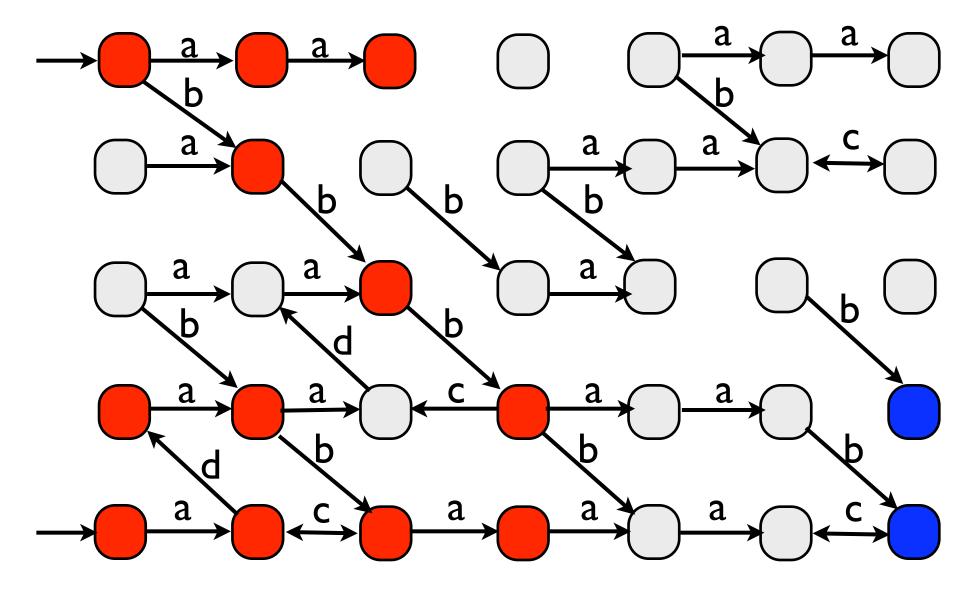
0 or l step



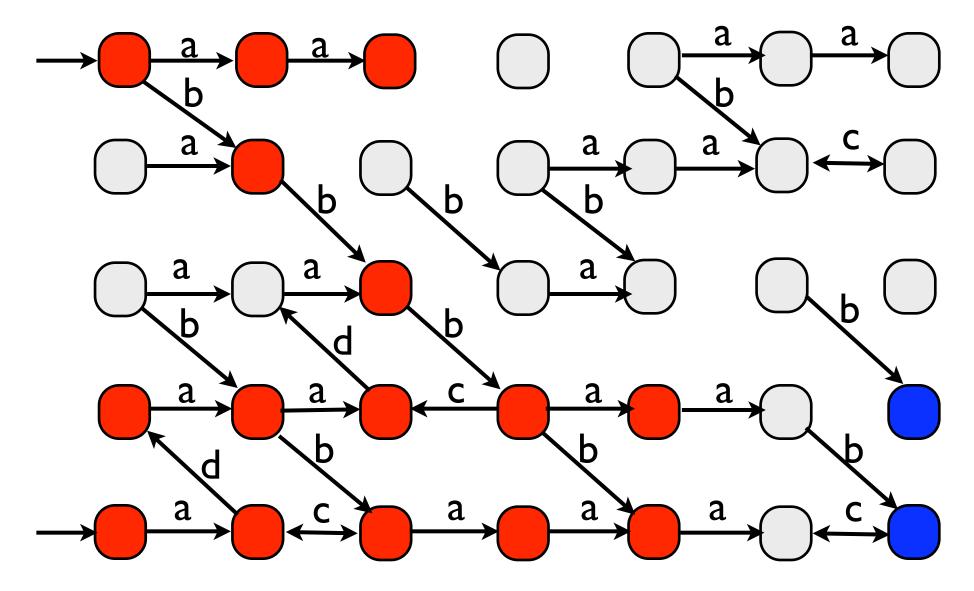
0, I, 2 steps



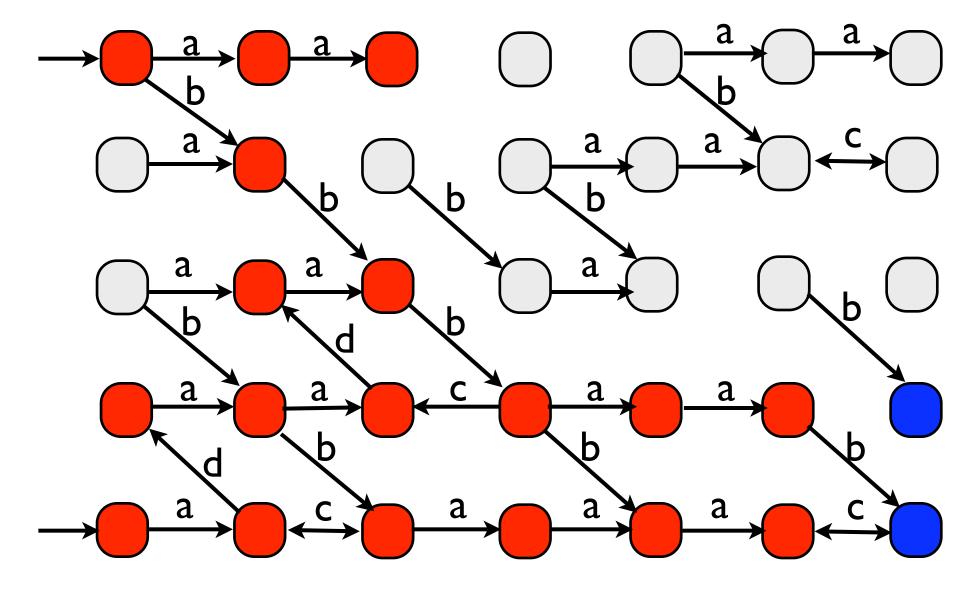
0, I, 2, 3 steps



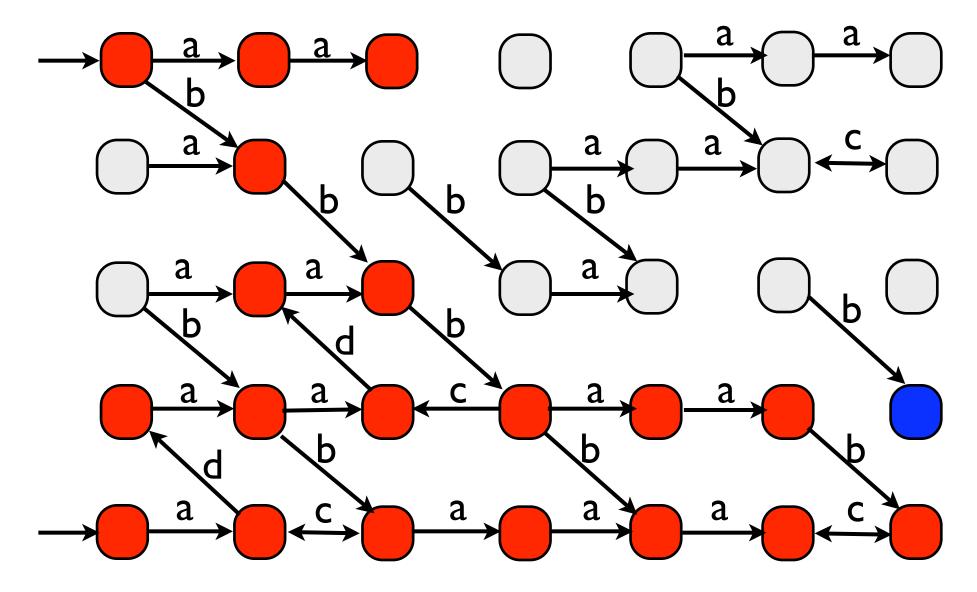
0, I, 2, 3, 4 steps



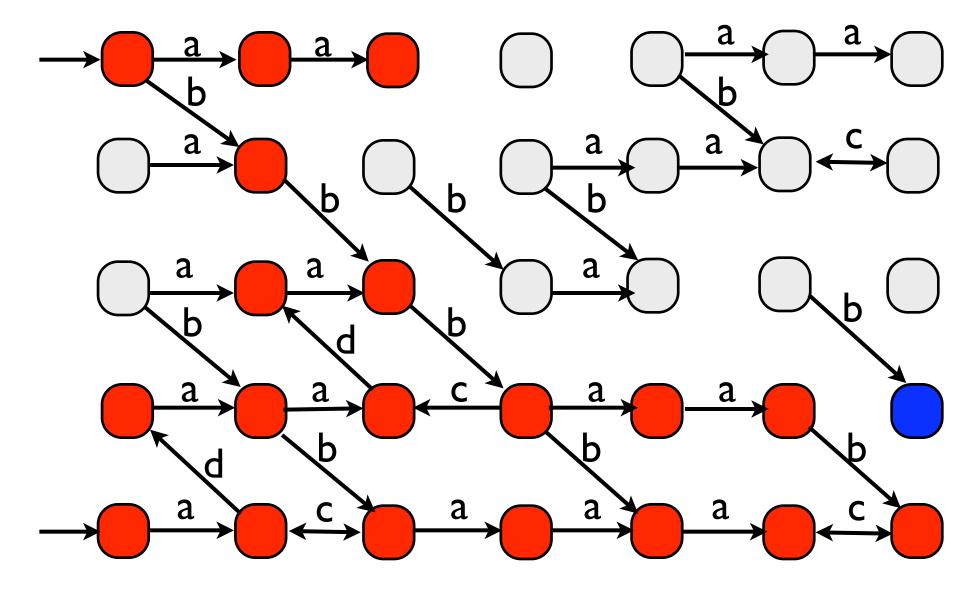
0, 1, 2, 3, 4, 5 steps



0, I, 2, 3, 4, 5, 6 steps



$0, 1, 2, 3, 4, 5, 6, \infty$ steps - we have reached a **fixed point**



Plan of the talk

- Labelled transition systems
- Properties of labeled transition systems: Reachability - Safety - Büchi properties
- Pre-Post operators
- Partial orders Fixed points
- Symbolic model-checking
- Application to TA: region equivalence, region automata, zones

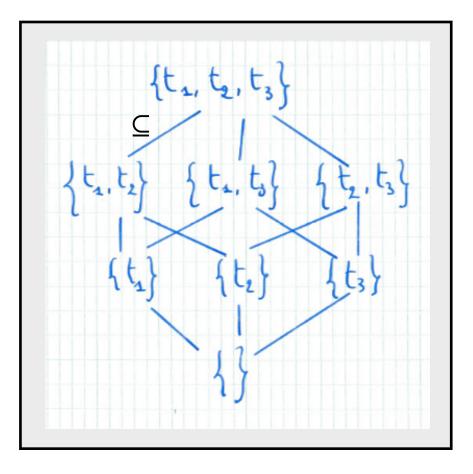
Partial orders

Let S be a set. A partial order over S is a relation ≤⊆S×S such that the following properties hold:

(*i*) reflexivity: $\forall s \in \mathbf{S}: s \leq s$,

- (ii) transitivity: $\forall s_1, s_2, s_3 \in \mathbf{S}$: $s_1 \leq s_2 \land s_2 \leq s_3 \rightarrow s_1 \leq s_3$,
- (iii) antisymmetry: $\forall s_1, s_2 \in \mathbf{S}$: $s_1 \leq s_2 \land s_2 \leq s_1 \rightarrow s_1 = s_2$.
- A pair (S, \leq) such that \leq is a partial order over S is called a **partially** ordered set.
- Let **T** be a set, we note P(T) for the set of subsets of **T**. Example: if $T = \{t_1, t_2, t_3\}$ then $P(T) = \{\{\}, \{t_1\}, \{t_2\}, \{t_3\}, \{t_1, t_2\}, \{t_2, t_3\}, \{t_1, t_3\}, \{t_1, t_2, t_3\}\}$. Clearly, for any set **T**, $(P(T), \subseteq)$ is a **partially ordered set**.

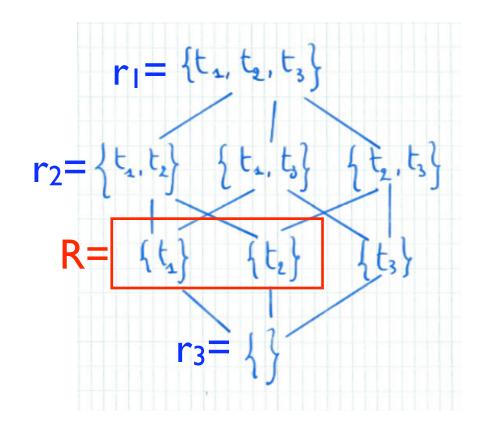
Graphical representation of P(T)



 $(P(\mathbf{T}), \subseteq)$ is a <u>partially ordered set</u>: \subseteq is <u>reflexive</u>: $\{\} \subseteq \{\}, \{t_1\} \subseteq \{t_1, t_2\} \subseteq \{t_1, t_2\}, ...$ \subseteq is <u>transitive</u>: $\{t_1\} \subseteq \{t_1, t_2\} \land \{t_1, t_2\} \subseteq \{t_1, t_2, t_3\} \rightarrow \{t_1\} \subseteq \{t_1, t_2, t_3\}$ and clearly, \subseteq is <u>antisymmetric</u>.

Lower and upper bounds

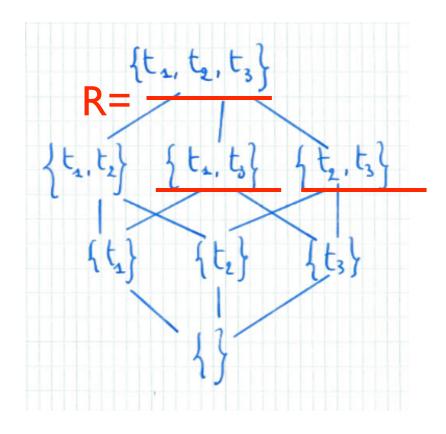
- Let (S,≤) be a partially ordered set. Let s∈S and S'⊆S,
 s is a lower-bound of S' iff ∀s'∈S' · s ≤ s'.
 s is a upper-bound of S' iff ∀s'∈S' · s'≤s.
- Let s be lower-bound for S', we say that s is the greatest lower-bound (glb) for S' iff for all lower-bound s' for S', we have s'≤s. We note glb(S') the glb of S' it it exists.
- Let s be upper-bound for S', we say that s is the least upper-bound (lub) for S' iff for all upper-bound s' for S', we have s≤s'. We note lub(S') the lub of S' it it exists.



 r_1 and r_2 are **upper bounds** of **R**.

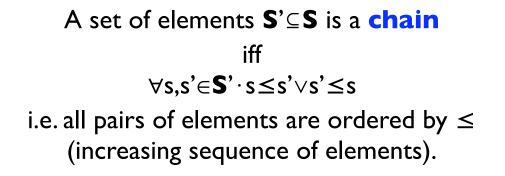
 r_2 is the **least upper bound** of **R**.

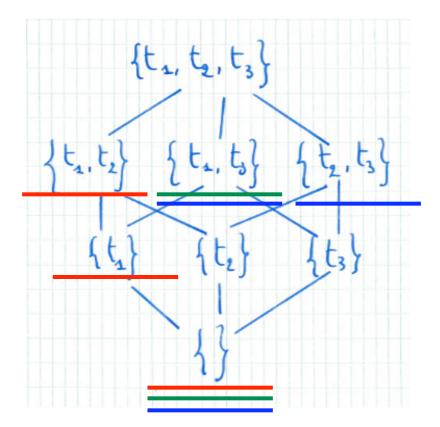
 r_3 is the only **lower-bound** of R and so it is the **greatest lower bound** of R.



The **lub** of a set of sets R_i is equal to $\bigcup_i R_i$ ex: **lub** $R = \{t_1, t_2, t_3\}$

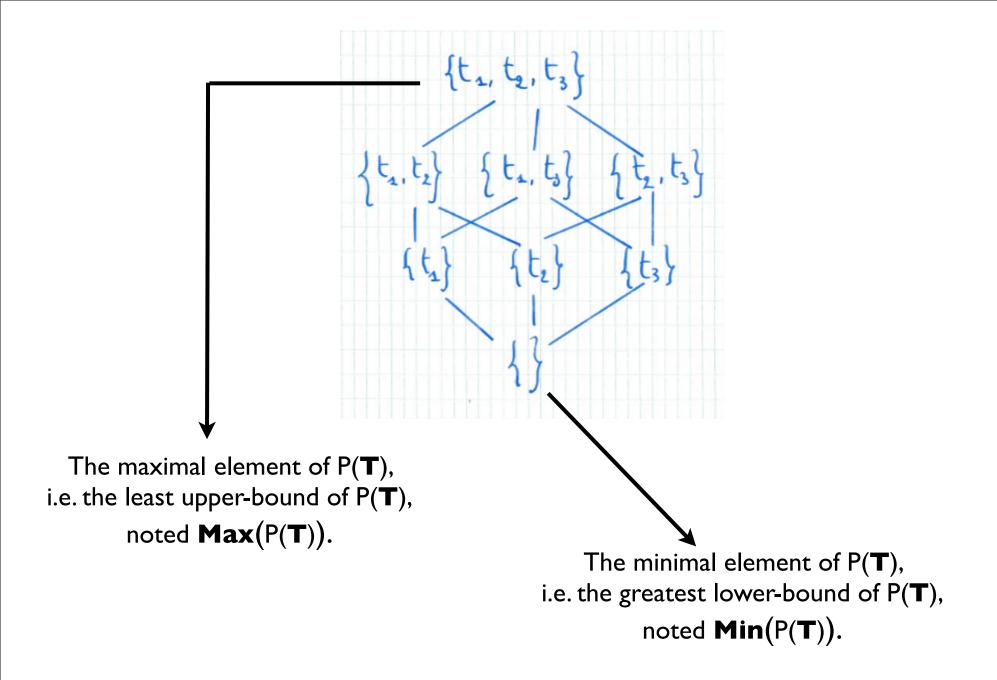
The **glb** of a set of sets R_i is equal to $\bigcap_i R_i$ ex: **glb** $R = \{t_3\}$





 $\begin{array}{l} {\sf R} = \{\{\}, \{t_1\}, \{t_1, t_2\}\} \text{ is a chain in } {\sf P}({\sf T}). \\ {\sf R}' = \{\{\}, \{t_1, t_3\}\} \text{ is a chain in } {\sf P}({\sf T}). \\ {\sf R}'' = \{\{\}, \{t_1, t_3\}, \{t_2, t_3\}\} \text{ is not a chain in } {\sf P}({\sf T}). \end{array}$

- A partially ordered set (S,≤) is a complete partial order if every chain in S has a lub in S.
- A complete partial order (S, \leq) is a **complete lattice** if every subset S' of S has a **lub** in (S, \leq) .
- Note that glb S'= lub{s∈S|∀s'∈S: s≤s'}, so every subset S' in a complete lattice has also a glb.
- Example: (P(T),⊆) is a complete lattice. Indeed, remember that the lub of a set of sets R_i is equal to ∪_i R_i and the glb of a set of sets R_i is equal to ∩_i R_i.

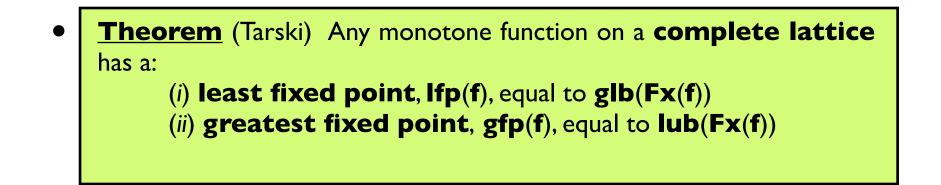


Min and Max elements in a complete lattice

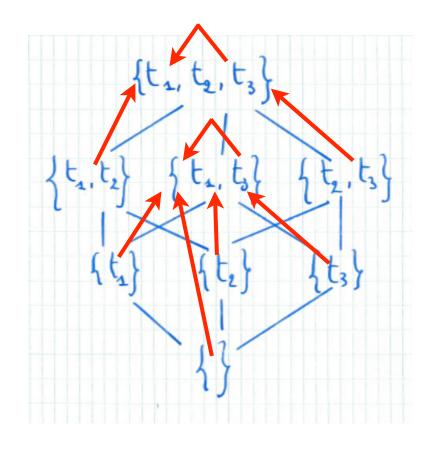
- Let (S, \leq) be <u>a partially ordered set</u>. A function $f: S \rightarrow S$ is monotone (order preserving) iff $\forall s, s' \in S \cdot s \leq s' \rightarrow f(s) \leq f(s')$.
- Let (S,≤) be a <u>complete partially ordered set</u>. A function f:S→S is continuous iff f is monotone and for all non-empty chain S' in S: f(lub(S'))=lub(f(S')).

Remark. In any finite complete partially ordered set S, if f is monotone then f is continuous.

s∈S is a fixed point of f:S→S if f(s)=s. The set of fixed points of f is noted Fx(f).

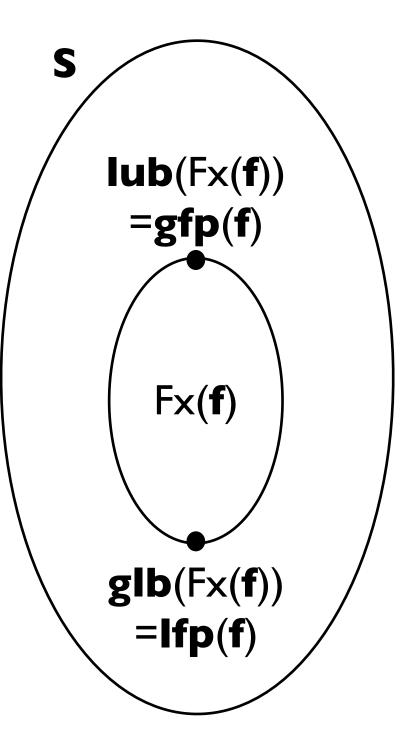


Let us consider **f** as depicted by red arrows



Clearly, **f** is monotone (and so continuous).

```
\begin{aligned} & \textbf{Fx}(\textbf{f}) = \{\{t_1, t_3\}, \{t_1, t_2, t_3\}\}\}. \\ & \textbf{lfp}(\textbf{f}) = \{t_1, t_3\} = \textbf{glb}(\textbf{Fx}(\textbf{f})). \\ & \textbf{gfp}(\textbf{f}) = \{t_1, t_2, t_3\} = \textbf{lub}(\textbf{Fx}(\textbf{f})). \end{aligned}
```

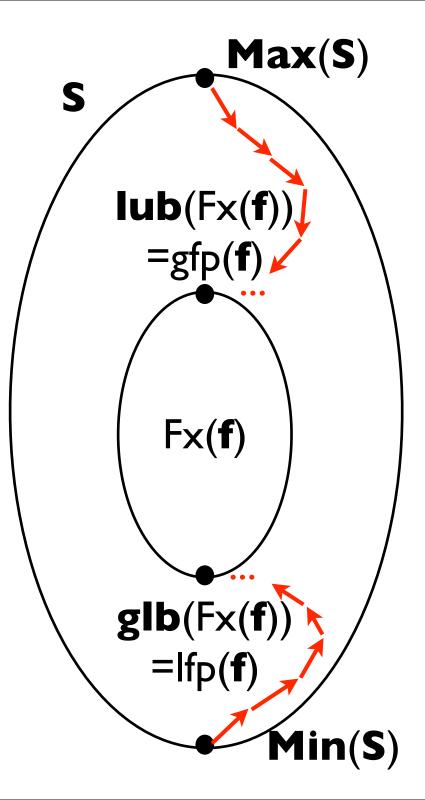


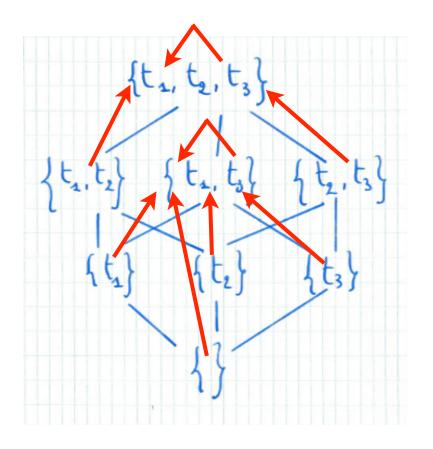
- Let **f**ⁱ be defined **inductively** as
 - for i=0: **f**⁰=**f**
 - for all i > 0: $f^i = f(f^{i-1})$.

 Theorem (Kleene-Tarski) Let (S,≤) be a complete lattice, let f:S→S be a continuous: Ifp(f)=glb { fⁱ(Min(S)) | i≥0 } and gfp(f)=lub { fⁱ(Max(S)) | i≥0 }.

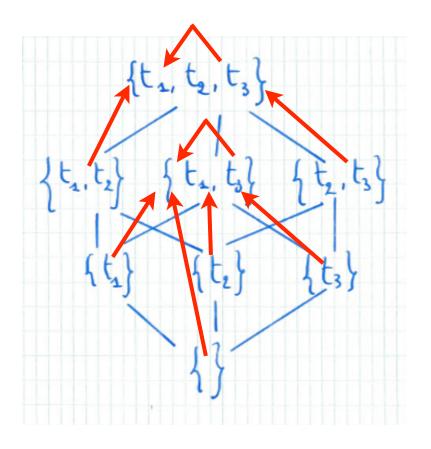
 This gives us an iterative schema to compute the lfp(f) (gfp(f)) of a continuous function f:

 \Rightarrow iterate the function from the **Min** (**Max**) of the set until stabilization.





Computation of **lfp(f)**



Computation of **gfp(f**)

 $\mathbf{R}_0 = \mathbf{f}^0(\{t_1, t_2, t_3\}) = \{t_1, t_2, t_3\} = \mathbf{gfp}(\mathbf{f})$

Plan of the talk

- Labelled transition systems
- Properties of labeled transition systems: Reachability - Safety - Büchi properties
- Pre-Post operators
- Partial orders Fixed points
- Symbolic model-checking
- Application to TA: region equivalence, region automata, zones

Symbolic model-checking

- The reachability, safety, and Büchi objectives can be solved using **fixed point equations**.
- Solving those equations will be done by iteration of functions built from the **Pre**, **Apre** or **Post** operators on sets of states.
- Those algorithms are called **symbolic** because they **manipulate sets** of states directly instead of manipulating **individual states** as it is done in so-called **explicit** model-checking algorithms.

Fixed points for reachability

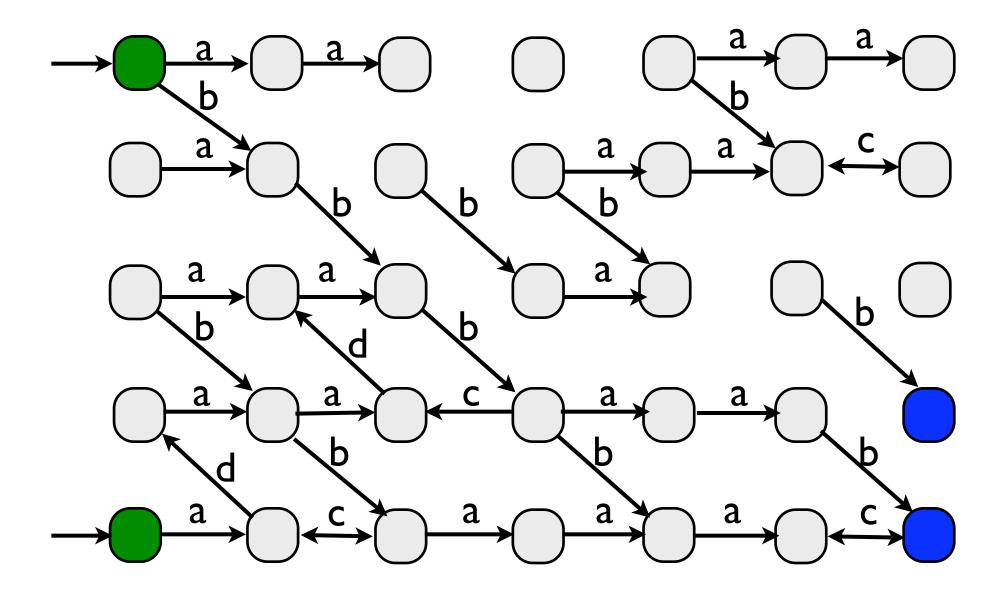
- Let us consider an instance of the reachability problem given by the LTS L=(S,S₀,Σ,T,C,λ), and a set of states Goal ⊆ S;
- **Goal** is reachable in the LTS

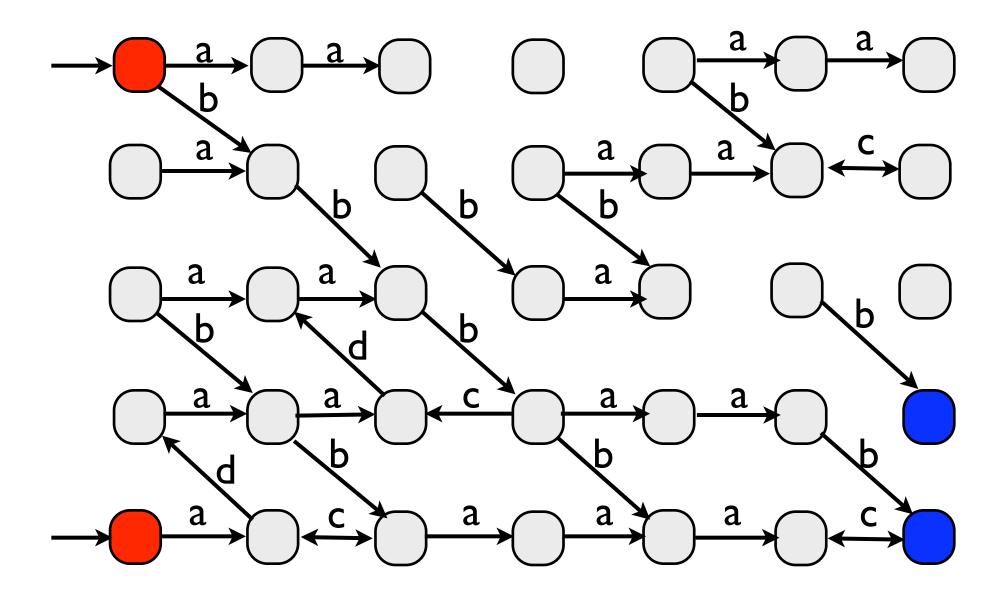
 $\begin{array}{l} \text{iff Ifp } (\lambda X. \ S_0 \cup \textbf{POST}(X)) \cap \textbf{Goal} \neq \varnothing \\ \text{this is a forward algorithm} \end{array}$

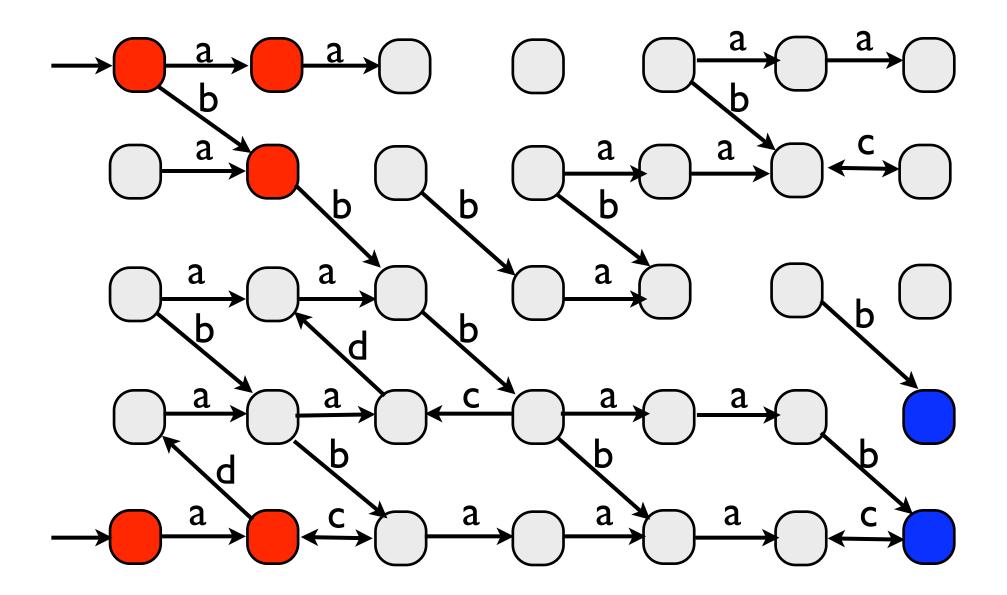
iff **Ifp** $(\lambda X.$ **Goal** \cup **PRE** $(X)) \cap S_0 \neq \emptyset$ this is a backward algorithm

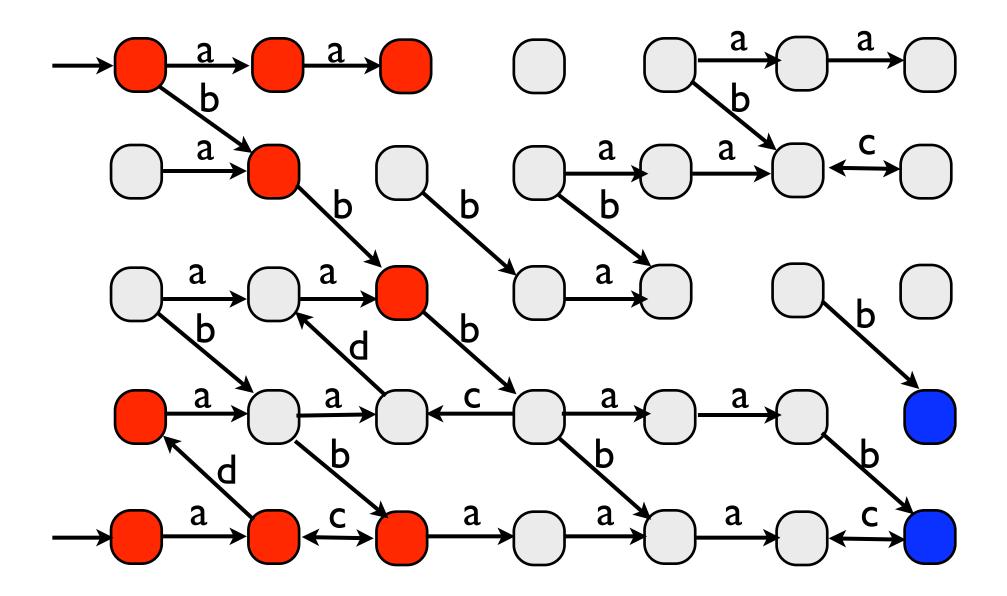
Reachability - Forward algorithm

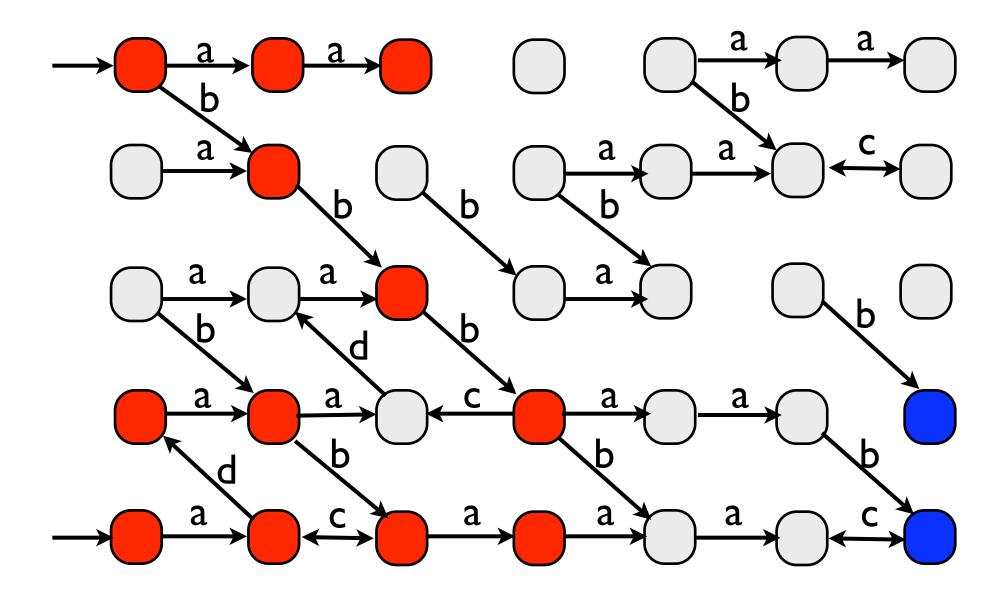
 $\textbf{Ifp} \ (\lambda X. \ \textbf{S_0} \cup \textbf{POST}(X)) \ \cap \ \textbf{Goal} \neq \varnothing$

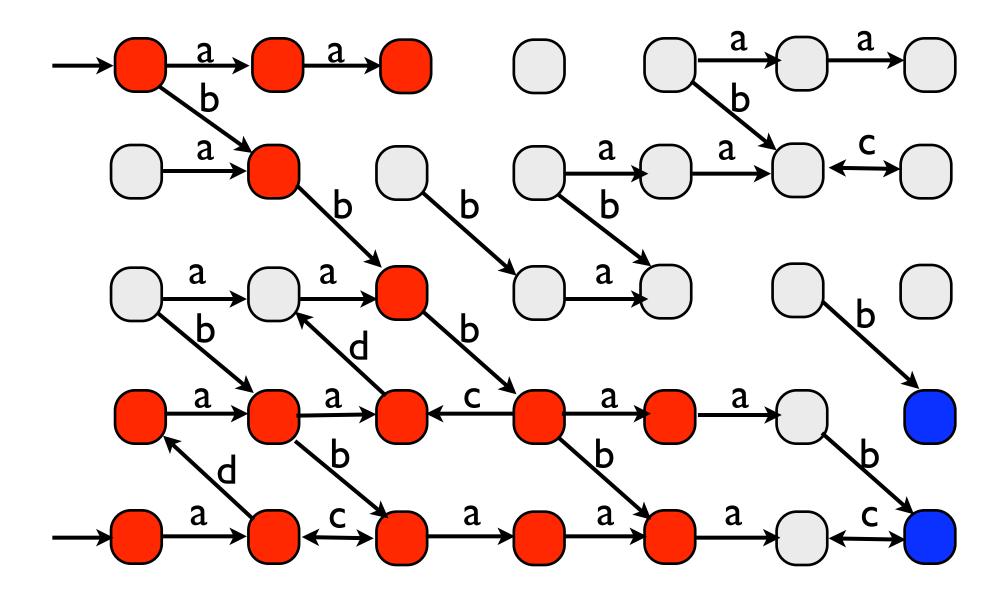


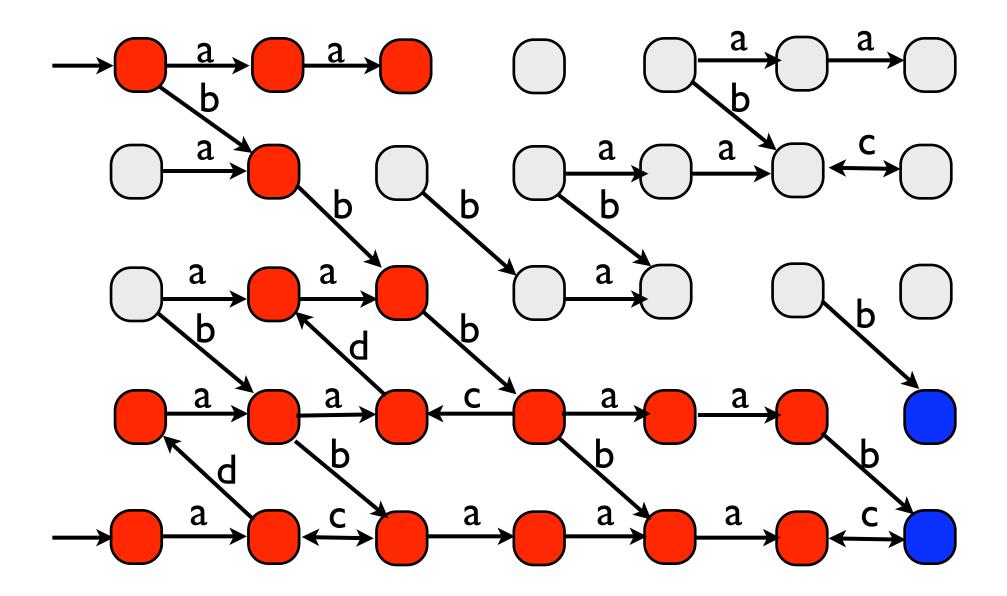


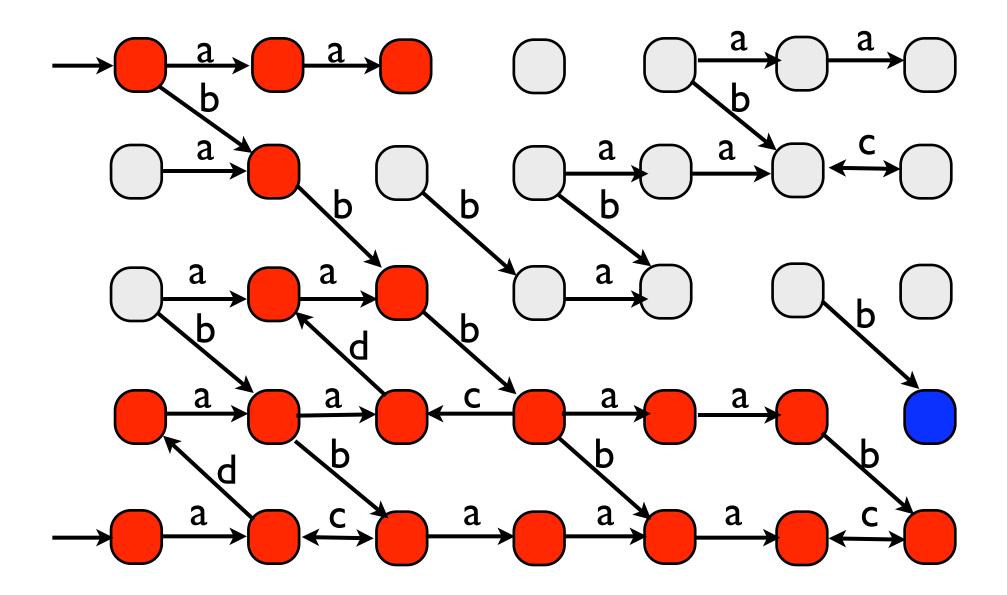


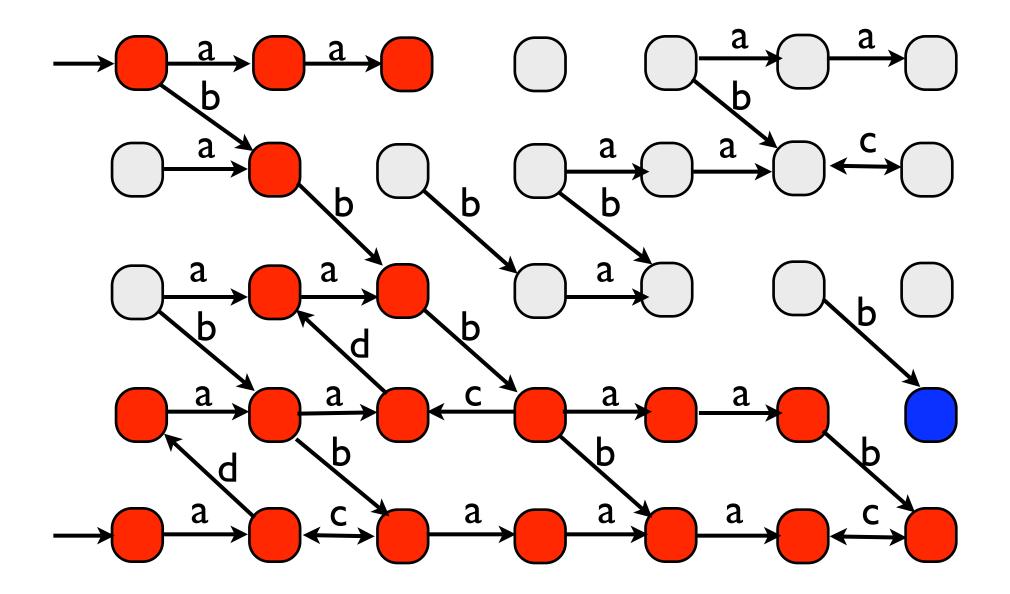




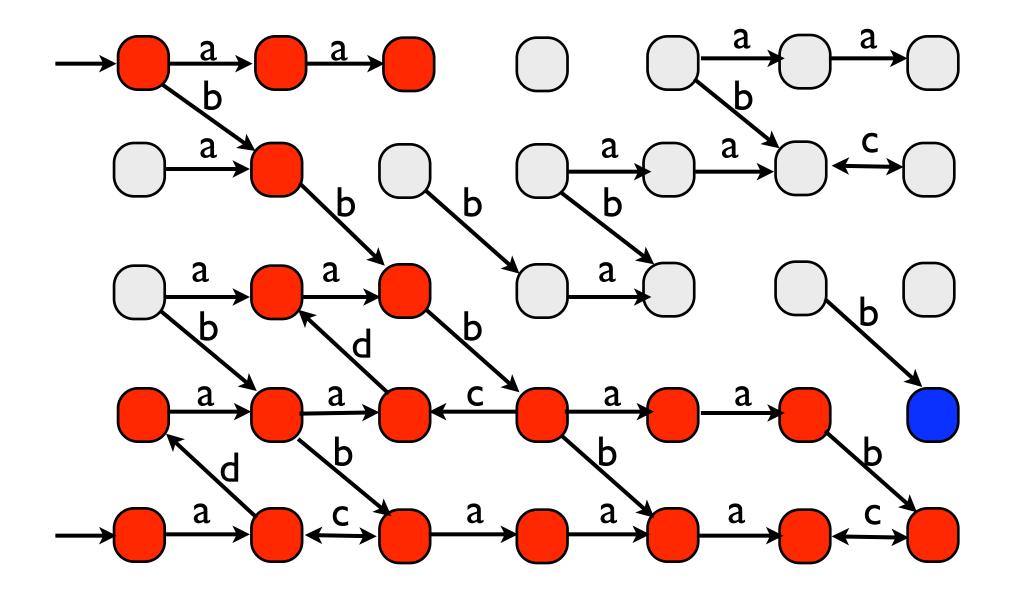






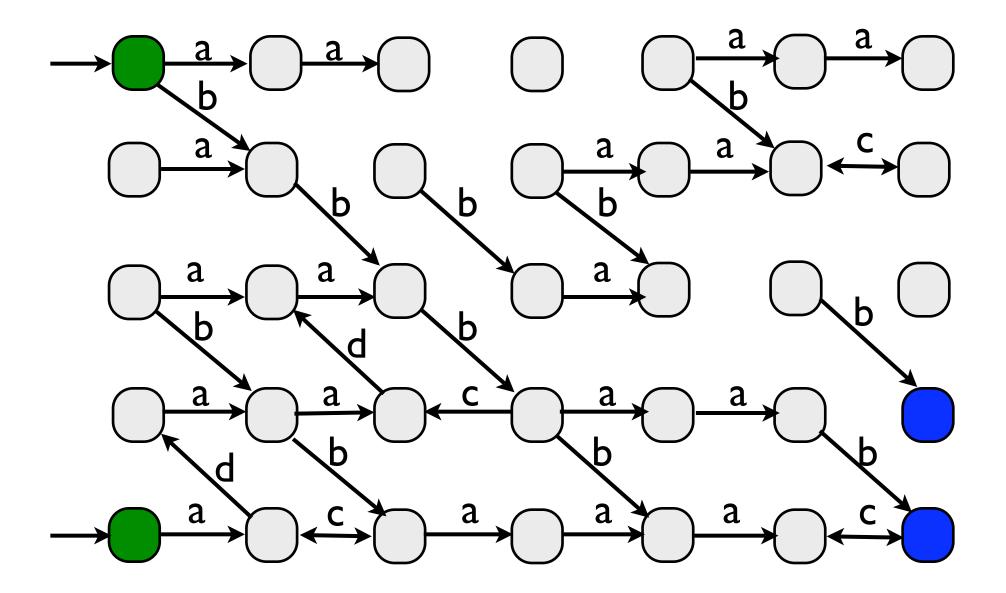


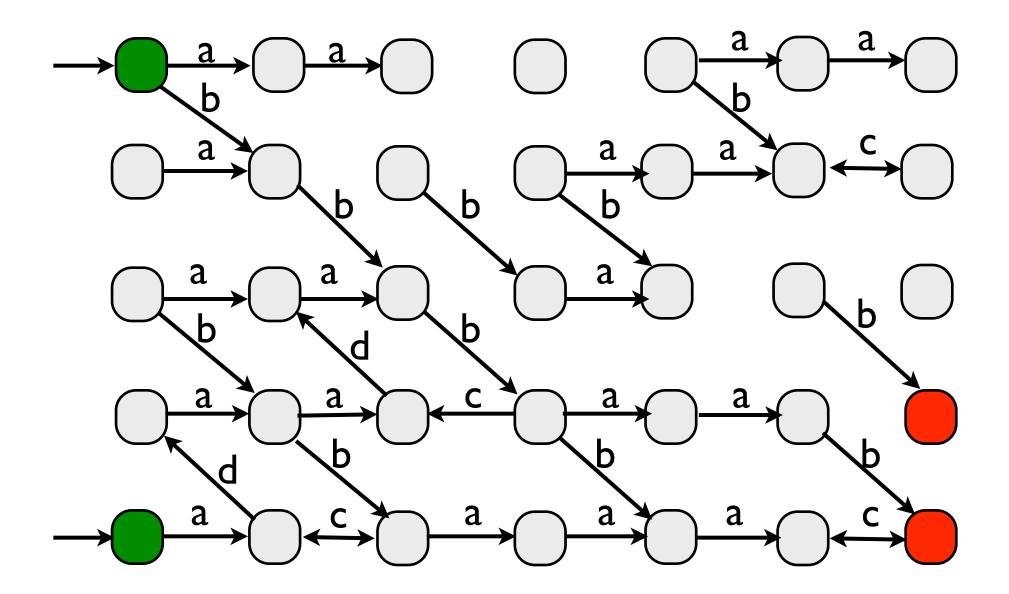
Iterative evaluation of Ifp (λX . S₀ \cup POST(X)) Fixed point ! It intersects Goal ! Positive instance.

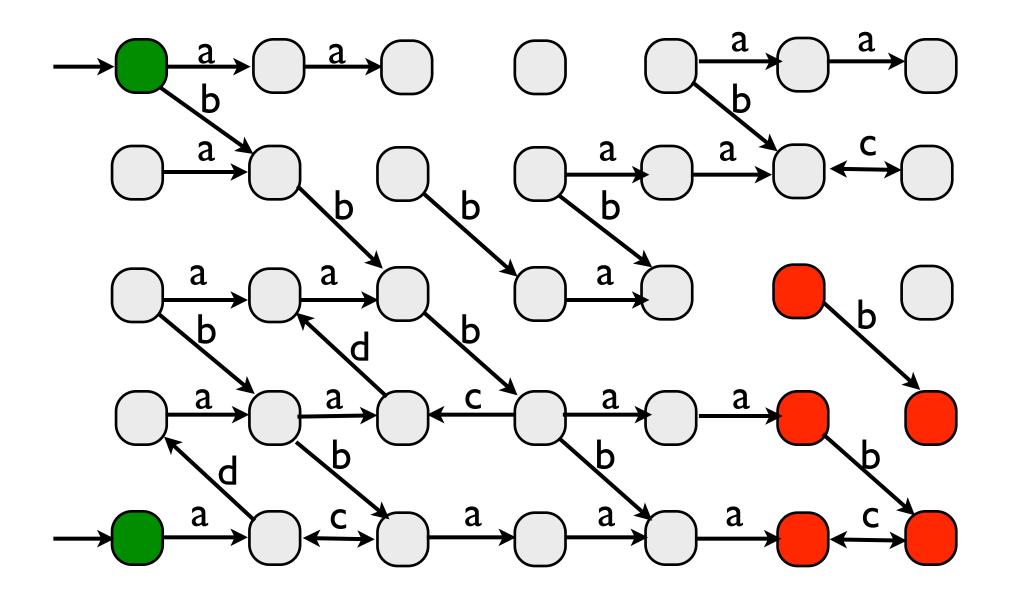


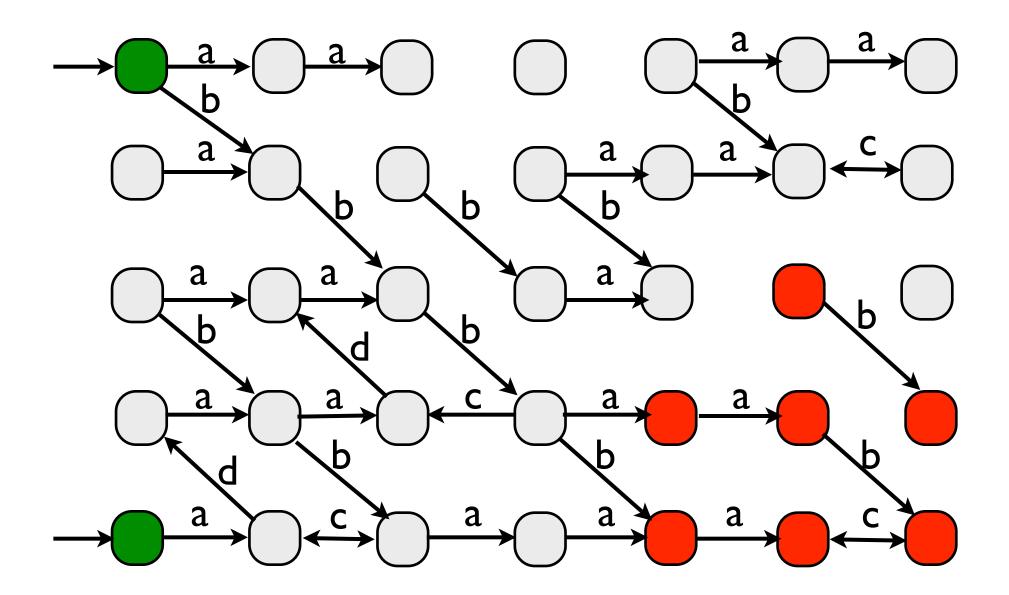
Reachability - Backward algorithm

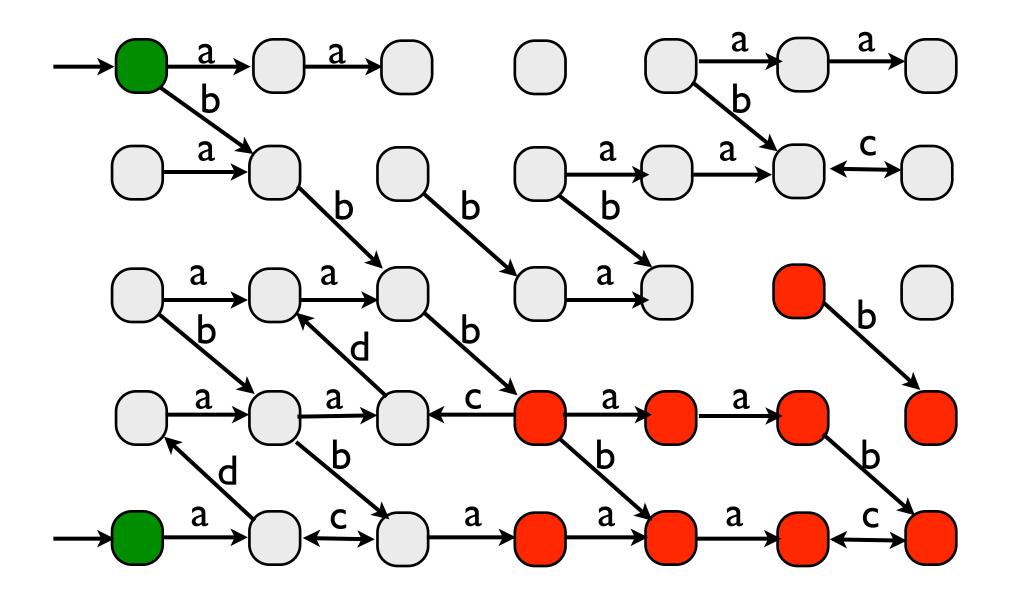
Ifp (λX . Goal \cup PRE(X)) \cap S₀ $\neq \emptyset$

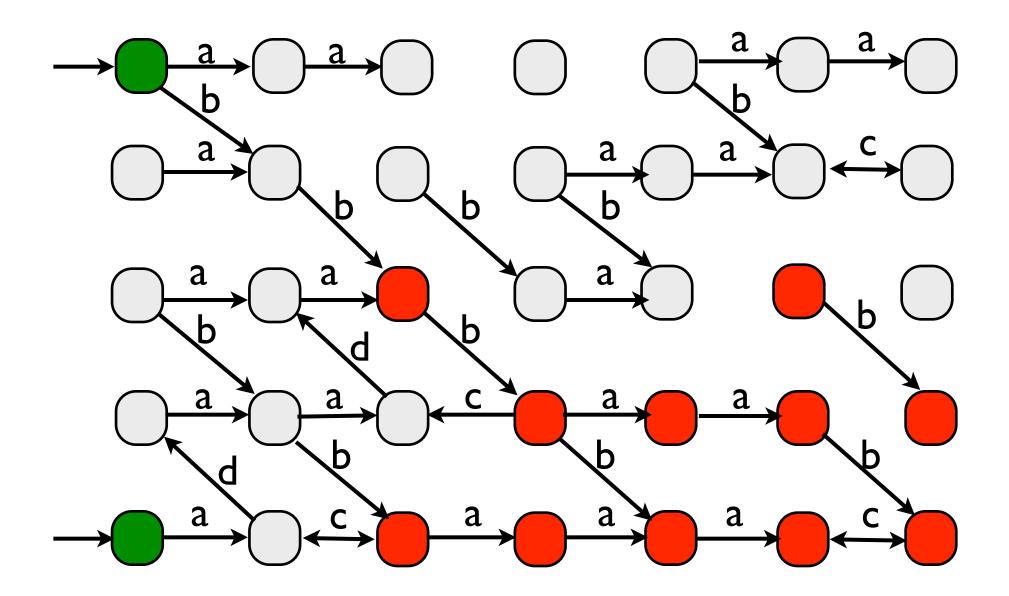


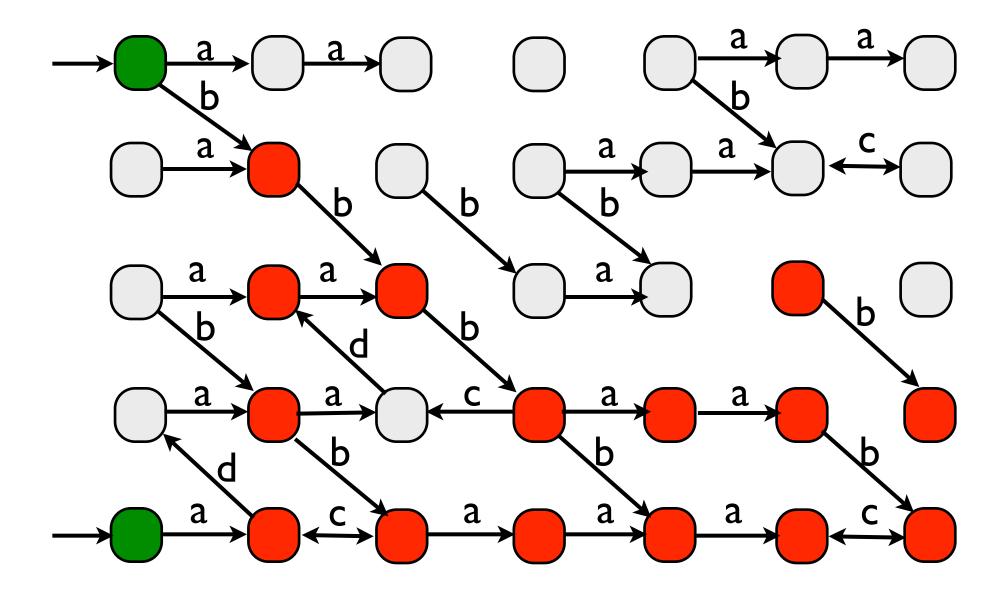


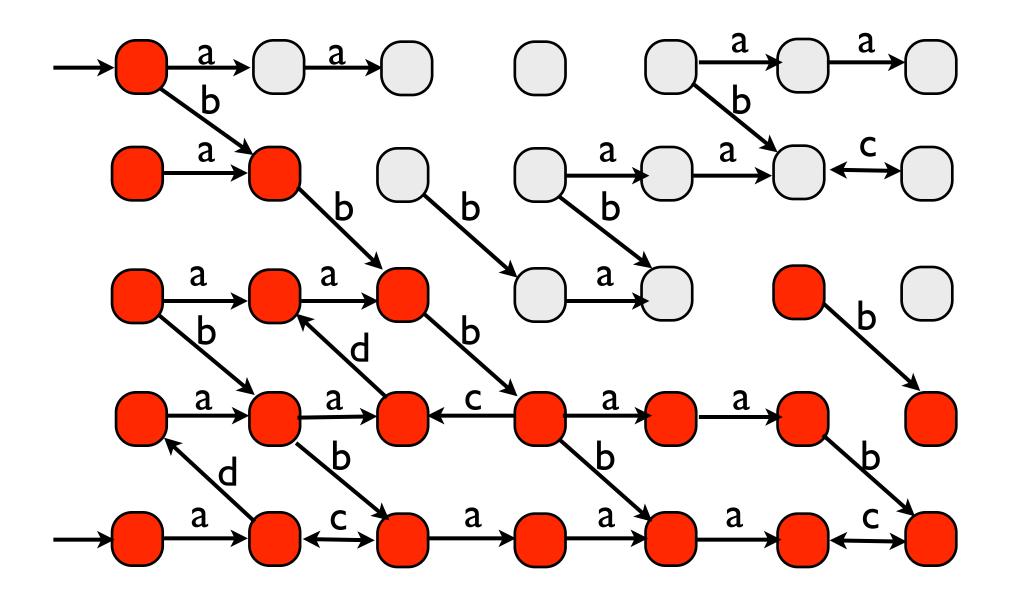




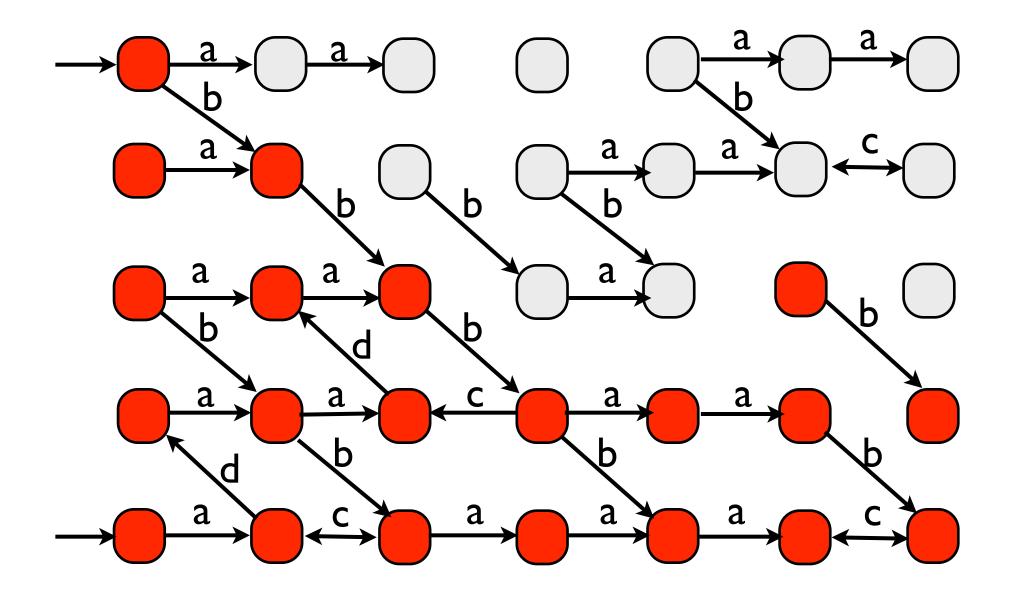




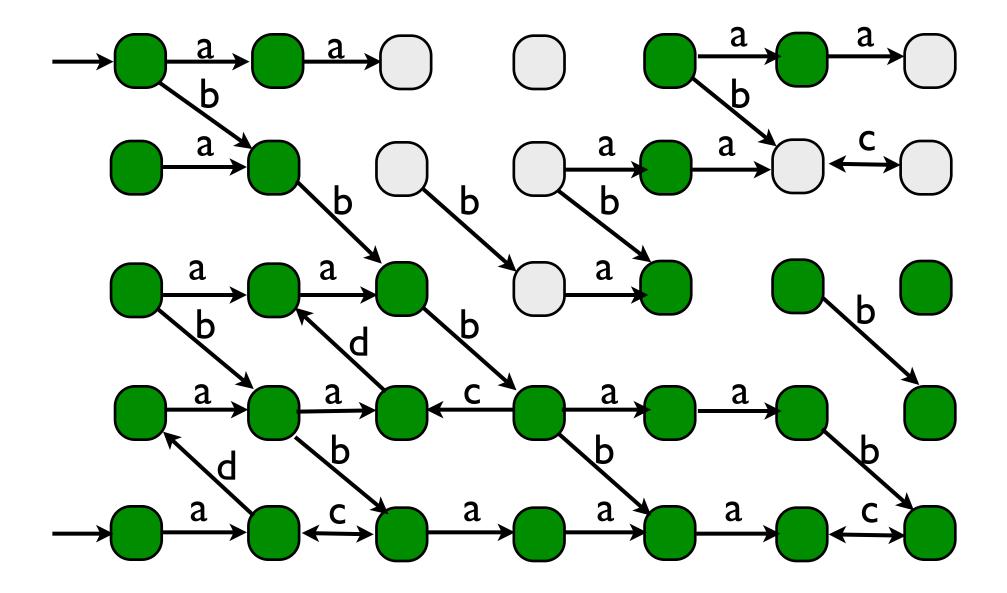




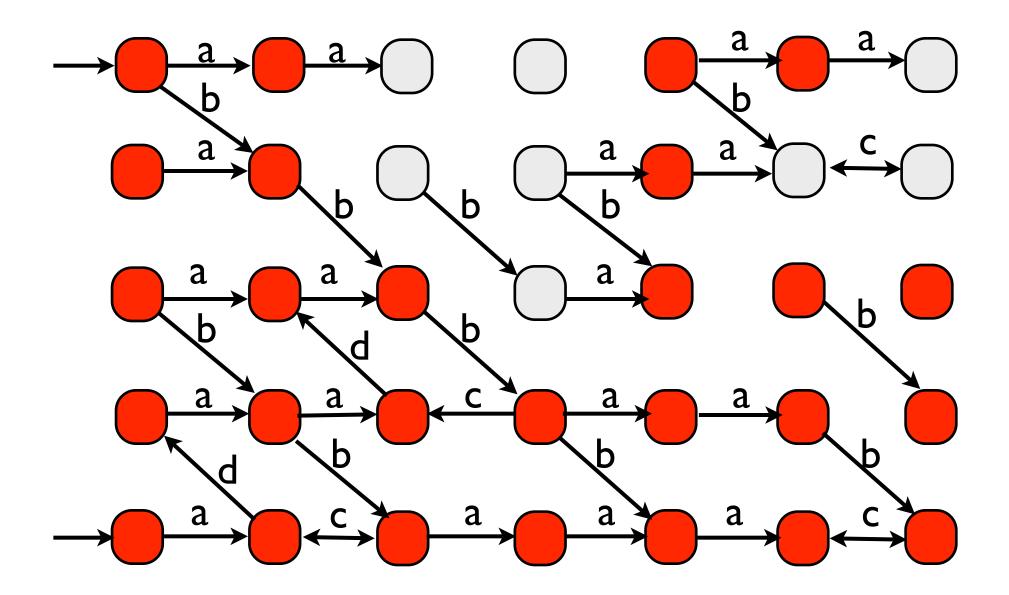
Iterative evaluation of Ifp (λX . Goal \cup PRE(X)) \cap S₀ $\neq \emptyset$ Fixed point ! It intersects S₀ ! Positive instance.



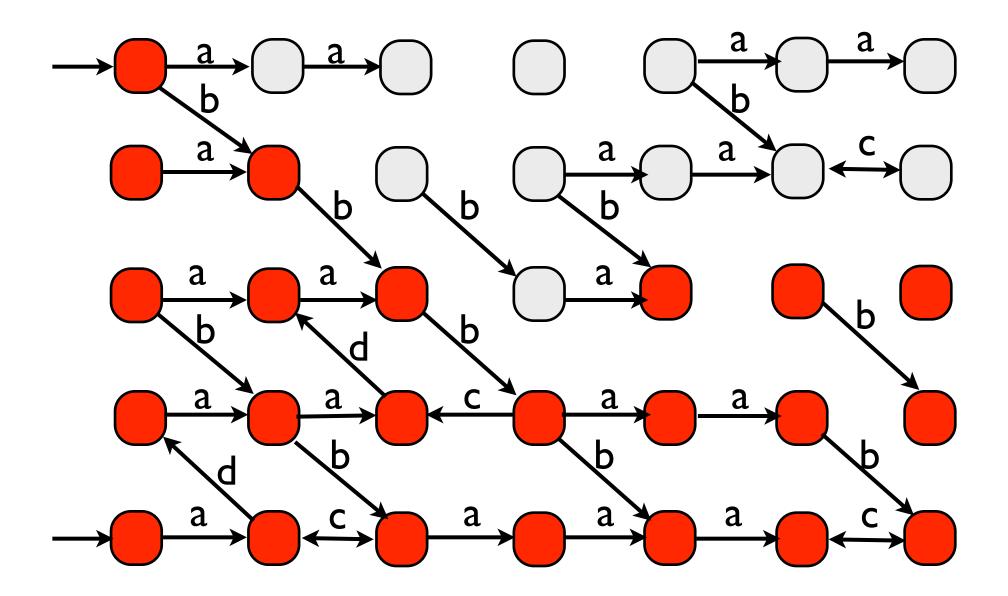
Safety - Backward algorithm $S_0 \subseteq gfp(\lambda X. Safe \cap APRE(X))$



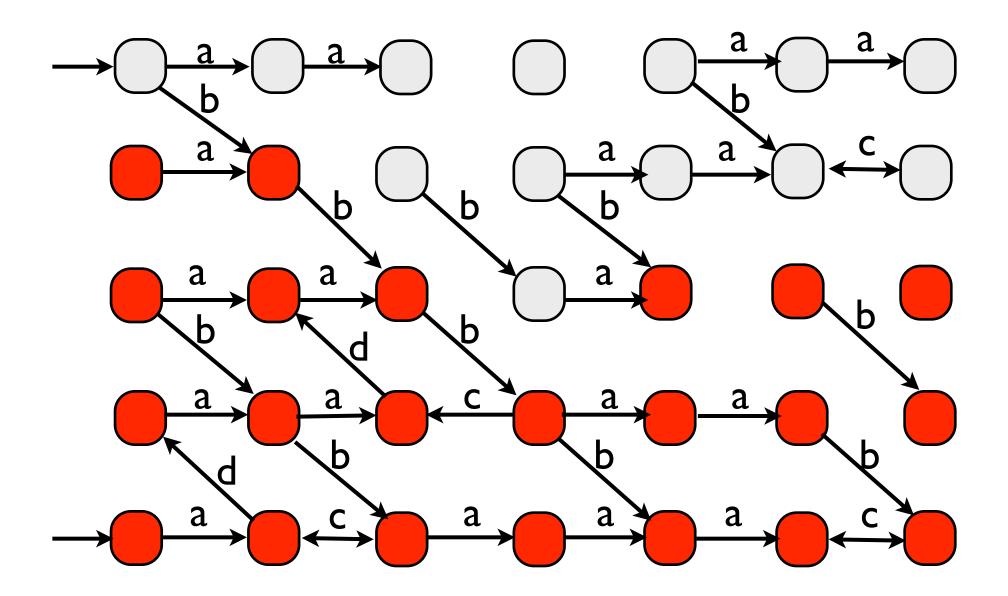
Iterative evaluation of **gfp** (λX . **Safe** \cap **APRE**(X))



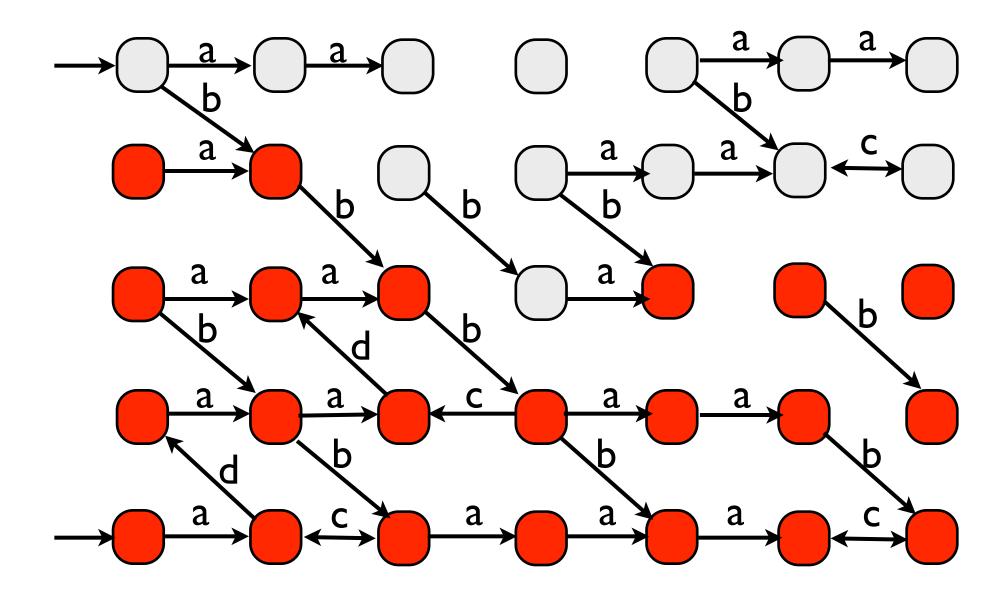
Iterative evaluation of **gfp** (λX . **Safe** \cap **APRE**(X))



Iterative evaluation of **gfp** (λX . **Safe** \cap **APRE**(X))



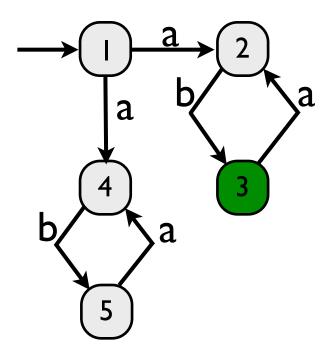
Iterative evaluation of **gfp** (λX . **Safe** \cap **APRE**(X)) Fixed point ! Negative instance as S₀ $\not\subseteq$ **gfp** (λX . **Safe** \cap **APRE**(X)).

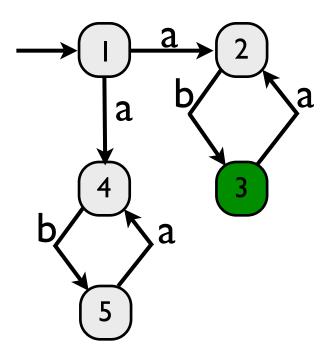


- Let consider an instance of the Büchi verification problem given by the LTS L=(S,S₀,Σ,T,C,λ), a set of states Goal ⊆ S;
- **Goal** is reachable infinitely often from an initial states in L

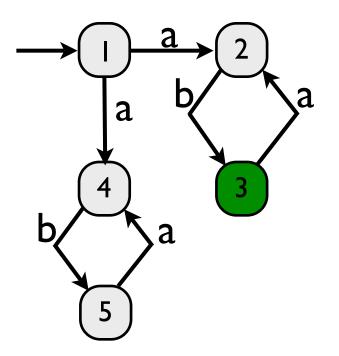
iff

 $\begin{aligned} & \textbf{gfp}(\lambda Y. \, \textbf{lfp}(\lambda X. \, \textbf{PRE}(X) \, \cup \, (\, \textbf{Goal} \, \cap \, \textbf{PRE}(Y)))) \, \cap \, \textbf{S}_0 \neq \emptyset \\ & \text{this is a backward algorithm} \end{aligned}$



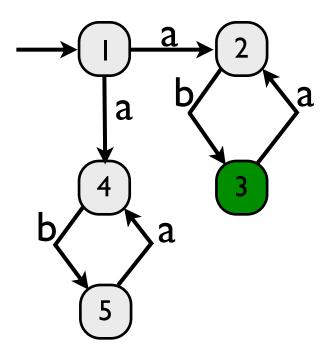


We want to check if $\{3\}$ can be reached infinitely often from the initial state.



We want to check if {3} can be reached infinitely often from the initial state.

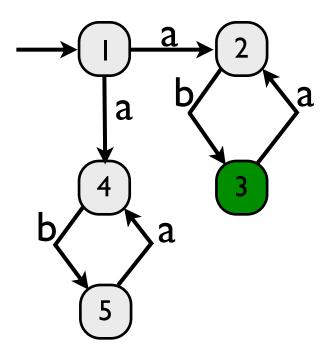
For that we evaluate the fixed point expression $gfp(\lambda Y. Ifp(\lambda X. PRE(X) \cup (Goal \cap PRE(Y))))$



We want to check if $\{3\}$ can be reached infinitely often from the initial state.

For that we evaluate the fixed point expression $gfp(\lambda Y. Ifp(\lambda X. PRE(X) \cup (Goal \cap PRE(Y))))$

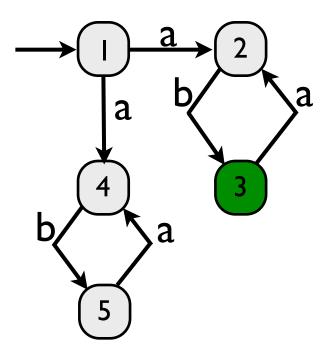
 $Y_0 = \{1, 2, 3, 4, 5\}$



We want to check if $\{3\}$ can be reached infinitely often from the initial state.

For that we evaluate the fixed point expression $gfp(\lambda Y. Ifp(\lambda X. PRE(X) \cup (Goal \cap PRE(Y))))$

 $\begin{array}{ll} Y_0 = \left\{1,2,3,4,5\right\} & \quad \text{lfp}(\lambda X. \ \text{PRE}(X) \cup (\ \text{Goal} \cap \ \text{PRE}(Y_0))) \\ & = \quad \text{lfp}(\lambda X. \ \text{PRE}(X) \cup (\ \text{Goal} \)) \\ & = \left\{1,2,3\right\} = Y_1 \end{array}$

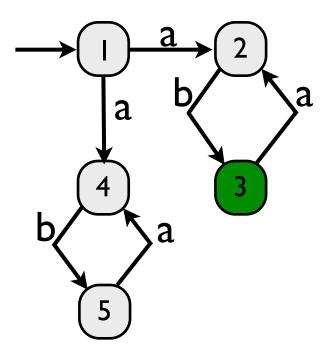


We want to check if $\{3\}$ can be reached infinitely often from the initial state.

For that we evaluate the fixed point expression $gfp(\lambda Y. Ifp(\lambda X. PRE(X) \cup (Goal \cap PRE(Y))))$

 $\begin{array}{l} Y_0 = \left\{ 1,2,3,4,5 \right\} & \quad \text{lfp}(\lambda X. \, \text{PRE}(X) \cup (\, \text{Goal} \cap \, \text{PRE}(Y_0))) \\ = \, \text{lfp}(\lambda X. \, \text{PRE}(X) \cup (\, \text{Goal} \,)) \\ = \left\{ 1,2,3 \right\} = Y_1 \end{array}$

 $Y_1 = \{1, 2, 3\}$

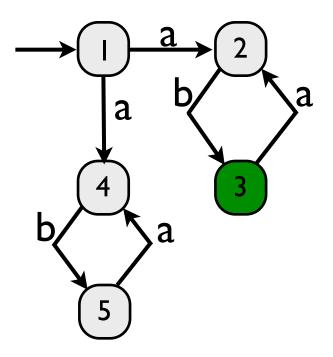


We want to check if {3} can be reached infinitely often from the initial state.

For that we evaluate the fixed point expression $gfp(\lambda Y. Ifp(\lambda X. PRE(X) \cup (Goal \cap PRE(Y))))$

Y ₀ ={1,2,3,4,5}	Ifp $(\lambda X. PRE(X) \cup (Goal \cap PRE(Y_0)))$
	= Ifp(λX . PRE(X) \cup (Goal))
	={1,2,3}=Y

 $\begin{array}{ll} Y_1 = \left\{1,2,3\right\} & \quad \text{Ifp}(\lambda X. \, \text{PRE}(X) \cup (\text{ Goal } \cap \text{PRE}(Y_1))) \\ = \quad \text{Ifp}(\lambda X. \, \text{PRE}(X) \cup (\text{ Goal } \cap \{1,2,3\})) \\ = \left\{1,2,3\right\} = Y_2 = Y_1 \end{array}$



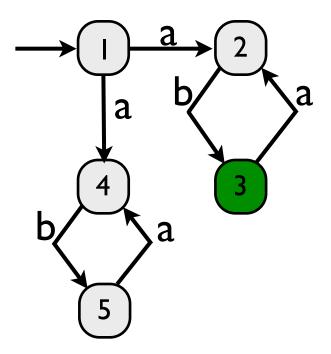
We want to check if $\{3\}$ can be reached infinitely often from the initial state.

For that we evaluate the fixed point expression $gfp(\lambda Y. Ifp(\lambda X. PRE(X) \cup (Goal \cap PRE(Y))))$

$Y_0 = \{1, 2, 3, 4, 5\}$	Ifp $(\lambda X. PRE(X) \cup (Goal \cap PRE(Y_0)))$
	= Ifp(λX . PRE(X) \cup (Goal))
	={1,2,3}=Y ₁

 $\begin{array}{ll} Y_1 = \left\{1,2,3\right\} & \quad \text{Ifp}(\lambda X. \, \text{PRE}(X) \cup (\text{ Goal } \cap \text{PRE}(Y_1))) \\ = \quad \text{Ifp}(\lambda X. \, \text{PRE}(X) \cup (\text{ Goal } \cap \{1,2,3\}\,)) \\ = \left\{1,2,3\right\} = Y_2 = Y_1 \end{array}$

Fixed point !



We want to check if {3} can be reached infinitely often from the initial state.

For that we evaluate the fixed point expression $gfp(\lambda Y. Ifp(\lambda X. PRE(X) \cup (Goal \cap PRE(Y))))$

$Y_0 = \{1, 2, 3, 4, 5\}$	Ifp $(\lambda X. PRE(X) \cup (Goal \cap PRE(Y_0)))$
	= Ifp(λX . PRE(X) \cup (Goal))
	={1,2,3}=Y ₁

 $\begin{array}{l} Y_1 = \left\{ 1, 2, 3 \right\} & \quad \text{Ifp}(\lambda X. \, \text{PRE}(X) \cup (\, \text{Goal} \cap \text{PRE}(Y_1))) \\ = \, \text{Ifp}(\lambda X. \, \text{PRE}(X) \cup (\, \text{Goal} \cap \{1, 2, 3\} \,)) \\ = \left\{ 1, 2, 3 \right\} = Y_2 = Y_1 \end{array}$

Fixed point !

As $S_0 \cap Y_2 \neq \emptyset$, the Büchi property is verified by the LTS L

Trace pre-orders, Trace equivalence, Simulations, Bisimulations and quotients

Traces of a LTS

• Let $(S,S_0,\Sigma,T,C,\lambda)$ be a LTS. Let $s_0\sigma_0s_1\sigma_1s_2\sigma_2...\sigma_{n-1}s_n...$ be such that (1) $s_0 \in S_0$, (2) $\forall i \cdot 0 \leq i \cdot T(s_i,\sigma_i,s_{i+1})$, the sequence

 $\lambda(s_0)\sigma_0 \lambda(s_1)\sigma_1\lambda(s_2)\sigma_2...\sigma_{n-1}\lambda(s_n)...$

is called a **trace** of the LTS.

- Note that two **different** paths in the LTS may generate the same trace.
- The color of a state is meant to model the **important properties** of that state. So the notion of trace allows us to **concentrate** on the important properties of the system.

Traces of a LTS

- We note **Traces**(L) the set of traces generated by the LTS L.
- Two LTS L₁ and L₂ are **trace equivalent** if

 $Traces(L_1) = Traces(L_2)$

• Trace equivalence and verification.

If we have two LTS L_1 and L_2 such that **Traces**(L_1)=**Traces**(L_2), and L_2 is (much) **smaller** than L_1 , it may be very advantageous to do verification on L_2 instead on L_1 . As we will see L_1 may be infinite while L_2 is finite. We will illustrate that with TA.

 Unfortunately, minimizing a system using the notion of trace equivalence is **costly** computationally. We will introduce now **stronger notions of equivalence** than are easier to compute.

• Given a LTS $(S,S_0,\Sigma,T,C,\lambda)$, a simulation relation is a relation $\mathbf{R} \subseteq S \times S$ such that

```
for all (s_1,s_2) \in \mathbb{R}:

(1) s_1 \in S_0 iff s_2 \in S_0

(2) \lambda(s_1) = \lambda(s_2)

(3) \forall \sigma \in \Sigma \bullet \forall s_3 \in S: T(s_1,\sigma,s_3) \Longrightarrow \exists s_4 \in S \bullet T(s_2,\sigma,s_4) \land (s_3,s_4) \in \mathbb{R}
```

• Given a LTS $(S,S_0,\Sigma,T,C,\lambda)$, a simulation relation is a relation $\mathbf{R} \subseteq S \times S$ such that

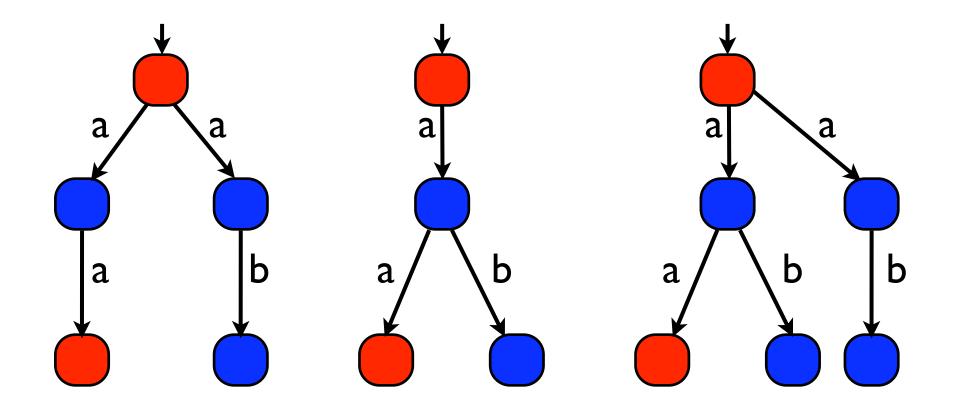
```
for all (s_1,s_2) \in \mathbb{R}:

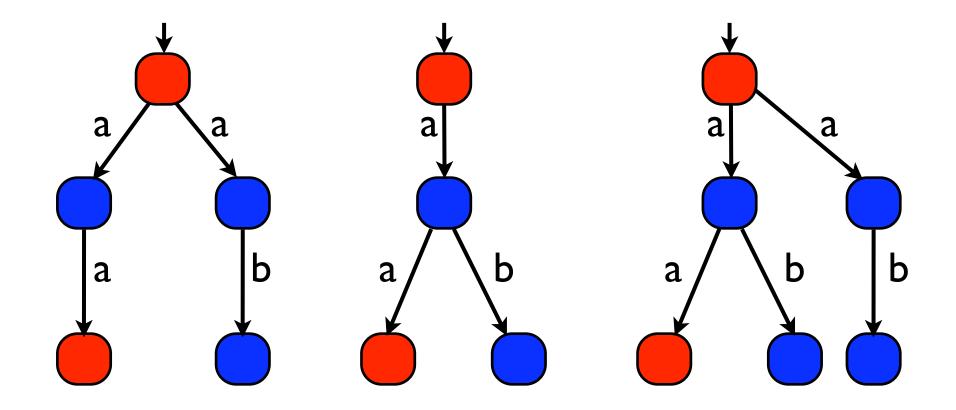
(1) s_1 \in S_0 iff s_2 \in S_0

(2) \lambda(s_1) = \lambda(s_2)

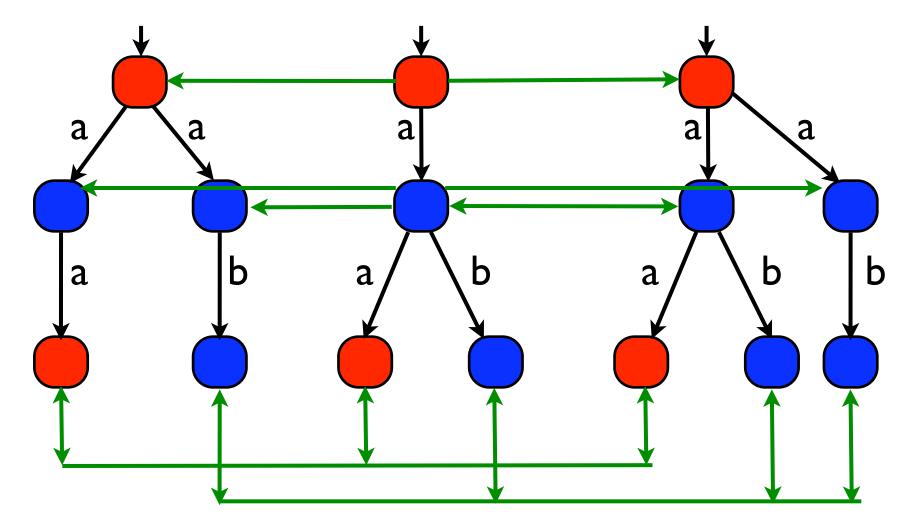
(3) \forall \sigma \in \Sigma \bullet \forall s_3 \in S: T(s_1,\sigma,s_3) \Longrightarrow \exists s_4 \in S \bullet T(s_2,\sigma,s_4) \land (s_3,s_4) \in \mathbb{R}
```

• When $(s_1,s_2) \in \mathbf{R}$, we say that s_1 is simulated by s_2 .

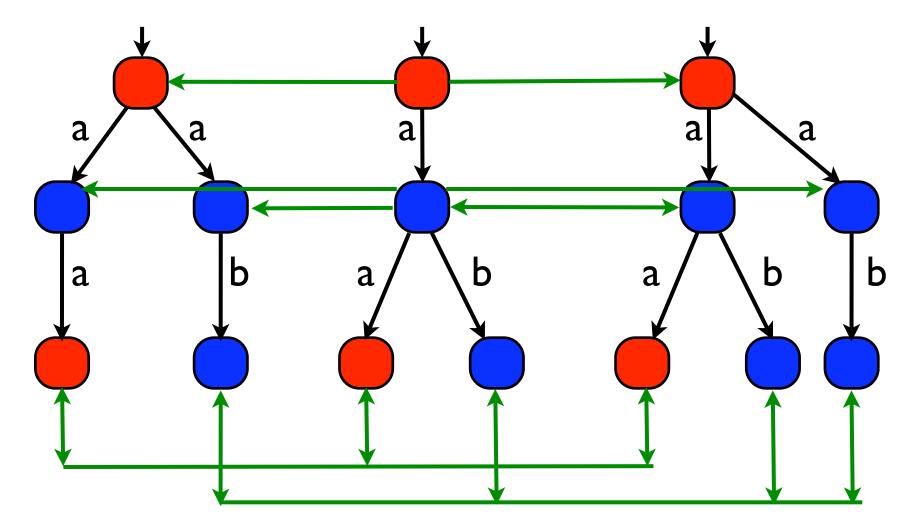




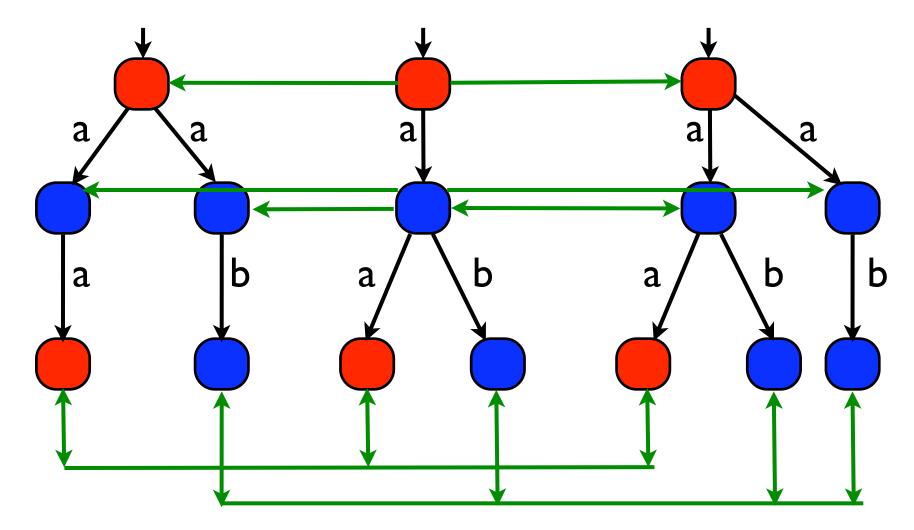
Who can simulate who ?



This is a simulation relation



Is this the largest one ?



Is this the largest one ? NO.

• Given a LTS $(S,S_0,\Sigma,T,C,\lambda)$, there exists a unique **largest** simulation relation $\mathbf{R} \subseteq S \times S$;

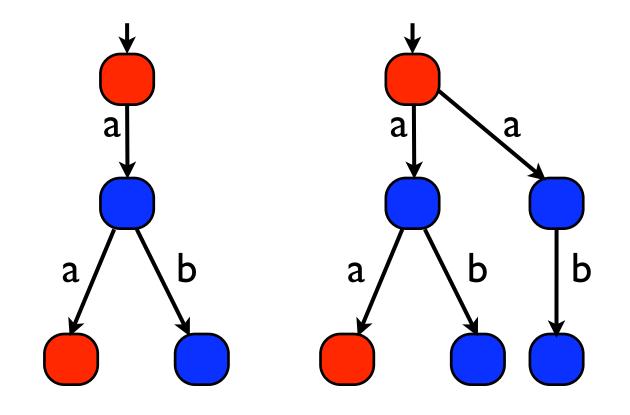
- Given a LTS (S,S₀, Σ ,T,C, λ), there exists a unique **largest** simulation relation **R** \subseteq S×S;
- A relation $\mathbf{R} \subseteq S \times S$ is **symmetric** iff for all s_1, s_2 such that $\mathbf{R}(s_1, s_2)$ we have also $\mathbf{R}(s_2, s_1)$;

- Given a LTS (S,S₀, Σ ,T,C, λ), there exists a unique **largest** simulation relation **R** \subseteq S×S;
- A relation $\mathbf{R} \subseteq S \times S$ is **symmetric** iff for all s_1, s_2 such that $\mathbf{R}(s_1, s_2)$ we have also $\mathbf{R}(s_2, s_1)$;
- A simulation relation **R** which is **symmetric** is called a **bisimulation**.

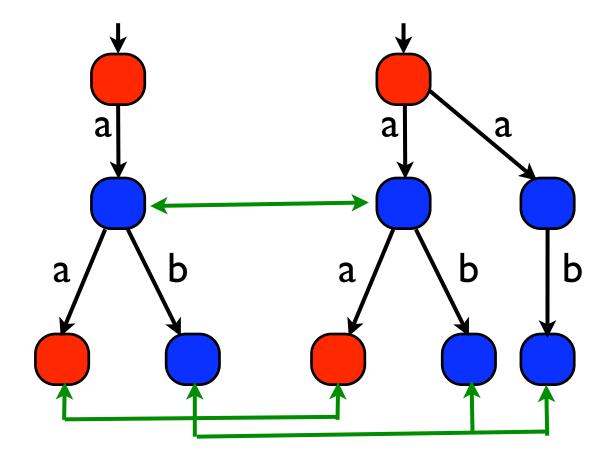
- Given a LTS (S,S₀, Σ ,T,C, λ), there exists a unique **largest** simulation relation **R** \subseteq S×S;
- A relation $\mathbf{R} \subseteq S \times S$ is **symmetric** iff for all s_1, s_2 such that $\mathbf{R}(s_1, s_2)$ we have also $\mathbf{R}(s_2, s_1)$;
- A simulation relation **R** which is **symmetric** is called a **bisimulation**.
- Given a bisimulation relation **R** and two states s_1, s_2 such that **R**(s_1, s_2) (note that we have also **R**(s_2, s_1) by definition), we say that s_1 and s_2 are **bisimilar**, this is noted $s_1 \approx_{\mathbf{R}} s_2$ (or $s_1 \approx s_2$ if **R** is clear from the context).

The relation $\approx_{\mathbf{R}}$ is an **equivalence relation**.

Bisimulation



Bisimulation

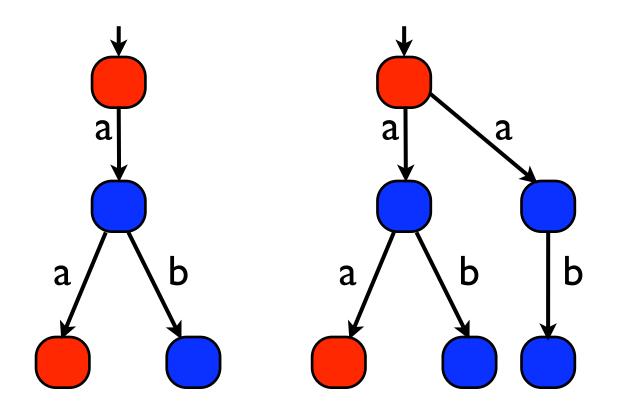


This is a bisimulation

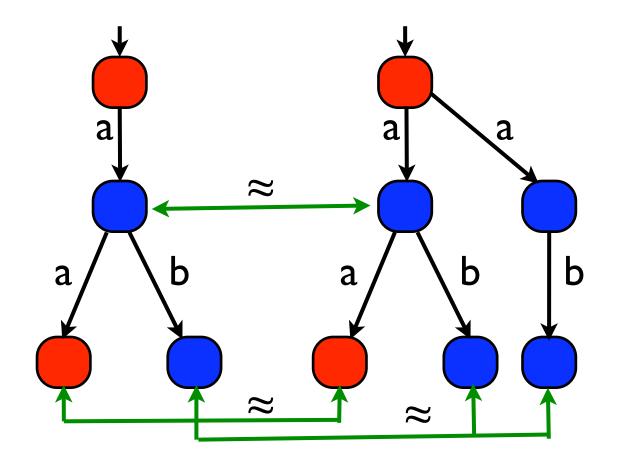
- Let $L=(S,S_0,\Sigma,T,C,\lambda)$ be a LTS, $\mathbf{R}\subseteq S\times S$ be a **bisimulation** relation over the state space of L, and let $\approx_{\mathbf{R}}$ be the associated equivalence relation.
- The **quotient by** $\approx_{\mathbf{R}}$ of L is the LTS L_{\approx} =(S_{\approx},S_{0 \approx}, Σ ,T_{\approx},C, λ_{\approx}):
 - > S $_{\approx}$ are the equivalence classes for $\approx_{\mathbf{R}}$;
 - > $S_{0≈}$ are the equivalence classes **s** for ≈_{**R**} such that for all s∈**s**, s∈S₀;
 - \succ T $_{\approx}$ is such that T $_{\approx}(\mathbf{s}_1, \sigma, \mathbf{s}_2)$ iff $\exists s_1 \in \mathbf{s}_1, s_2 \in \mathbf{s}_2$: T(s₁, σ, s_2);
 - $> \lambda_{\approx}$ is such that $\lambda_{\approx}(\mathbf{s}) = \lambda(s)$ for any $s \in \mathbf{s}$.

• Theorem:

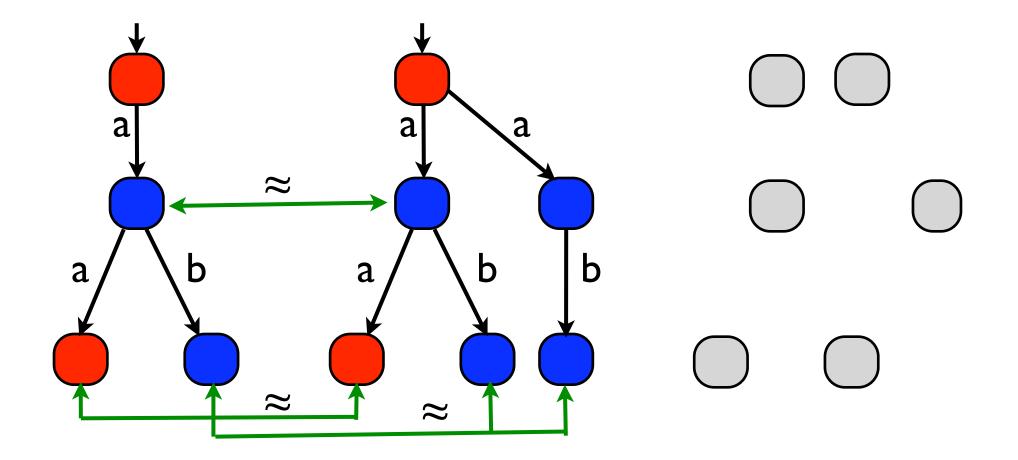
Let L be a LTS and **R** a bisimulation over the state space of L, let L_{\approx} be the quotient of L by $\approx_{\mathbf{R}}$, then **Traces**(L)=**Traces**(L \approx).



The LTS

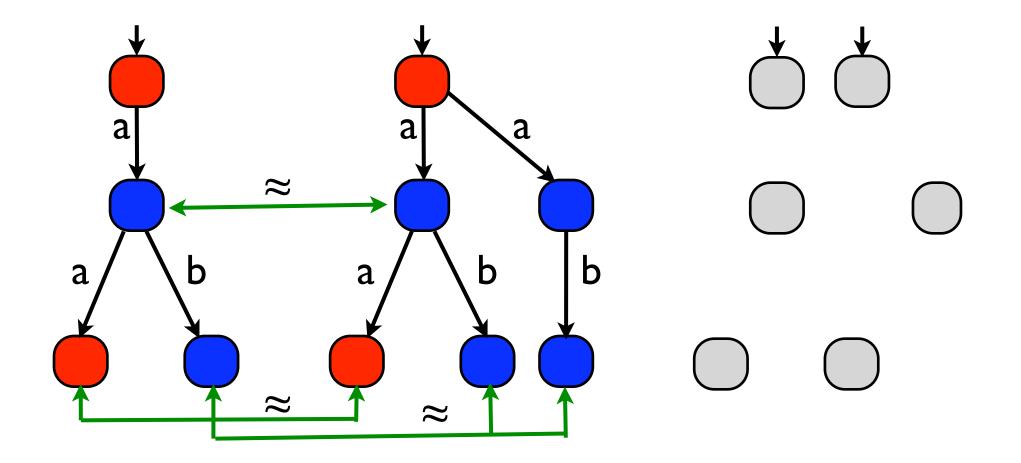


The LTS



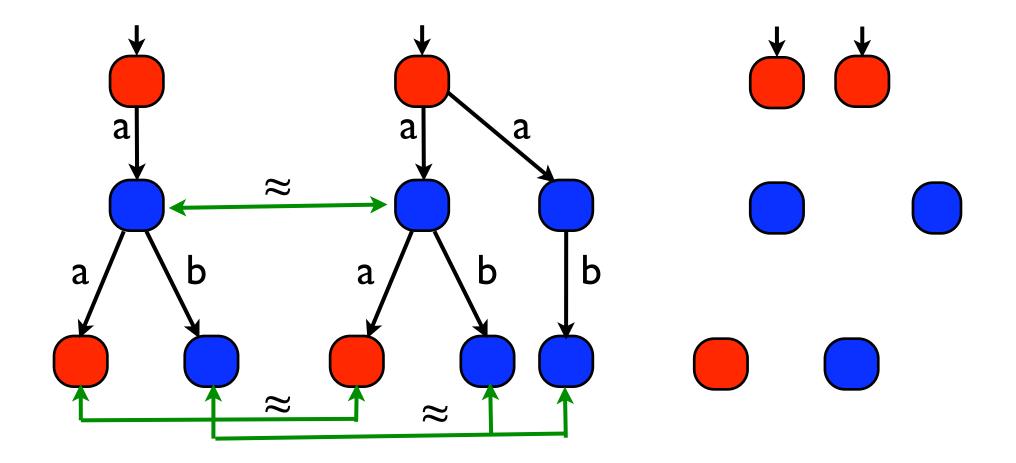
The LTS

The quotient by \approx



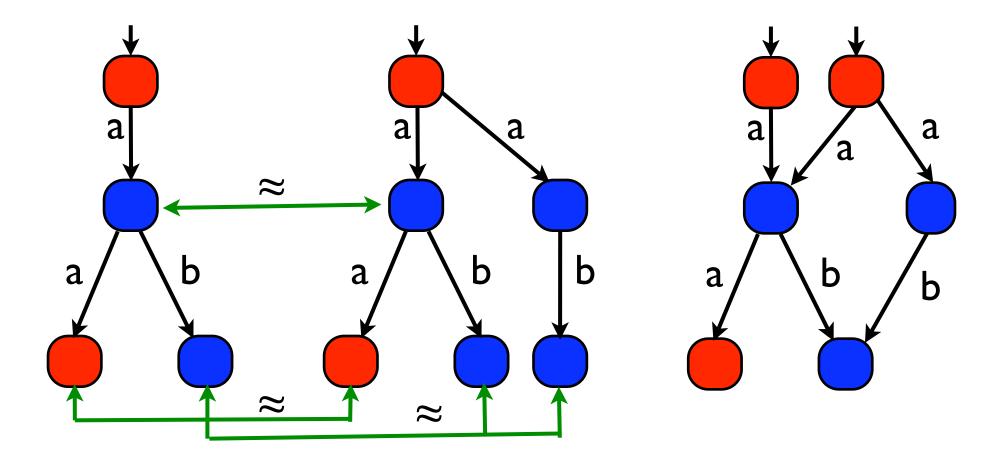
The LTS

The quotient by \approx



The LTS

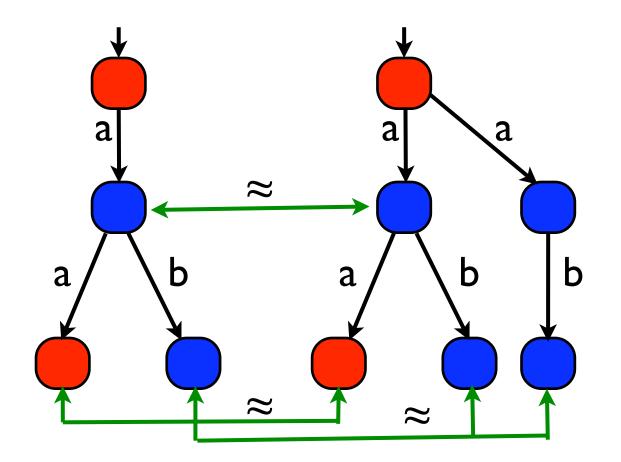
The quotient by \approx



The LTS

The quotient by \approx

Bisimulation is not complete for trace equivalence



Clearly, the two initial states are trace equivalent but they are not bisimilar.

The LTS

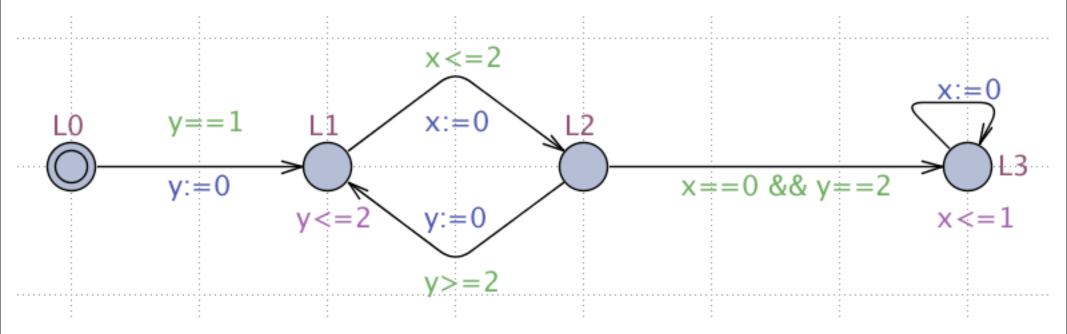
Plan of the talk

- Labelled transition systems
- Properties of labeled transition systems: Reachability - Safety - Büchi properties
- Pre-Post operators
- Partial orders Fixed points
- Symbolic model-checking
- Application to TA: region equivalence, region automata, zones

Algorithmic verification of timed automata

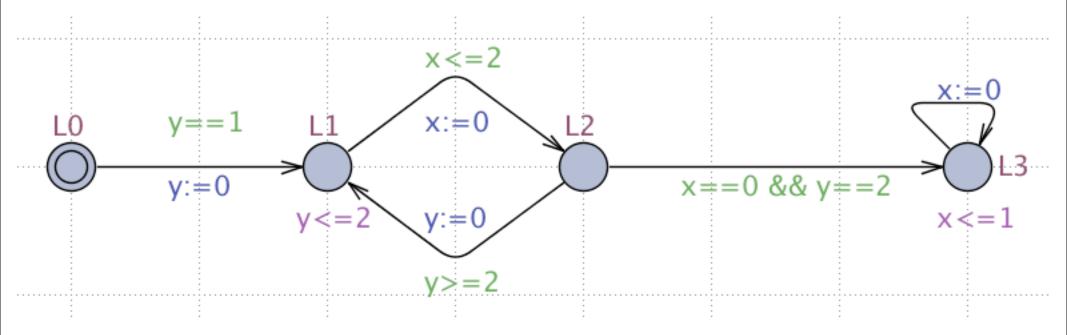
- We will show now how to apply the concepts that we have introduced so far to obtain algorithms to verify properties of timed automata;
- We will show how to use the pre-post operators to build fixed points algorithms;
- We will show that those algorithms are terminating by showing that they operate over finite state time-abstract bisimulation quotients.

A timed automaton



Question: Can L3 be reached ?

A timed automaton



Question: Can L3 be reached ?

This question can be reduced to a reachability verification problem over the labeled transition system of the TA.

Labeled transition system of a TA

- The LTS=(S,S0, Σ ,T,C, λ) of a TA A=(Q,Q0, Σ ,P,CI,E,L,F,Inv), is as follows:
 - S is the set of pairs (q,v) where $q \in Q$ is a location of A and $v : CI \rightarrow \mathbb{R} \ge 0$ such that $v \models Inv(q)$;
 - $S_0 = \{(q_0, <0, 0, ..., 0, >) \mid q_0 \in Q_0\};$
 - $T \subseteq S \times (\Sigma \cup \mathbb{R} \ge 0) \times S$ defined by two types of transitions:

Discrete transitions:

 $(q_1,v_1) \rightarrow_a(q_2,v_2) \in T$ iff there exists $(q_1,a,\Phi,\Delta,q_2) \in E, v_1 \models \Phi$, and $v_2:=v_1[\Delta:=0]$. Continuous transitions:

 $(q_1,v_1) \rightarrow_{\delta} (q_2,v_2) \in \mathsf{T} \text{ iff } q_1 = q_2, \delta \in \mathbb{R} \ge 0, v_2 = v_1 + \delta, \text{ and } \forall \delta', 0 \le \delta' \le \delta, v_1 + \delta \models \mathsf{Inv}(q_1).$

- $C=2^{P}$, $\lambda((q,v))=L(q)$, for any $(q,v)\in Q$.

• Clearly, this transition system has a (continuous) infinite number of states. How do we handle it ?

Time abstract-labeled transition system

- The LTS=(S,S0, Σ ,T,C, λ) of a TA A=(Q,Q0, Σ ,P,CI,E,L,F,Inv), is as follows:
 - S is the set of pairs (q,v) where $q \in Q$ is a location of A and $v : CI \rightarrow \mathbb{R} \ge 0$ such that $v \models Inv(q)$;
 - $S_0 = \{(q_0, <0, 0, ..., 0, >) \mid q_0 \in Q_0\};$
 - $T \subseteq S \times (\Sigma \cup \{ Delay \}) \times S$ defined by two types of transitions:

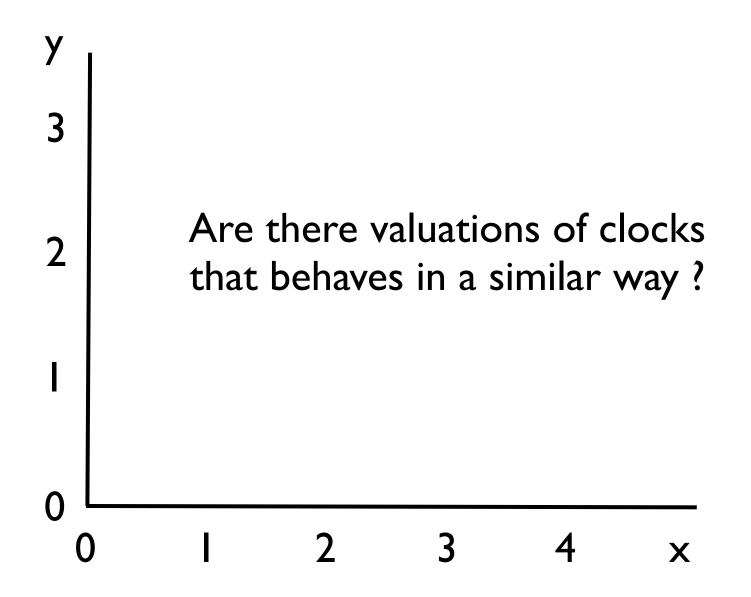
Discrete transitions:

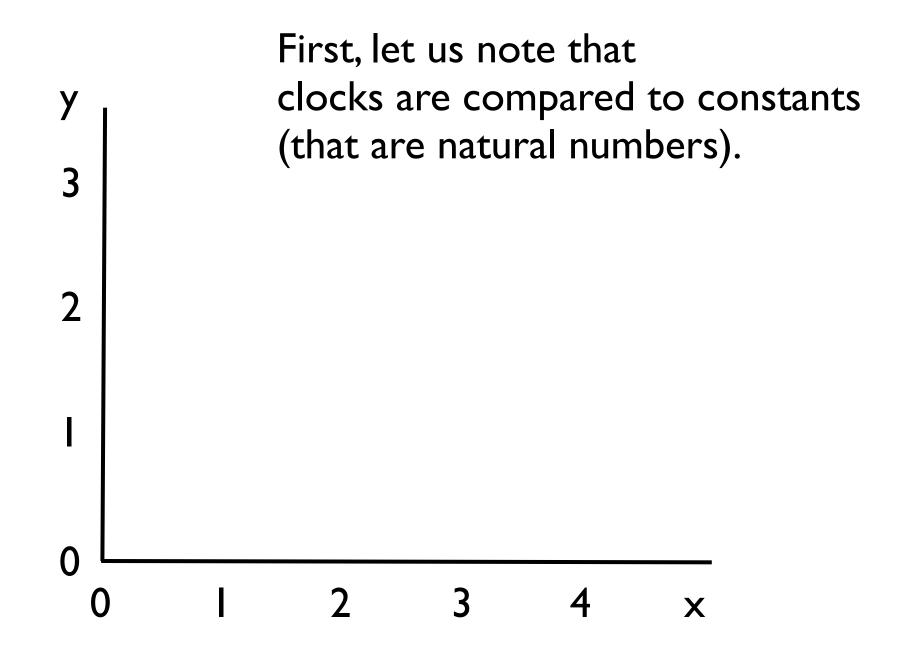
 $(q_1,v_1) \rightarrow_a(q_2,v_2) \in T$ iff there exists $(q_1,a,\Phi,\Delta,q_2) \in E, v_1 \models \Phi$, and $v_2:=v_1[\Delta:=0]$. Continuous transitions:

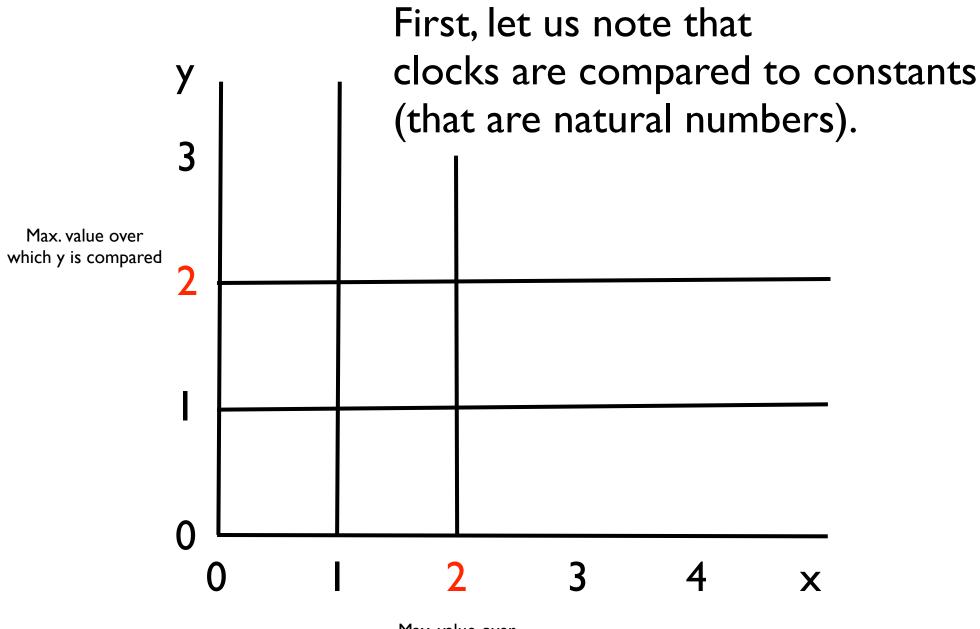
 $(q_1,v_1) \rightarrow_{\mathsf{Delay}}(q_2,v_2) \in \mathsf{T} \text{ iff } q_1 = q_2, \exists \delta \in \mathbb{R} \ge 0, v_2 = v_1 + \delta, \text{ and } \forall \delta', 0 \le \delta' \le \delta, v_1 + \delta \vDash \mathsf{Inv}(q_1).$

- $C=2^{P}$, $\lambda((q,v))=L(q)$, for any $(q,v)\in Q$.

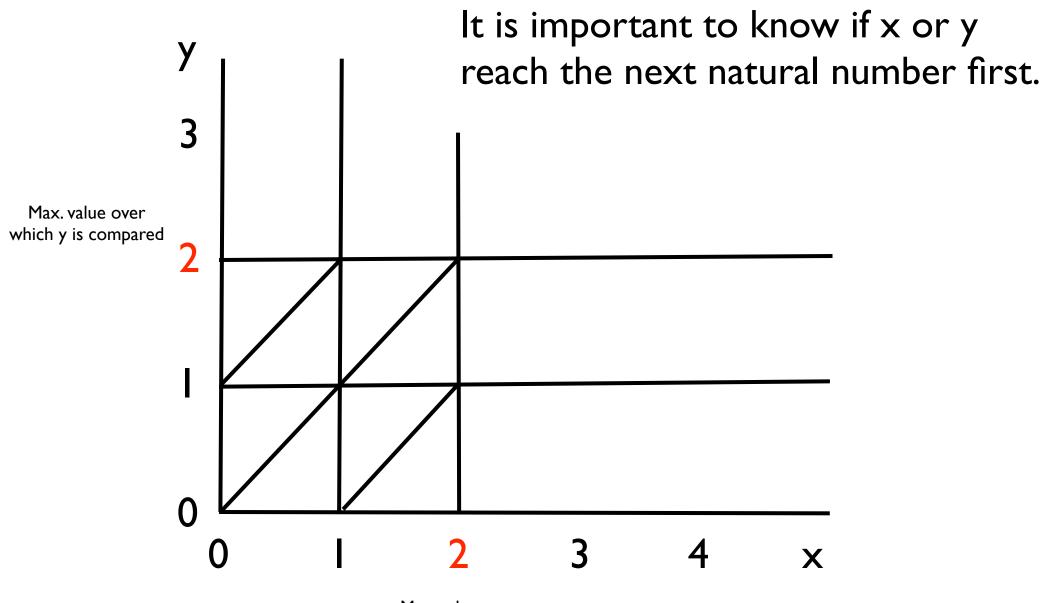
 Clearly, this transition system has a (continuous) infinite number of states. How do we handle it ?



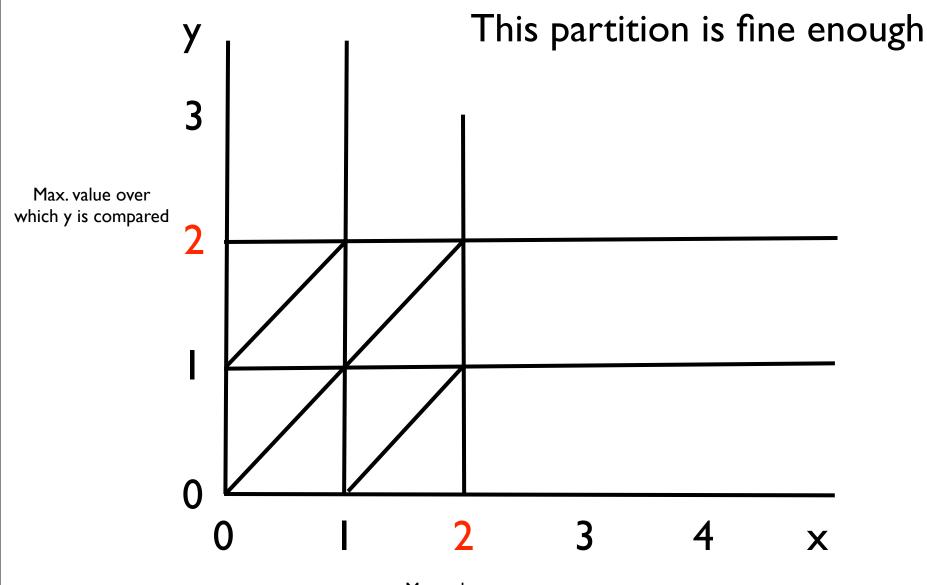




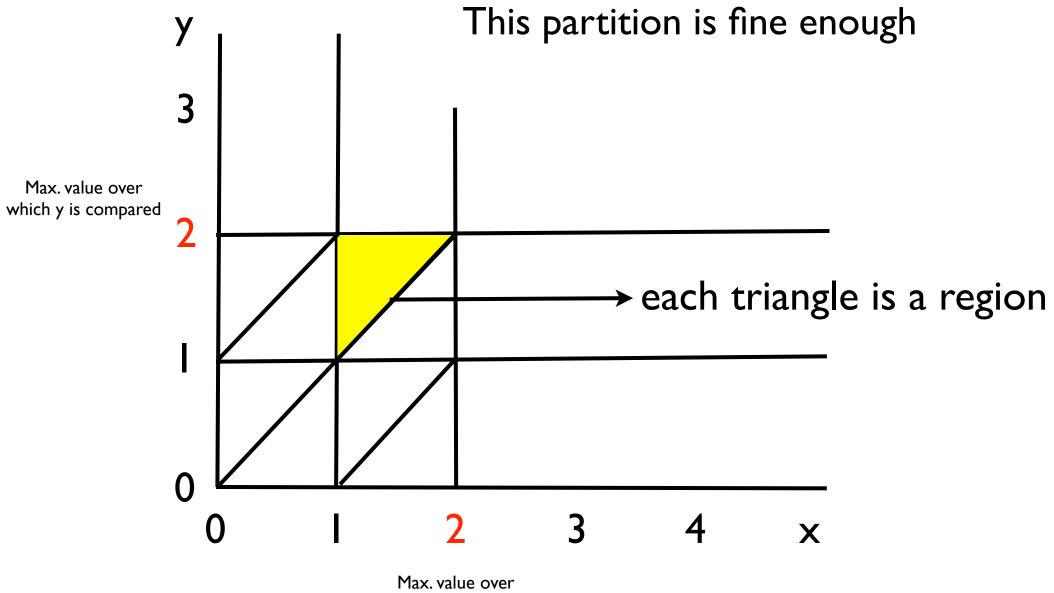
Max. value over which x is compared

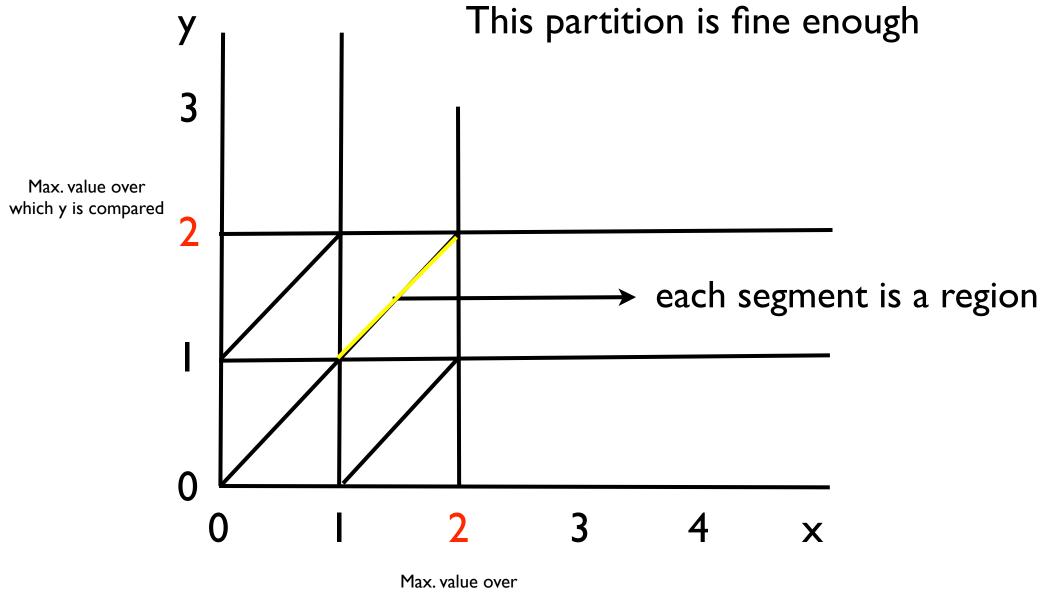


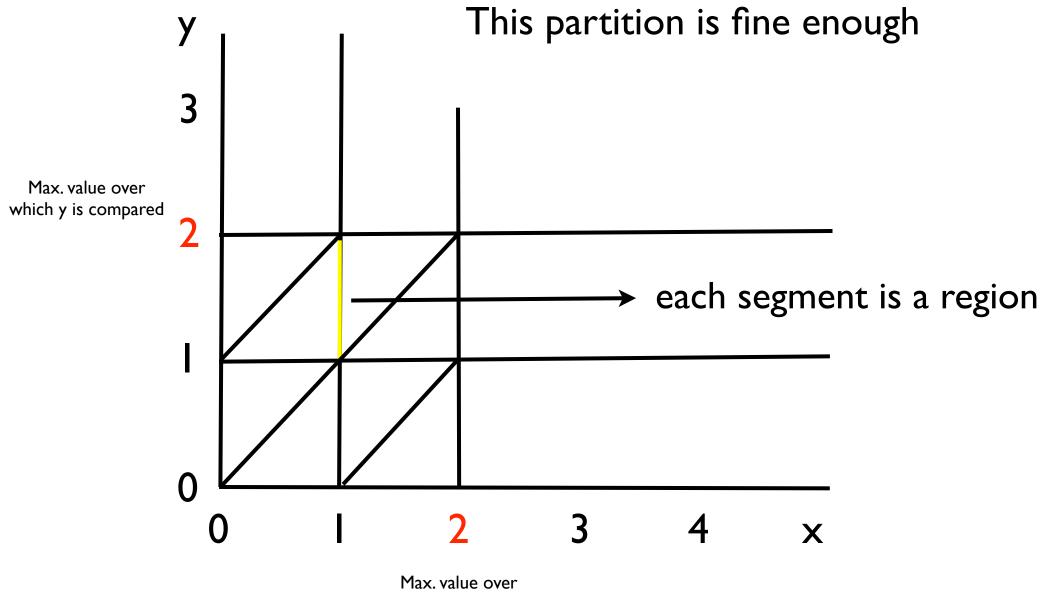
Max. value over which x is compared

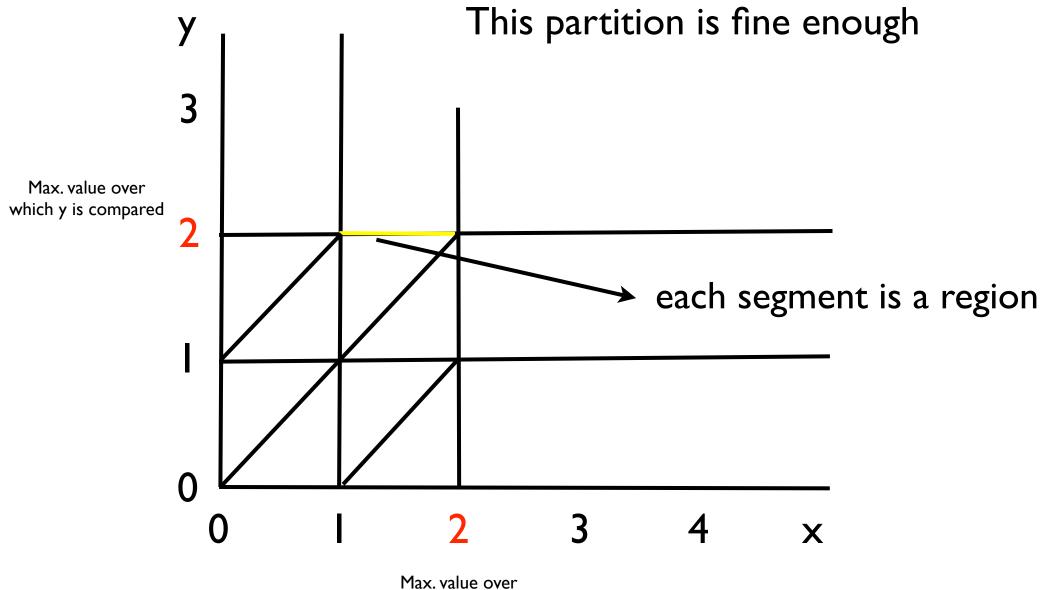


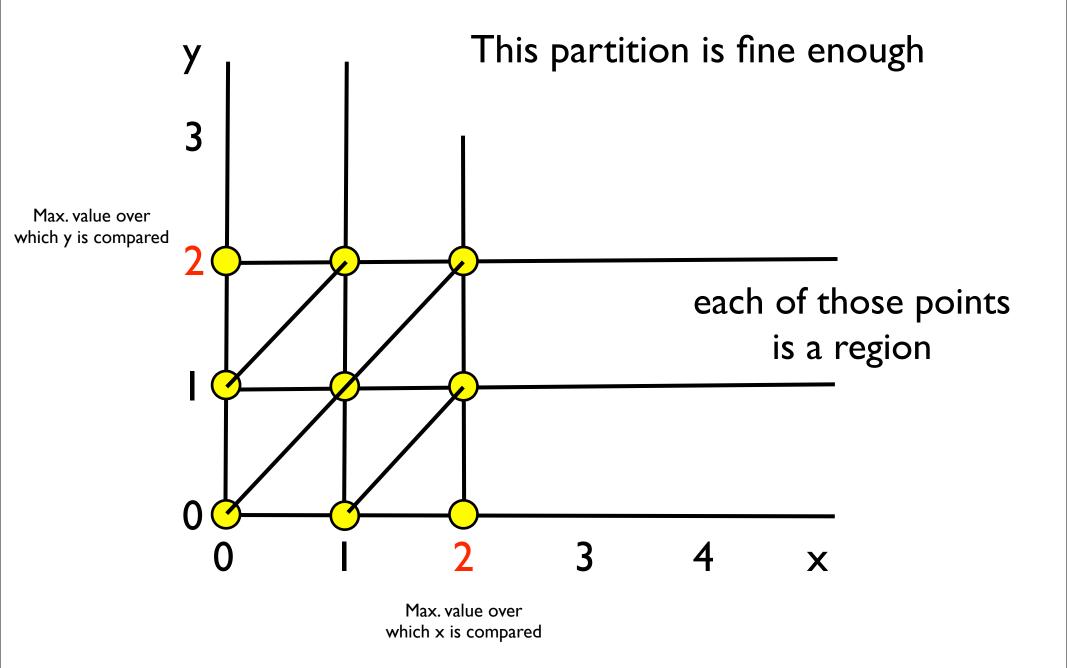
Max. value over which x is compared

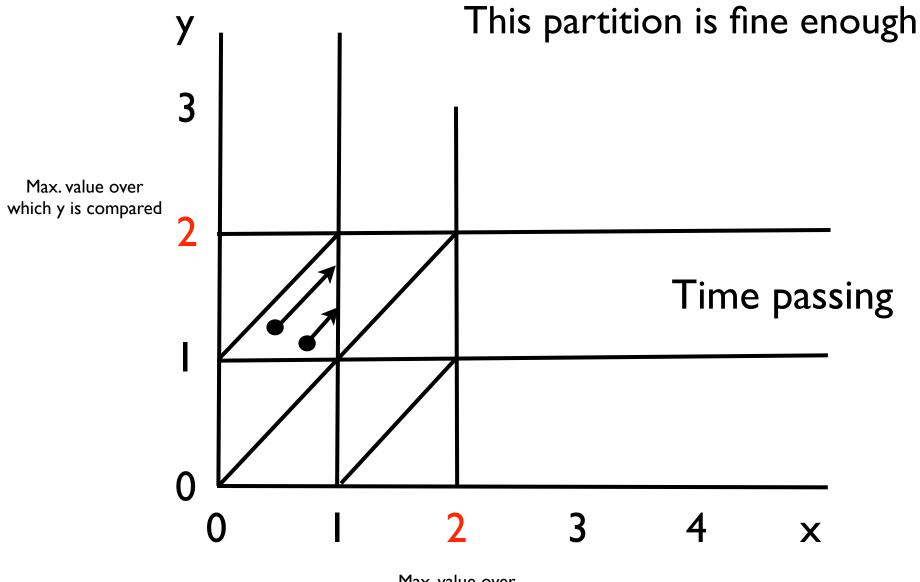




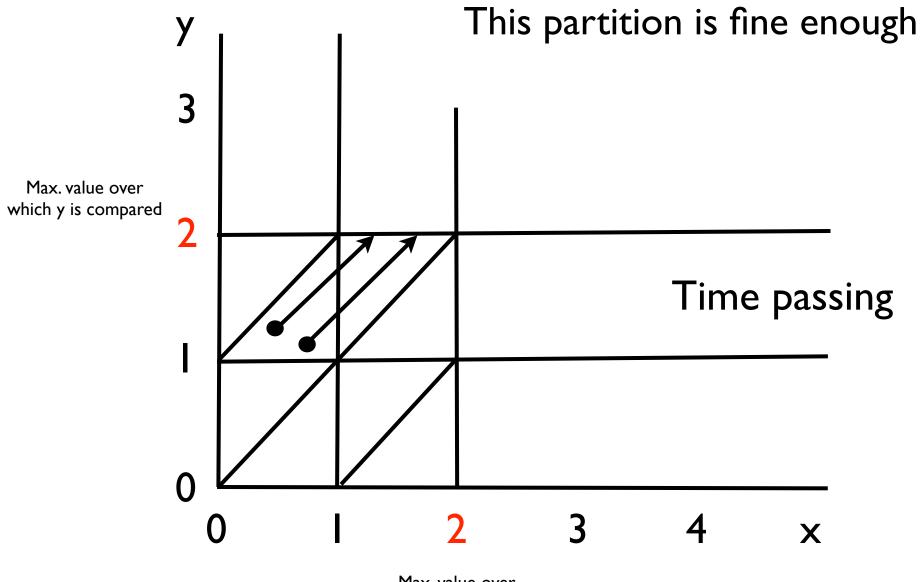




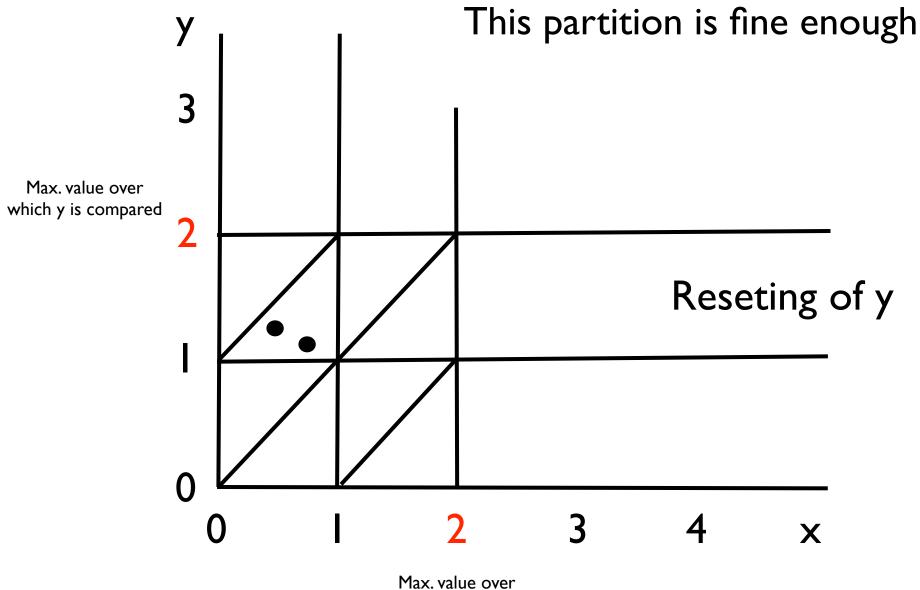




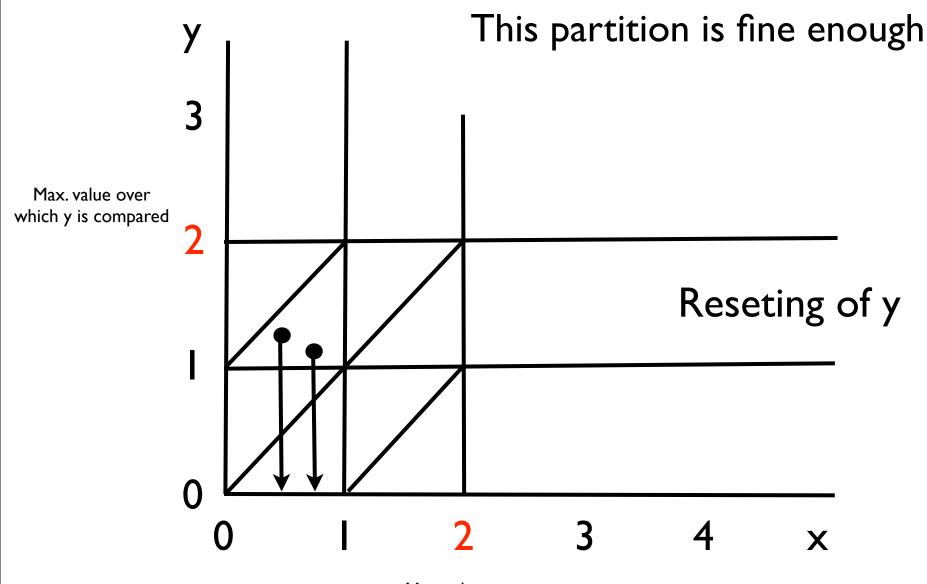
Max. value over which x is compared



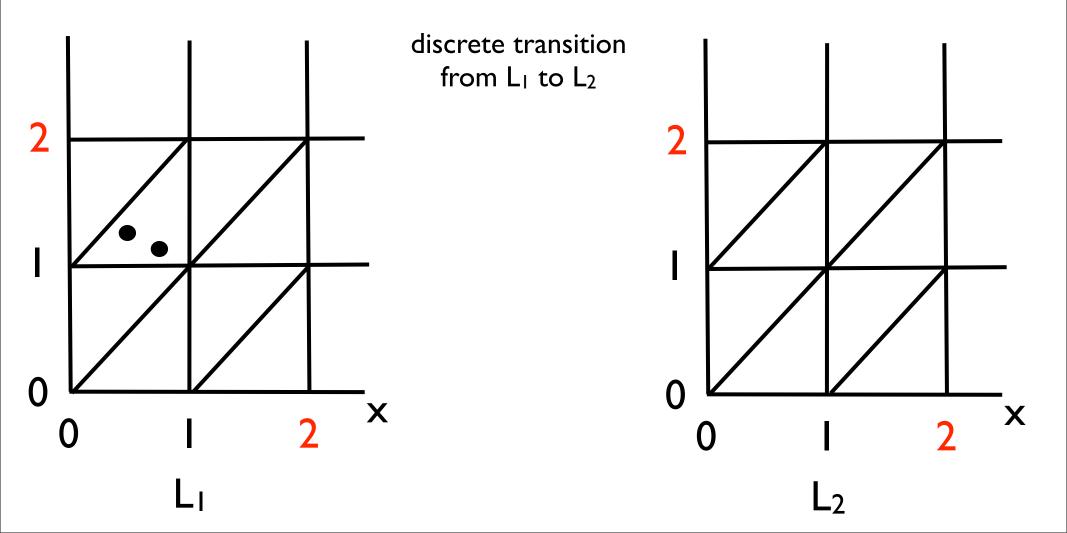
Max. value over which x is compared

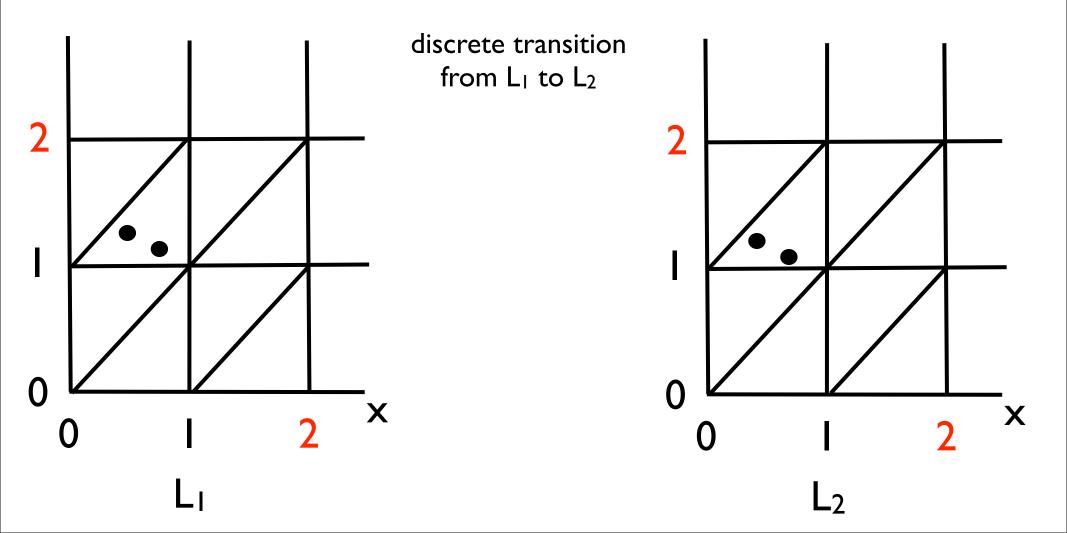


which x is compared

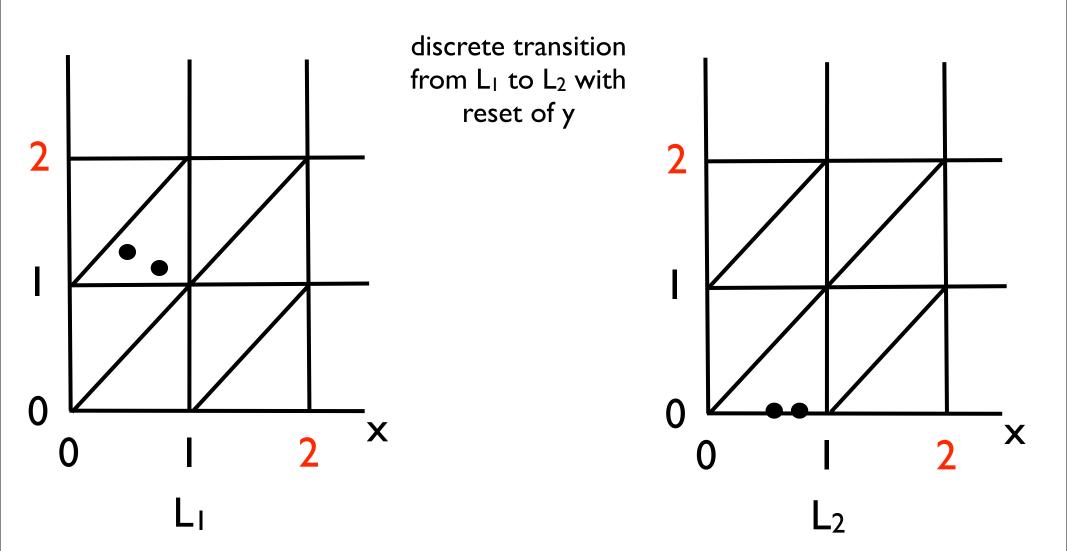


Max. value over which x is compared









Region equivalence: formal definition

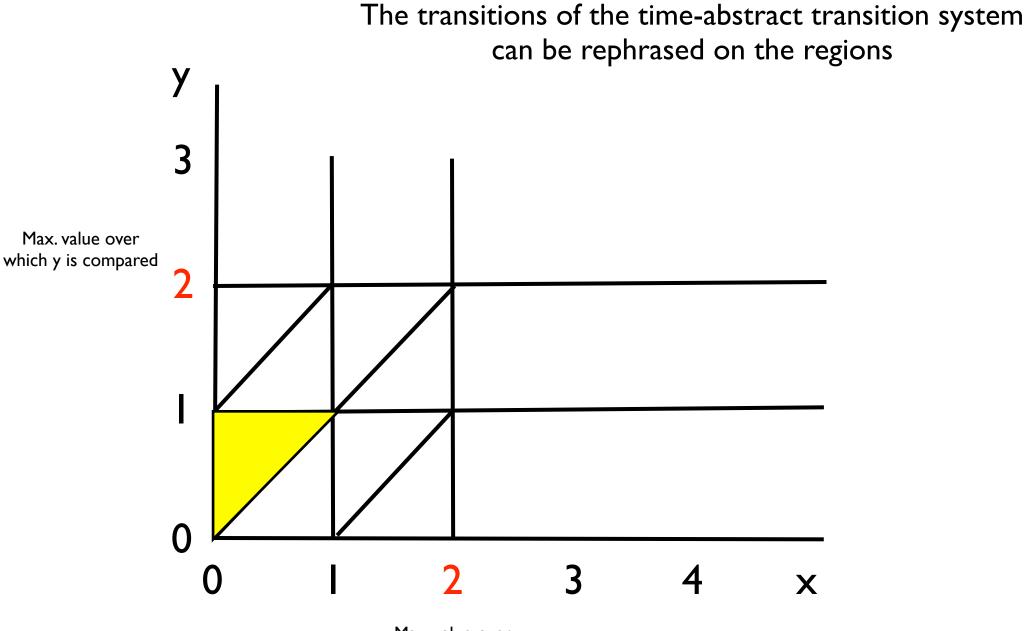
- For each variable x∈Cl, let c_x be the largest constant with which x is compared in the TA. Two valuations v₁,v₂:Cl→R≥0 are region equivalent, noted v₁ ≈ v₂ iff
 - same integer parts: for all $x \in Cl$, $int(v_1(x)) = int(v_2(x))$, or $v_1(x) > c_x$ and $v_2(x) > c_x$.
 - same fractional ordering: for all x,y \in Cl with $v_1(x) \leq c_x$ and $v_1(y) \leq c_y$, frac $(v_1(x)) \leq$ frac $(v_1(y))$ iff frac $(v_2(x)) \leq$ frac $(v_2(y))$
 - same null fractional parts: for all $x,y \in CI$ with $v_1(x) \leq c_x$ and $v_1(y) \leq c_y$, frac $(v_1(x))=0$ iff frac $(v_2(x))=0$
- **Theorem: a Region** is a set of valuations that are **time abstract bisimilar**.

Region equivalence quotient of the time-abstract LTS

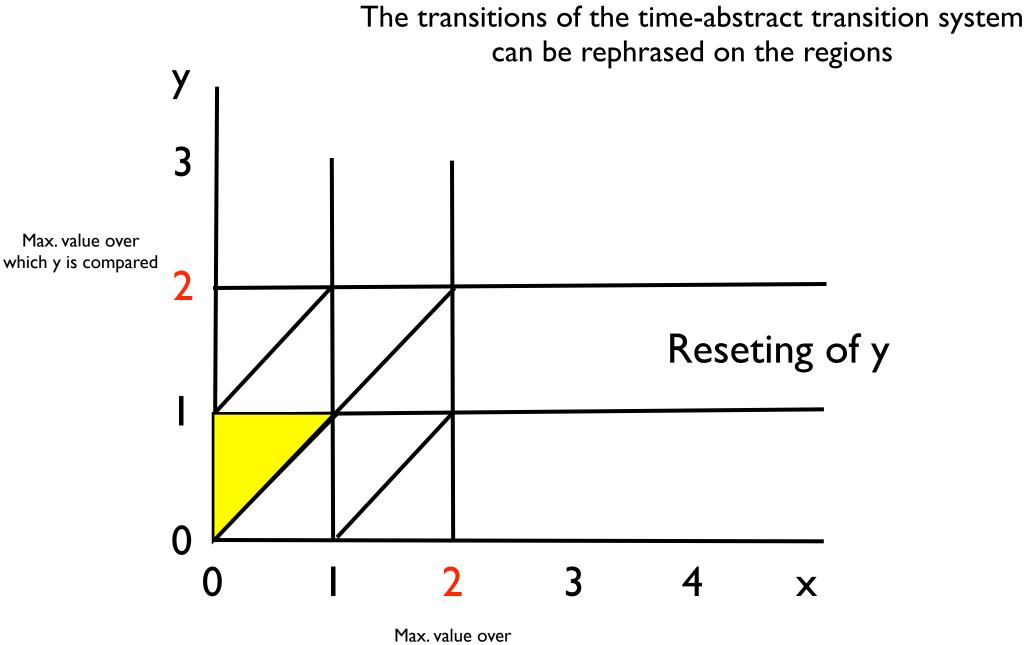
- The following theorem is the **foundation** for the automatic verification of timed automata.
- Theorem. Let A be a timed automaton, let L be its time-abstract labeled transition system, let L_≈ be its quotient by the region equivalence ≈, then L_≈ is finite and L_≈ is trace equivalent to L.

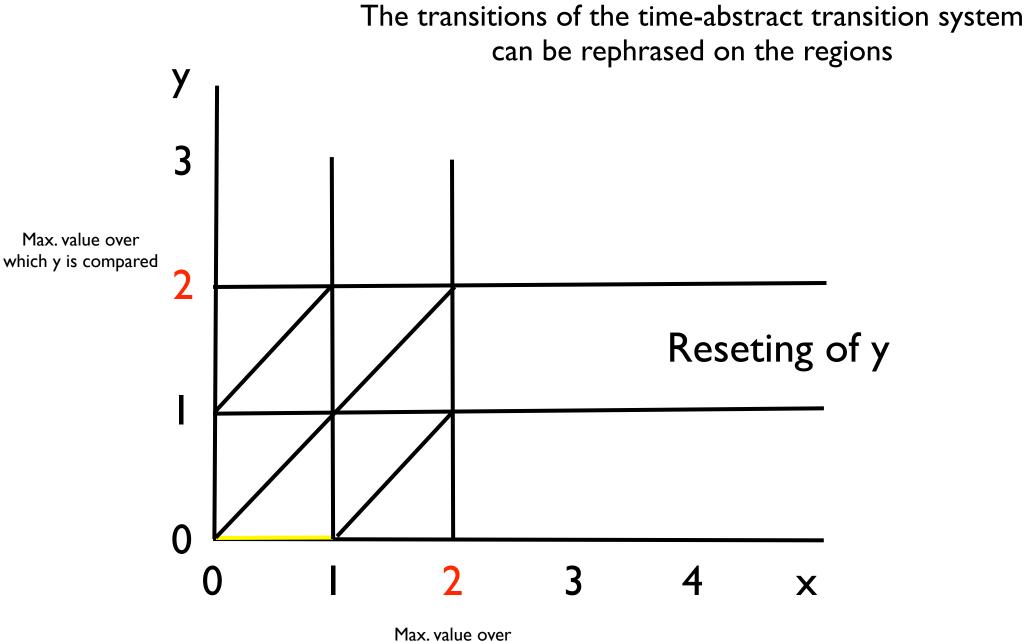
Post operations in the time abstract LTS

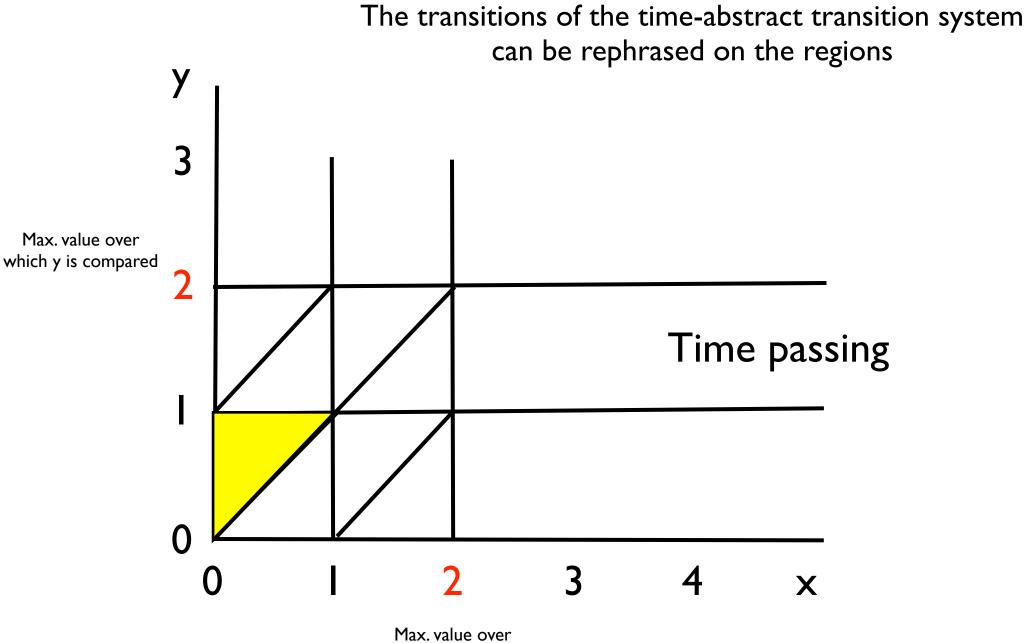
- To construct **"region based" bisimulation quotient** of the timeabstract LTS of a TA (or to compute on it), we must be able to compute the transition relation between regions.
- We consider the two types of transitions that we find in the time-abstract LTS of a TA:
 - Discrete transitions that are associated to transition edges in the timed automaton. Let (q₁,a,Φ,Δ,q₂) ∈ E:
 (1) Note that given a region r and a guard Φ, all valuations v₁,v₂∈r is such that v₁⊨Φ iff v₂⊨Φ.
 (2) The effect of resetting a clock on a region r gives a region r'.
 - **Delay transitions**. Given a region r, we can compute the set of regions r' that contains v+t for some $v \in r$ and some $t \in \mathbb{R}$.

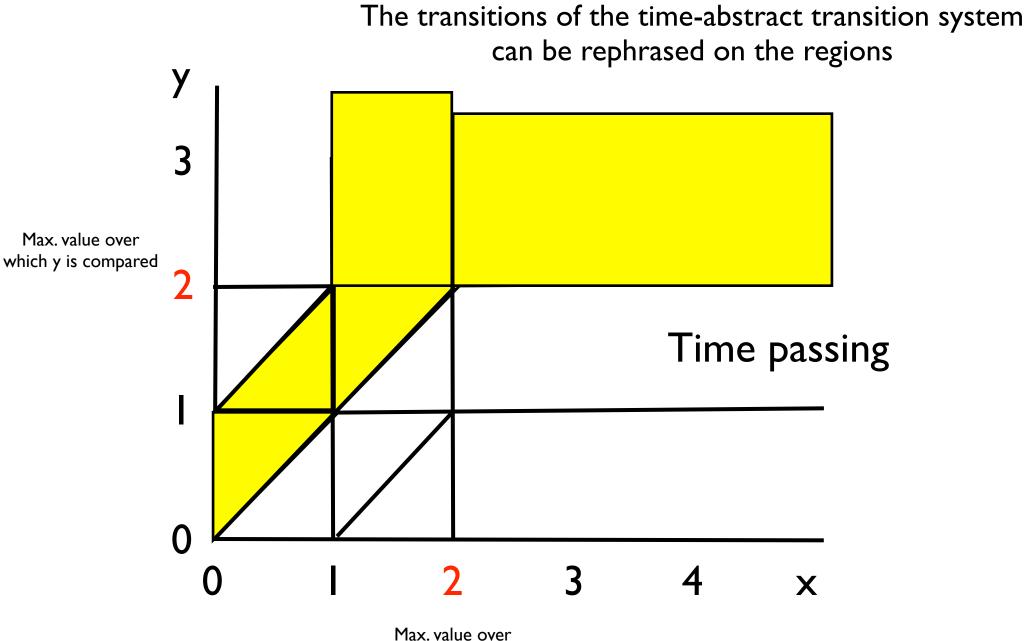


Max. value over which x is compared









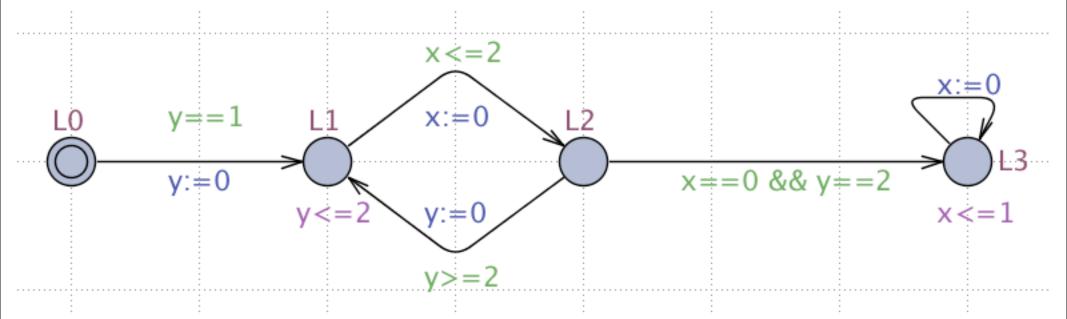
Max. value over which x is compared

TA and the backward approach

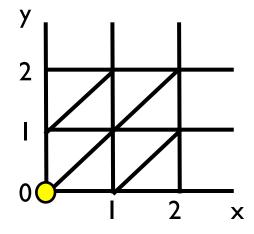
- The **region bisimulation** is **stable** also for the operations that explore the state space in a **backward fashion** (Pre, Apre)
- ... and so, we can also use backward algorithms to verify TA.

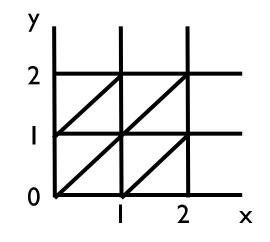
On the use of the region equivalence to verify reachability properties of TA

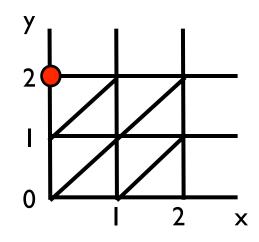
Forward reachability analysis on a simple example



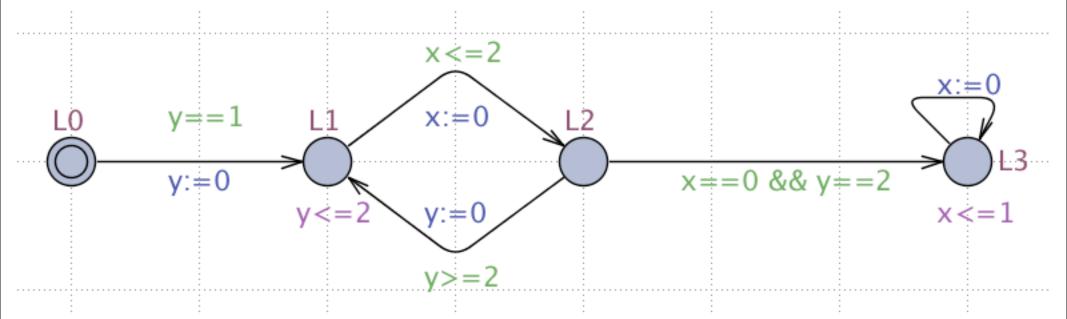
Lı



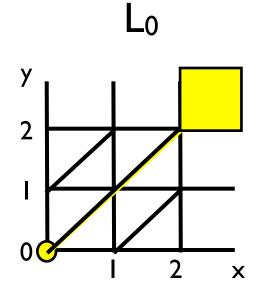


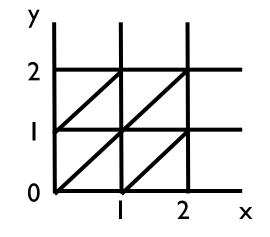


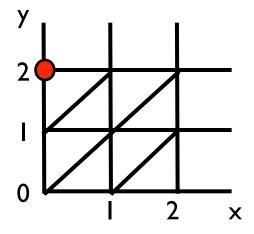
 L_2



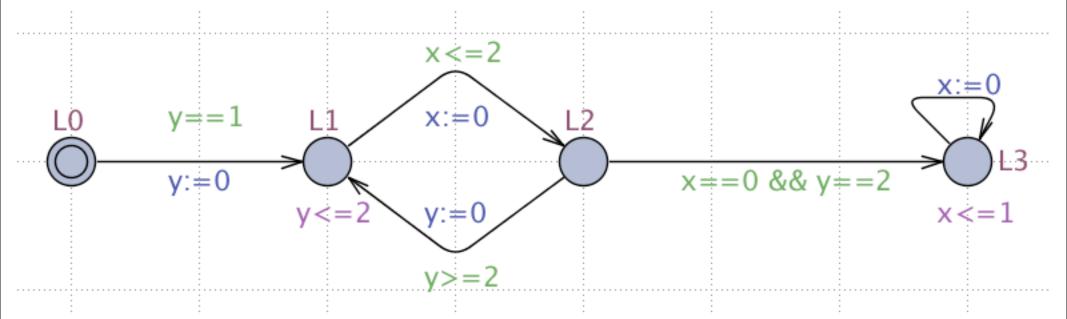
Lı



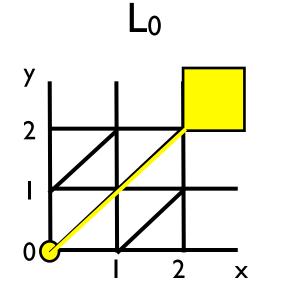


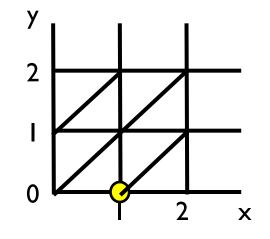


 L_2



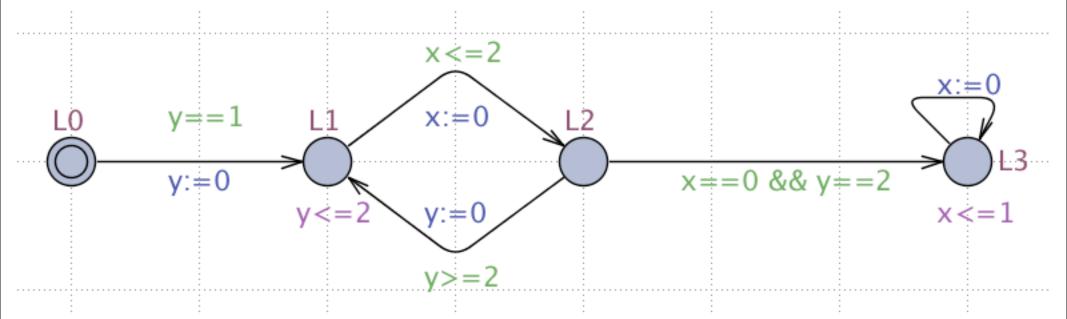
Lı

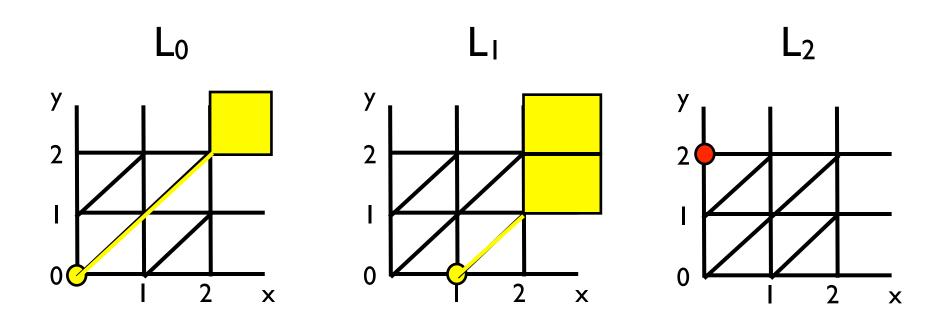


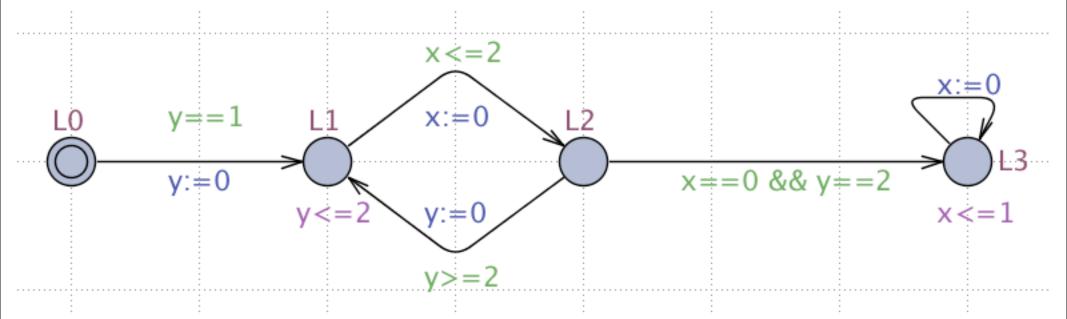


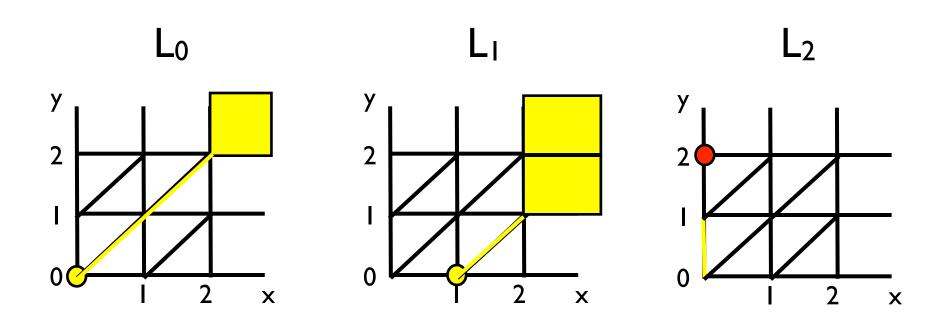


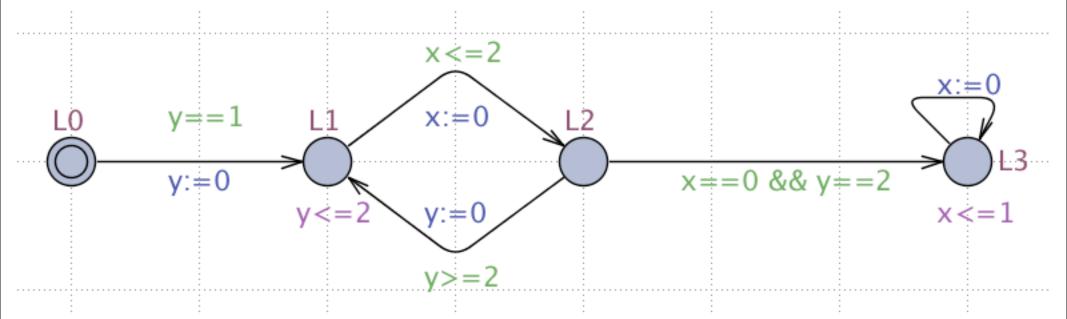
 L_2

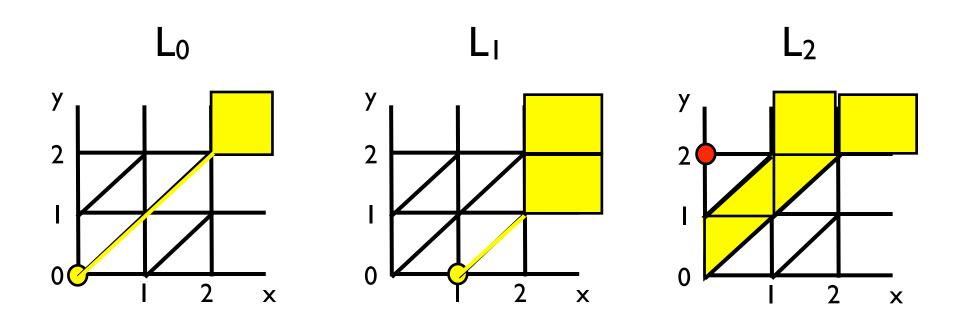


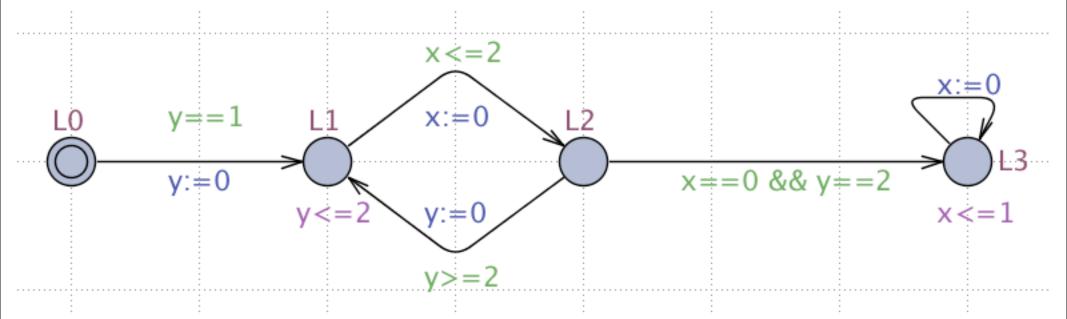




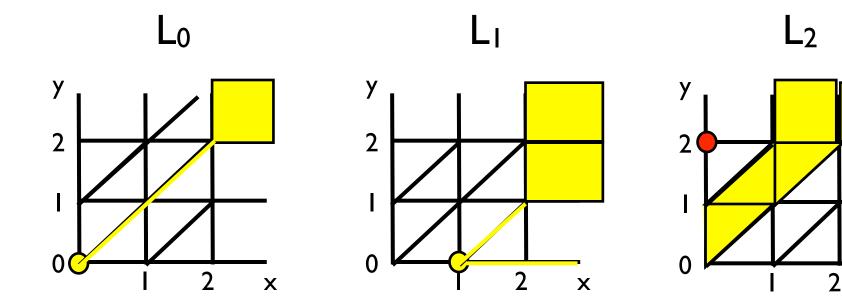


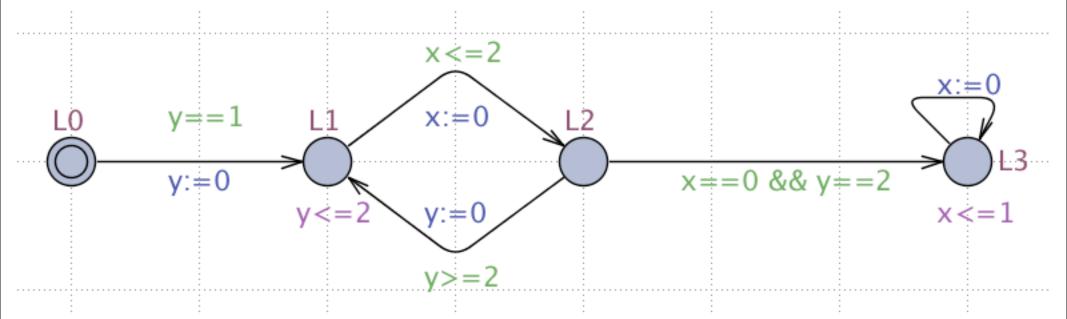




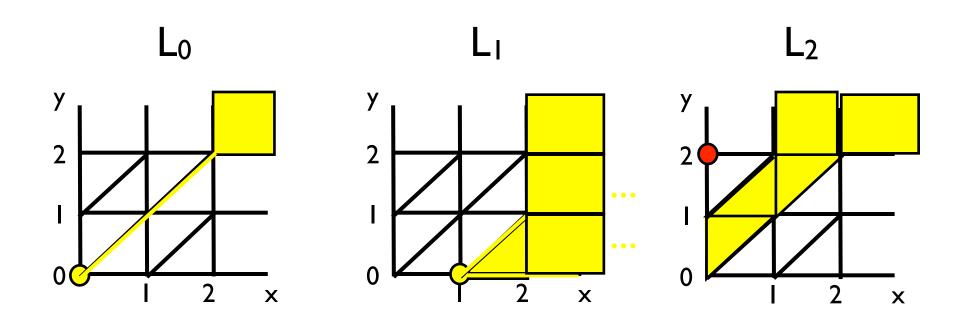


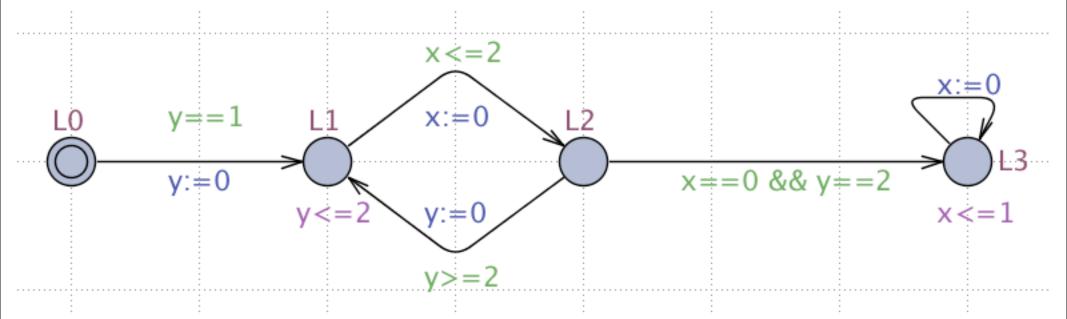
Х



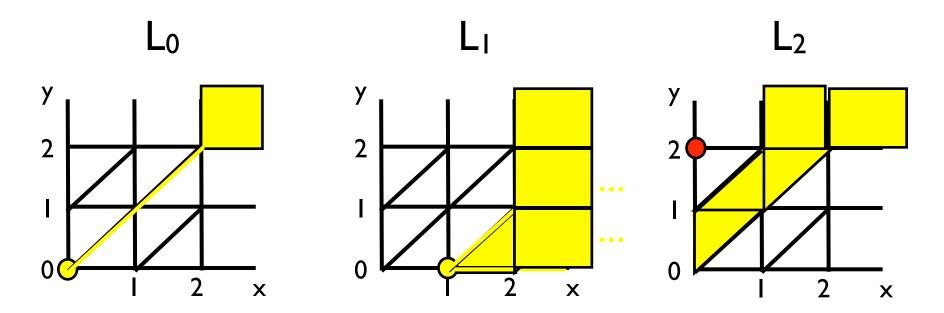


Question: Can L3 be reached ?



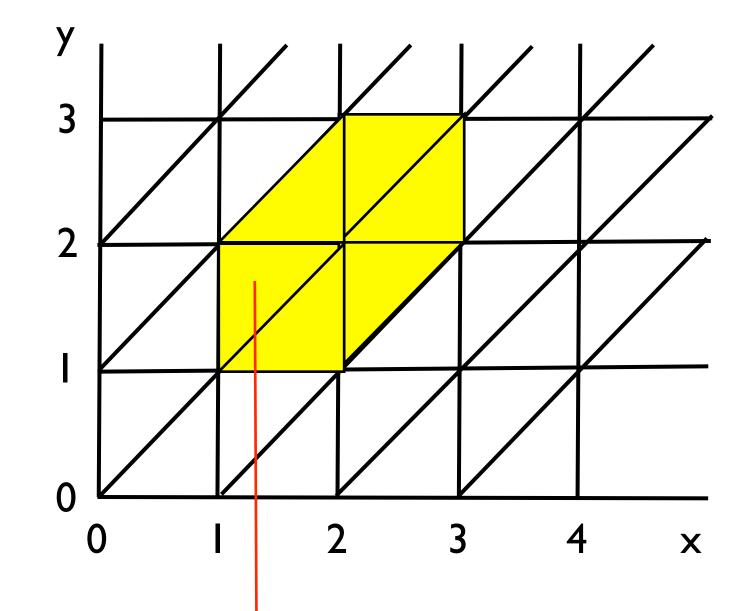


Question: Can L3 be reached ?



Taking the transition from L_1 to L_2 does not add any new states, so we have reached a fixed point.

- The region equivalence gives rise to a **finite quotient** and guaranties that our fixed point algorithms are **terminating**.
- Nevertheless, the number of region is exponential in the number of clocks as well as in the binary encoding of constants.
- To mitigate this state explosion phenomenon, we can use efficient data-structure to represent convex unions of regions.
 Zones are such a data-structure.
- Note that the reachability problem for timed automata is complete for PSpace, so it is believed that the state explosion is unavoidable in the worst case.



 $x \ge I \land x \le 3 \land y \le 3 \land y \ge I \land x \textbf{-} y \ge \textbf{-} 2 \land y \textbf{-} x \ge I$

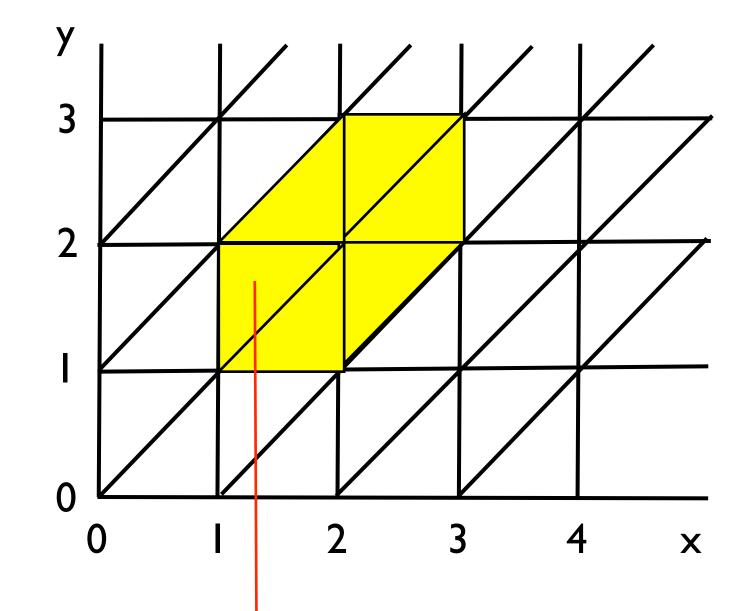
• Let \mathbb{C} be a finite set of clocks, a **zone** is defined by a set of constraints of the form:

(1) x-y ~ c where x,y $\in \mathbb{C}$ and $c \in \mathbb{Z}$.

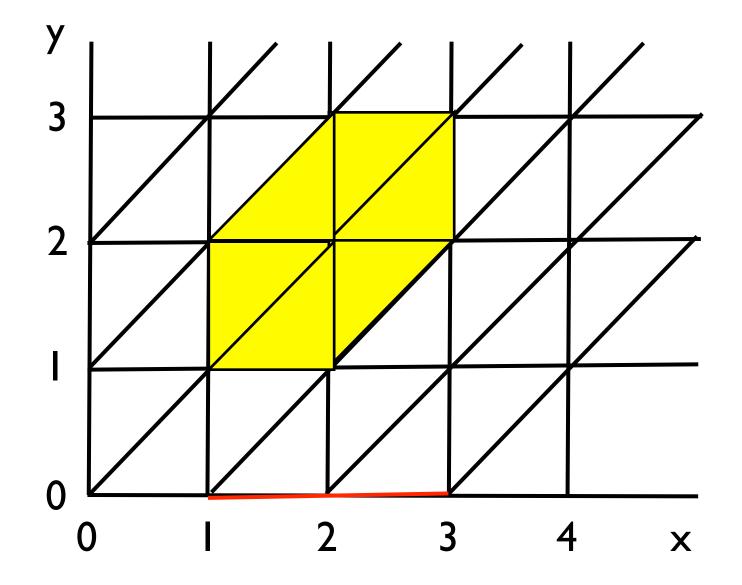
(2) $\mathbf{x} \sim \mathbf{c}$ where $\mathbf{x} \in \mathbb{C}$ and $\mathbf{c} \in \mathbb{Z}$.

and $\sim \in \{ \leq, <, =, >, \geq \}$.

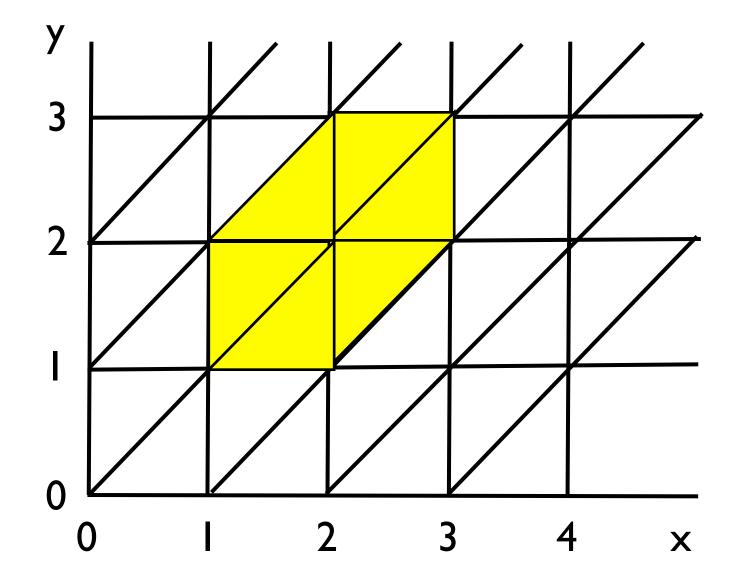
- **Zones** are closed under the **reseting operation**, the **forward** and **backward time passing** operations, and intersection.
- Unfortunately, zones are **not** closed under union nor complementation. So implementations need to maintain lists of zones.
- Zones can be canonically represented by **DBM** (=Difference Bound Matrices).

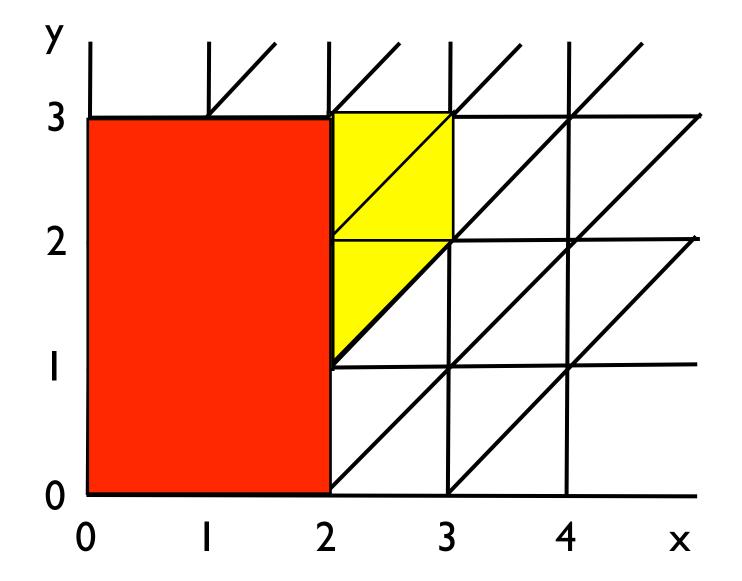


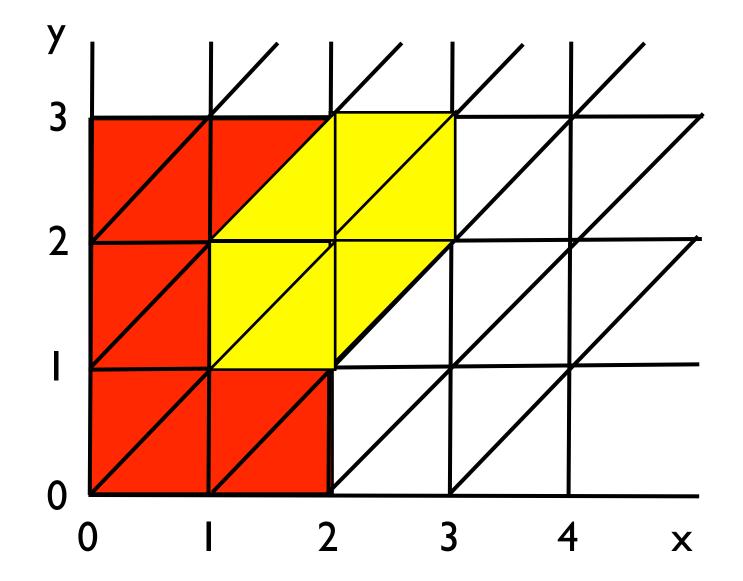
 $x \ge I \land x \le 3 \land y \le 3 \land y \ge I \land x \textbf{-} y \ge \textbf{-} 2 \land y \textbf{-} x \ge I$

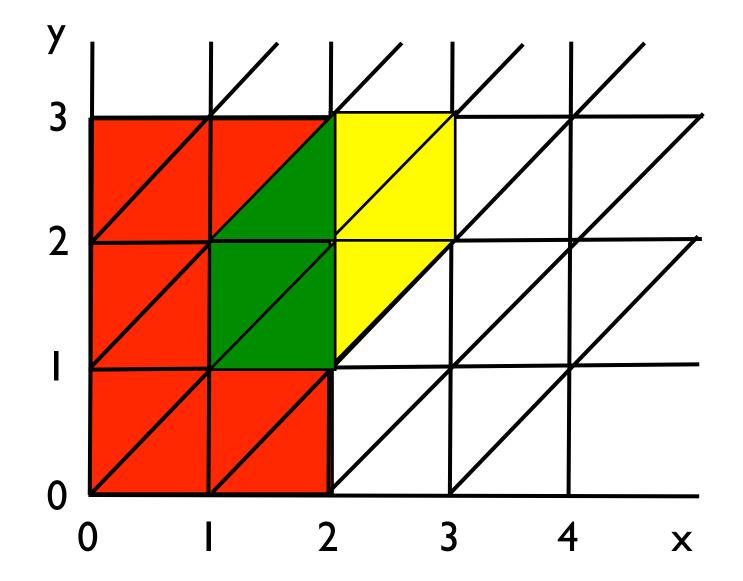


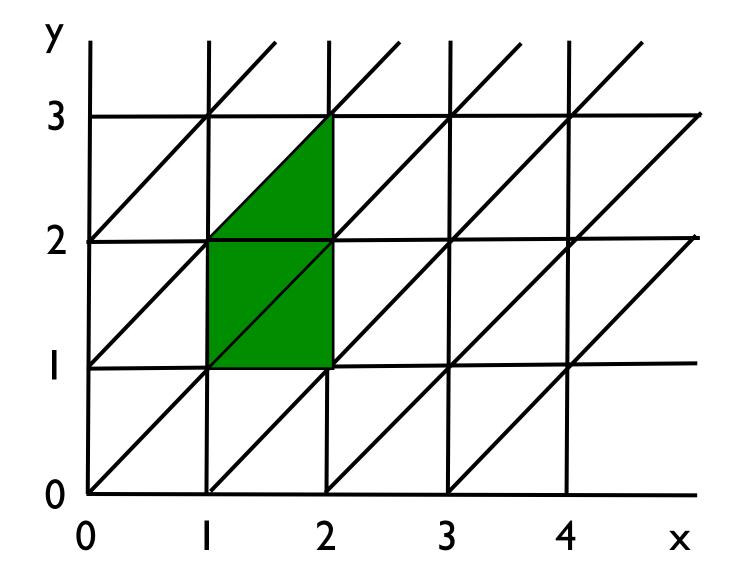
Resetting of y: $x \ge 1 \land x \le 3 \land y=0$











 $x \ge | \land x \le 2 \land y \ge | \land y \le 3 \land x - y \ge -|$

Decidability results for TA

Decidability results

- As a direct consequence of our previous developments, we have that:
- The reachability verification problem for TA w.r.t. a set Goal which is defined as a union of regions is decidable.
- The **safety verification problem** for TA w.r.t. a set **Safe** which is defined as a union of regions is **decidable**.
- The **Büchi verification problem** for TA w.r.t. a set **Goal** which is defined as a union of regions is **decidable**.

Decidability results

- As the reachability verification problem for TA is decidable then the **timed language emptiness problem** (finite word case) is decidable for TA.
- As the Büchi verification problem for TA is decidable then the **timed language emptiness problem** (<u>infinite</u> word case) is decidable for TA.

<u>Hint to establish the result</u>: construct a set Goal that ensures non-zenoness and the Büchi acceptance condition of the TA. Show that this set is a finite union of regions. As an intermediary step you will need a generalized Büchi condition.

Undecidability results for TA

Undecidability results for TA

- The timed universality problem, i.e. does a TA accepts all possible timed words on a alphabet, is undecidable.
- The **language inclusion problem** between timed automata is **undecidable**. (direct consequence of the previous undecidability result).