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Goals of the talk

• Introduction to basic game technics to solve the 
controller synthesis problem

• Timed games and symbolic technics (sketches)

• Show that the implementability of controller 
models is an important issue



Goals of the talk

• Introduction to basic game technics to solve the 
controller synthesis problem

• Timed games and symbolic technics (sketches)

• Show that the implementability of controller 
models is an important issue

Give relevant pointers to literature



• Make a model of the environment
Environment

• Make clear the control objective: 
Bad

• Make a model of your control strategy:
ControllerMod

• Verify :
Does Environment  ControllerMod avoid Bad ?

Context



• Make a model of the environment
Environment

• Make clear the control objective: 
Bad

• Make a model of your control strategy:
ControllerMod

• Verify :
Does Environment  ControllerMod avoid Bad ?

• Good, but after ?

Make the synthesis

Is my controller
implementable ?

Context



The synthesis problem



The synthesis problem

? || Env |= φ



The synthesis problem

? || Env |= φ

Cont



The synthesis problem

? || Env |= φ

Cont Using algorithmic 
methods



The synthesis problem

Specialize process A into C such that

So, C must refine A and 
control B to enforce  

A ≥ C and C || B |= φ

φ



Basic technics:
finite state case



• For the verification problem, the semantics of 
processes is usually given by transition systems

• When we consider the transition system for         , 
we loose the information about the components

A || B

Are transition systems
adequate for synthesis ?



• For the verification problem, the semantics of 
processes is usually given by transition systems

• When we consider the transition system for         , 
we loose the information about the components

A || B

So, we need richer models where identities 
of processes are explicit: 

two-player game structures

Are transition systems
adequate for synthesis ?



Two-player 
game structures
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Rounded 
positions belong 

to Player I
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belong to Player 2



A game is played as follows: in each round, the game is in a position, if 
the game is in a rounded position, Player I resolves the choice for the next 
state, if the game is in a square position, Play 2 resolves the choice. The 
game is played for an infinite number of rounds.
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Rounded positions belong to Player I
Square positions belong to Player 2
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Play : 0000  0100  0101 1101 ... 



Two-player Game Structure

A two-player game structure is a tuple
where:

Q1 and Q2 are two (finite and) disjoint sets 
of positions

ι ∈ Q1 ∪ Q2 is the initial position of the game

δ ⊆ (Q1 ∪ Q2) × (Q1 ∪ Q2) is the transition 
relation of the game

We assume that

G = 〈Q1, Q2, ι, δ〉

∀q ∈ Q1 ∪ Q2 : ∃q′ ∈ Q1 ∪ Q2 : δ(q, q′)



Plays, Prefixes of Plays
Let G = 〈Q1, Q2, ι, δ〉

is a play in G if
,

w = q0q1 . . . qn . . .



Plays, Prefixes of Plays
Let G = 〈Q1, Q2, ι, δ〉

is a play in G if
,

w = q0q1 . . . qn . . .

∀i ≥ 0 : qi ∈ Q1 ∪ Q2



Plays, Prefixes of Plays
Let G = 〈Q1, Q2, ι, δ〉

is a play in G if
,

w = q0q1 . . . qn . . .

G Plays(G)

Notations

w(i)

Let                         : 
denotes position i

w(0, i) denotes the prefix 
up to position i

last(w(0, i)) = w(i)

w = q0q1 . . . qn . . .



Plays, Prefixes of Plays
Let G = 〈Q1, Q2, ι, δ〉

is a play in G if
,

w = q0q1 . . . qn . . .

w(0) = ι1)
2) ∀i ≥ 0 : δ(w(i), w(i + 1))

We denote the set of plays in    by :G Plays(G)

PrefPlays(G) = {q0q1 . . . qn | ∃w ∈ Plays(G) ∧ ∀1 ≤ i ≤ n : w(i) = qi}

and

PrefPlaysk(G) = {w ∈ PrefPlays(G) ∧ last(w) ∈ Qk}
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Play : 0000  0100  0101 1101 ... 

Is this a good or a bad play for Player k ?

Who is winning ?
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Who is winning ?

A winning condition (for Player k) 
is a set of plays
W ⊆ (Q1 ∪ Q2)

ω



Game
=

Two-player game structure
+ 

Winning condition for Player k



Strategies

Players are playing according to strategies.

A Player k strategy in G is a function:

λ : PrefPlaysk(G) → Q1 ∪ Q2

with the restriction that:

∀w ∈ PrefPlaysk(G) : δ(last(w), λ(w))



Outcome of a strategy

   is a possible outcome of the Player k 
strategy    if
w

λ

∀i ≥ 0 : w(i) ∈ Qk : w(i + 1) = λ(w(0, i))

w is a play where Player k plays 
according to strategy λ



Outcome of a strategy

   is a possible outcome of the Player k 
strategy    if
w

λ

∀i ≥ 0 : w(i) ∈ Qk : w(i + 1) = λ(w(0, i))

Outcomek(G, λ)

The set of plays that have this property is denoted



Winning strategy

• Given a pair 

• We say that Player k wins the game           
if and only if:

(G, W )

(G, W )

∃λ : Outcomek(G, λ) ⊆ W



Winning strategy

• Given a pair 

• We say that Player k wins the game           
if and only if:

(G, W )

(G, W )

∃λ : Outcomek(G, λ) ⊆ W

That is, no matter how the other player resolves his choices, when player 
k plays according to   , the resulting play belongs to W.  Player k can 
force the play to be in W.

λ



Winning strategy

• Given a pair 

• We say that Player k wins the game           
if and only if:

(G, W )

(G, W )

∃λ : Outcomek(G, λ) ⊆ W

We say    that is a winning strategy for 
player k in the game (G, W )

λ



Winning strategies

=

Controllers that enforce 
winning plays



Winning conditions

• Not all winning conditions are reasonable

• One often assumes that the set of winning 
plays is a regular set

• We show here how to solve reachability 
and safety games



Reachability Games



Reachability Game

is a reachability game if

∃Q ⊆ Q1 ∪ Q2 : W = {w ∈ Plays(G) | ∃i : w(i) ∈ Q}

(G, W )

That is W is a set of plays that reaches
the set of locations Q.

Reach(G, Q)
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A Reachability Game

Does Player I, who owns the rounded positions, have a 
strategy (against any choices of Player II) to reach the set 

of states{1101, 1111} ?



Safety Games



Safety Game

is a safety game if(G, W )

That is W is the set of plays that stay 
within given set of positions Q.

∃Q ⊆ Q1 ∪ Q2 : W = {w ∈ Plays(G) | ∀i ≥ 0 : w(i) ∈ Q}

Safe(G, Q)
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A Safety Game

Does Player I, who owns the rounded positions, have a strategy 
(against any choices of Player II) to stay within the set of states

 ?Q \ {1111}



Symbolic algorithms to 
solve games



Player k Controllable 
Predecessors

Set of Player I positions where he has 
a choice of successor that lies in X

Set of Player II positions where all
her choices for successors lie in X

1CPreG(X) = {q ∈ Q1 | ∃q′ : δ(q, q′)∧ q′ ∈ X}∪{ q ∈ Q2 | ∀q′ : δ(q, q′) : q′ ∈ X}

X is a set of positions



Player k Controllable 
Predecessors

1CPreG(X) = {q ∈ Q1 | ∃q′ : δ(q, q′)∧ q′ ∈ X}∪{ q ∈ Q2 | ∀q′ : δ(q, q′) : q′ ∈ X}

2CPreG(X) = {q ∈ Q2 | ∃q′ : δ(q, q′)∧ q′ ∈ X}∪{ q ∈ Q1 | ∀q′ : δ(q, q′) : q′ ∈ X}

Symmetrically



Player k Controllable 
Predecessors

1CPreG(X) = {q ∈ Q1 | ∃q′ : δ(q, q′)∧ q′ ∈ X}∪{ q ∈ Q2 | ∀q′ : δ(q, q′) : q′ ∈ X}

2CPreG(X) = {q ∈ Q2 | ∃q′ : δ(q, q′)∧ q′ ∈ X}∪{ q ∈ Q1 | ∀q′ : δ(q, q′) : q′ ∈ X}

SymmetricallyMonotonic functions over 〈2Q1∪Q2
,⊆〉
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X = {1000, 0101, 1111}

1CPre(X) = {0000} ∪{ 0100, 1101}

Rounded positions,
there exists a red successor
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X = {1000, 0101, 1111}

1CPre(X) = {0000} ∪{ 0100, 1101}

Rounded positions,
there exists a red successor

Squared positions, 
all successors are red



Fixpoints to Solve Games

µX · Q ∪ 1CPre(X)

νX · Q ∩ 1CPre(X)

Reachability game for set Q

Safety game for set Q
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Fixpoint for a safety game

Does Player I, who owns the rounded positions, have a 
strategy to stay within the set of states

 ?Q \ {1111}
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Fixpoint for a safety game

We must compute 

νX · (Q \ {1111}) ∩ 1CPre(X)

To do that, we use the Tarski fixpoint theorem.
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Fixpoint for a safety game

X0 = (Q \ {1111}) ∩ 1CPre(Q)
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X0 = (Q \ {1111}) ∩ 1CPre(Q)
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Fixpoint for a safety game

X0 = (Q \ {1111}) ∩ 1CPre(Q)

X1 = (Q \ {1111}) ∩ 1CPre(X0)
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Fixpoint for a safety game

X0 = (Q \ {1111}) ∩ 1CPre(Q)

X1 = (Q \ {1111}) ∩ 1CPre(X0)
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Fixpoint for a safety game

X0 = (Q \ {1111}) ∩ 1CPre(Q)

X1 = (Q \ {1111}) ∩ 1CPre(X0)
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Fixpoint for a safety game

X0 = (Q \ {1111}) ∩ 1CPre(Q)

X1 = (Q \ {1111}) ∩ 1CPre(X0)
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X0 = (Q \ {1111}) ∩ 1CPre(Q)

X1 = (Q \ {1111}) ∩ 1CPre(X0)
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Fixpoint for a safety game

X0 = (Q \ {1111}) ∩ 1CPre(Q)

X1 = (Q \ {1111}) ∩ 1CPre(X0)

X2 = (Q \ {1111}) ∩ 1CPre(X1)
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X1 = (Q \ {1111}) ∩ 1CPre(X0)

X2 = (Q \ {1111}) ∩ 1CPre(X1)
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X0 = (Q \ {1111}) ∩ 1CPre(Q)

X1 = (Q \ {1111}) ∩ 1CPre(X0)

X2 = (Q \ {1111}) ∩ 1CPre(X1)
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X0 = (Q \ {1111}) ∩ 1CPre(Q)

X1 = (Q \ {1111}) ∩ 1CPre(X0)

X2 = (Q \ {1111}) ∩ 1CPre(X1)
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X0 = (Q \ {1111}) ∩ 1CPre(Q)

X1 = (Q \ {1111}) ∩ 1CPre(X0)

X2 = (Q \ {1111}) ∩ 1CPre(X1)
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Fixpoint for a safety game

X0 = (Q \ {1111}) ∩ 1CPre(Q)

X1 = (Q \ {1111}) ∩ 1CPre(X0)

X2 = (Q \ {1111}) ∩ 1CPre(X1) = X1

This is the 
greatest 
fixpoint
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Fixpoint for a safety game

X0 = (Q \ {1111}) ∩ 1CPre(Q)

X1 = (Q \ {1111}) ∩ 1CPre(X0)

X2 = (Q \ {1111}) ∩ 1CPre(X1) = X1

This is the 
greatest 
fixpoint

X2 is exactly the set of positions 
from which Player I can avoid 
entering {1111}, no matter how 
Player II behaves.



µX · Q ∪ 1CPre(X)

νX · Q ∩ 1CPre(X)

Safety game for set Q

Let                         be a TGS, let               
                 be a reachability game 
defined on G, Player I has a winning 
strategy for this game iff 

G = 〈Q1, Q2, ι, δ〉

Reach(G, Q)

ι ∈ µX · Q ∪ 1CPre(X)

Theorem



µX · Q ∪ 1CPre(X)

Reachability game for set Q

Let                         be a TGS, let               
               be a safety game defined 
on G, Player I has a winning strategy 
for this game iff 

G = 〈Q1, Q2, ι, δ〉

Theorem

Safe(G, Q)

ι ∈ νX · Q ∩ 1CPre(X)



Some more results
Any finite state game with regular objective can be solved.



Some more results

Strategies for safety and reachability games are 
positional (no need for memory).

Any finite state game with regular objective can be solved.
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Some more results

Strategies for safety and reachability games are 
positional (no need for memory).

For more complicated games, like LTL games, finite 
memory is needed.

Any finite state game with regular objective can be solved.



Some more results

Determinacy theorem: In positional games (where a 
position is owned by a player), games are determinate in 
the following sense :

For any regular set of plays W, 

Player I has a strategy to win  
iff 

Player II does not have a strategy to win 

(G, W )

(G, W )

Strategies for safety and reachability games are 
positional (no need for memory).

For more complicated games, like LTL games, finite 
memory is needed.

Any finite state game with regular objective can be solved.
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From the red states, and only from 
those states, Player II has a strategy 

to reach the state 1111



Timed Controller 
Synthesis



Timed Automata [AD94]

1 42

3

x<=2

x>=1,d

x=1, x:=0, a x>1,d

y=1,z:=0,b

x>=1;z>0,d

z>0, y:=0,c

y<=1

0

x<1

y:=0, i

e

x<=2



Timed Automata [AD94]

TA=Finite State Automata+Clocks

1 42

3

x<=2

x>=1,d

x=1, x:=0, a x>1,d

y=1,z:=0,b

x>=1;z>0,d

z>0, y:=0,c

y<=1

0

x<1

y:=0, i

e

x<=2

Clock reset Invariant

Guard

State of a TA: (l,v) where l is a location and v is a 
valuation of the clocks.



Timed Automata [AD94]

TA=Finite State Automata+Clocks

1 42

3

x<=2

x>=1,d

x=1, x:=0, a x>1,d

y=1,z:=0,b

x>=1;z>0,d

z>0, y:=0,c

y<=1

0

x<1

y:=0, i

e

x<=2

Clock reset Invariant

Guard

State of a TA: (l,v) where l is a location and v is a 
valuation of the clocks.

We need a game version



1 42

3

x<=2

x>=1,d

x=1, x:=0, a x>1,d

y=1,z:=0,b

x>=1;z>0,d

z>0, y:=0,c

y<=1

0

x<1

y:=0, i

e

〈L1, L2, l0, X, E, Inv〉 where:

L1 and L2 are locations where Player I, respectively 
Player II, makes choices. 

l0 is the initial location.

➣

➣

Simple Timed Game Automata



Simple Timed Game Automata

1 42

3

x<=2

x>=1,d

x=1, x:=0, a x>1,d

y=1,z:=0,b

x>=1;z>0,d

z>0, y:=0,c

y<=1

0

x<1

y:=0, i

e

〈L1, L2, l0, X, E, Inv〉 where:

X

➣

➣

➣

is a finite set of clocks
, a set of edges

Inv : L1 ∪ L2 → 2
R

n

, the invariants labeling locations
E ⊆ L1 ∪ L2 × 2

X × 2
R

n

× L1 ∪ L2



Simple Timed Games
As before, the positions of the games are partitioned 
into positions that belong to Player I and positions that 
belong to Player II.

Games on STGA are played as follows:

In a Player’s k position, Player k proposes a time t and an 
action a to be played.  This choice must be valid in the 
sense that it must not violate the invariant and the 
action a must be enabled after t time units. The game 
then proceeds to the next position.
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x<=2

x>=1,d

x=1, x:=0, a x>1,d

y=1,z:=0,b

x>=1;z>0,d

z>0, y:=0,c

y<=1

0

x<1

y:=0, i

e

Timed Play

Timed Play : 

(l0, 〈0, 0, 0〉) →0.5

i (l1, 〈0.5, 0, 0.5〉)

Player II chooses to wait 0.5 and then to play i
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x<=2

x>=1,d

x=1, x:=0, a x>1,d

y=1,z:=0,b

x>=1;z>0,d

z>0, y:=0,c

y<=1

0

x<1

y:=0, i

e

Timed Play

Timed Play : 

(l0, 〈0, 0, 0〉) →0.5

i (l1, 〈0.5, 0, 0.5〉)

Player I chooses to wait 0.5 and then to play a

→0.5

a
(l2, 〈0, 0.5, 1〉)



Timed Two-player Game Structure

A timed two-player game structure is a tuple
where:

Q1 and Q2 are two disjoint sets of 
positions

ι ∈ Q1 ∪ Q2 is the initial position

is the timed transition relation

We assume that

δt ⊆ (Q1 ∪ Q2) × RR × (Q1 ∪ Q2)

G = 〈Q1, Q2, ι, δt〉

∀q ∈ Q1 ∪ Q2 : ∃t ∈ RR : ∃q′ ∈ Q1 ∪ Q2 : δt(q, t, q
′)



From STGA to TTGS
〈L1, L2, l0, X, E, Inv〉 G = 〈Q1, Q2, ι, δt〉

Q1 = {(l, v) | l ∈ L1 ∧ v |= Inv(l)}

Q2 = {(l, v) | l ∈ L2 ∧ v |= Inv(l)}

ι = (l0, 0
|X|)

δ((l, v), t, (l′, v′)) iff ∃〈l, r, g, l′〉 ∈ E :

∀t′ : 0 ≤ t′ ≤ t : v + t |= Inv(l) ∧ v + t |= g ∧ v′ = v + t[r := 0]



Timed Play
Let 

is a timed play in G if

,

w(0) = ι1)
2)

G = 〈Q1, Q2, ι, δt〉

w = q0 →
t0 q1 →

t1 q2 . . . qn →
tn . . .

Plays(G)

PrefPlaysk(G) = {w ∈ PrefPlays(G) ∧ last(w) ∈ Qk}

The set of timed plays of G is noted

∀i ≥ 0 : δt( w(i)(q), w(i)(t), w(i + 1)(q) )

PrefPlays(G) = {q0 →t0 . . . →tn−1 qn | ∃w ∈ Plays(G)∧∀0 ≤ i ≤ n : w(i)(q) = qi∧w(i)(t) = ti}



Timed Strategy

Players are playing according to timed strategies.

A Player k strategy in G is a function:

with the restriction that:

λ : PrefPlaysk(G) → RR × Q1 ∪ Q2

∀w ∈ PrefPlaysk(G) : δ(last(w), λ(w)(t), λ(w)(q))



Outcome of a timed strategy

is a possible outcome of the Player k timed 
strategy    ifλ

Outcomek(G, λ)

The set of timed plays that have this property is 
denoted

w = q0 →
t0 q1 →

t1 q2 . . . qn →
tn . . .

∀i ≥ 0 : qi ∈ Qk → ti = λ(w(0, i))(t) ∧ qi+1 = λ(w(0, i))(q)



Symbolic algorithms to 
solve timed games



Player k timed controllable 
predecessors

Set of Player I positions where he has 
a choice of successor that lies in X

Set of Player II positions where all
her choices for successors lie in X

1CPreG(X) = {q ∈ Q1 | ∃t ∈ RR, q′ : δt(q, t, q
′)∧q′ ∈ X}∪{q ∈ Q2 | ∀t ∈ RR, q′ : δt(q, t, q

′) → q′ ∈ X}



Player k timed controllable 
predecessors

1CPreG(X) = {q ∈ Q1 | ∃t ∈ RR, q′ : δt(q, t, q
′)∧q′ ∈ X}∪{q ∈ Q2 | ∀t ∈ RR, q′ : δt(q, t, q

′) → q′ ∈ X}

2CPreG(X) = {q ∈ Q2 | ∃t ∈ RR, q′ : δt(q, t, q
′)∧q′ ∈ X}∪{q ∈ Q1 | ∀t ∈ RR, q′ : δt(q, t, q

′) → q′ ∈ X}

Symmetrically



Player k timed controllable 
predecessors

1CPreG(X) = {q ∈ Q1 | ∃t ∈ RR, q′ : δt(q, t, q
′)∧q′ ∈ X}∪{q ∈ Q2 | ∀t ∈ RR, q′ : δt(q, t, q

′) → q′ ∈ X}

2CPreG(X) = {q ∈ Q2 | ∃t ∈ RR, q′ : δt(q, t, q
′)∧q′ ∈ X}∪{q ∈ Q1 | ∀t ∈ RR, q′ : δt(q, t, q

′) → q′ ∈ X}

Symmetrically

Difficulty : here X ranges over the 
subsets of an infinite set



Region equivalence
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Region equivalence

Finite number of equivalence classes
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y

0
0

1

2

1

3

2 3 4

Region equivalence

All valuations of a region satisfies the same guards and invariants



x

y

0
0

1

2
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3

2 3 4

Region equivalence

Time elapsing and time predecessors preserve regions
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Region equivalence

Reset and inverse reset operations preserve regions



1CPre preserves regions

Theorem.  If X is a union of regions then 1CPre(X) 
is a union of regions.  

Corollary. Safety, Reachability and more generally 
LTL games are decidable on timed game structures 
generated by timed automata.



Zenoness



Not all timed strategies are reasonable

A timed play w = q0 →
t0 q1 →

t1 q2 . . . qn →
tn . . .

is Zeno if: ∃t ∈ RR :

∞∑

i=0

ti ≤ t

Time does not diverge



Not all timed strategies are reasonable

0 1 2

x=0

a

b, x<1

x<=1

x=1

c

x<=1

Does Player I have a timed strategy to avoid
entering location l2 ?



Not all timed strategies are reasonable

0 1 2

x=0

a

b, x<1

x<=1

x=1

c

x<=1

Consider the following timed strategy for Player I:

Let w ∈ PrefPlay1(G) :

if last(w) = (l0, v) then let t = 1 −

1 − v(x)

2
and λ(w) = (t, (l1, v(x) + t))

if last(w) = (l1, v) then let t = 1 −

1 − v(x)

2
and λ(w) = (t, (l0, v(x) + t))



Not all timed strategies are reasonable

0 1 2

x=0

a

b, x<1

x<=1

x=1

c

x<=1

When Player I plays this strategy, the only outcome 
of the games is:

(l0, 0) →
1

2 (l1,
1

2
) →

1

4 (l0,
3

4
) →

1

8 (l1,
7

8
) . . .



Not all timed strategies are reasonable

0 1 2

x=0

a

b, x<1

x<=1

x=1

c

x<=1

When Player I plays this strategy, the only outcome 
of the games is:

(l0, 0) →
1

2 (l1,
1

2
) →

1

4 (l0,
3

4
) →

1

8 (l1,
7

8
) . . .Clearly, such a 

strategy can  
not be implemented



Not all timed strategies are reasonable

They are algorithmic solutions to avoid the 
synthesis of zeno strategies.  The correctness 
of those solutions can be explained using the 
region graph.



Not all timed strategies are reasonable

They are algorithmic solutions to avoid the 
synthesis of zeno strategies.  The correctness 
of those solutions can be explained using the 
region graph.

But Zenoness is not the only problem



Implementability issues 
for timed models



Model-based Development

• Make a model of the environment
Environment

• Make clear the control objective: 
Bad

• Make a model of your control strategy:
ControllerMod

• Verify :
Does Environment  ControllerMod avoid Bad ?

• Good, but after ?

Text



From Correct Models
to Correct Implementations

• Should we verify code ?
– this may be difficult (too much details)

• Can we translate model into code ?
... there are tools for that ...

• ... and preserve properties ?
... good question...



Problem 

• Timed automata are (in general) not 
implementable (in a formal sense)...

Why ?
– Zenoness : 0, 0.5, 0.75, 0.875, ...

– No minimal bound between two transitions :
0,0.5,1,1.75,2,2.875,3,...

– And more ... (robustness)



No Minimal Bound 
between Two Transitions



It can be controlled



More...

• One can specify instantaneous responses 
but not implement them.

Not implementable



More...

• Instantaneous synchronisations between 
environment and controller are not 
implementable.

EnvironmentEnvironment

Classical controller
Not implementable



More...

• Models use continuous clocks and 
implementations use digital clocks with 
finite precision

Classical controller
Not implementable

V.S



Problems : Summary

• My controller stragegy may be correct 
because of
– ... it is zeno...
– ... it acts faster and faster?
– ... it reacts instanteously to events, 

timeouts,...? (synchrony hypothesis)
– ... it uses infinitely precise clocks? 

Text

t



A possible solution...

• Give an alternative semantics to timed 
automata : Almost ASAP semantics.
– enabled transitions of the controller become 

urgent only after Δ time units;
– events from the environment are received by 

the controller within Δ time units;
– truth values of guards are enlarged by f(Δ).

where Δ is a parameter



Definition of 
the AASAP semantics



Intuition...

One can specify instantaneous responses 
but not implement them.

Not implementable Solution : allow some delay



Intuition...

Instantaneous synchronisations between 
environment and controller are not 
implementable.

EnvironmentEnvironment

Classical controller
Not implementable

Solution :
Uncouple event from 
perception by the controller



Intuition...

Models use continuous clocks and 
implementations use digital clocks with 
finite precision

Classical controller
Not implementable

Solution :
Slightly relax the constraints

V.S



Verification

• The question that we ask when we make 
verification is no more:

Does Environment  ControllerMod avoid Bad ?

• But: 

for which values of Δ, 
does Environment  ControllerMod(Δ) avoid Bad ?



Three variations

• Fixed (you know your target platform) :

Given Δ>0, 
does Environment  ControllerMod(Δ) avoid Bad ?

• Existence (is my system implementable ?) :

does there exist Δ>0 such that 
Environment  ControllerMod(Δ) avoid Bad ?

• Max (how fast must my controller be ?) :

Max Δ such that 



Implementability of 
the AASAP semantics



Intuition

• AASAP semantics defines a “tube” of strategies instead 
of a unique strategy in the ASAP semantics.

• This tube can be refined into an implementation while 
preserving safety properties verified on the AASAP-sem

ASAP semantics
Implementation
AASAP semantics

↑f(Δ)



Proof of  “implementability” ?

• We define an “implementation 
semantics” based on:

• The timed behaviour of this scheme is 
determined by two values :
– Time length of a loop : ΔL 
– Time between two clock ticks : ΔP

Read System Clock
Update Sensor Values 
Check all transitions and fire one if possible
 



Program semantics



Proof of  “implementability” ?

   For any timed controller, its AASAP semantics 
simulates (in the formal sense) its 
implementation semantics, provided that : 

Δ>3ΔL+4ΔP

Theorem :

   In this case, the implementation is 
guaranteed to preserve verified properties 
of the model, that is:

Environment  ControllerMod(Δ) avoid Bad

implies

Environment  ControllerImpl(ΔL,ΔP) avoid Bad



Properties of the AASAP Semantics

• Faster is better ! 

For any Δ1, Δ2 such that Δ1<Δ2:
if

Environment  ControllerMod(Δ2) avoid Bad
then 

Environment  ControllerMod(Δ1) avoid Bad



Properties of the AASAP Semantics

• If Δ>0, we get for free a proof that strategies:
• are nonzeno 
• are such that transitions does not need to be 

taken faster and faster
• If only Δ=0 guarantees some reachability 

property, then the control strategy is not 
implementable



An example

Text

If α=1 then the system is safe if and only if Δ=0
If α=2 then the system is safe if and only if Δ<0.25



In practice ?

• The AASAP semantics can be coded into a 
parametric timed automata with only one clock 
compared to the parameter Δ ∈ Q.

• Unfortunately, the reachability problem for 
that class of timed automata is undecidable... 
Direct corollary of [CHR02].

• Hytech implements a semi-decision procedure 
for that problem.

• Does there exist Δ>0 such that 
Environment || ControllerMod(Δ) avoid Bad ?



Tool Set



Methodology to develop
controllers

Models using synchrony hypothesis
Environment  ControllerMod

Check
Does Environment  ControllerMod(0) avoid Bad ?

Compute the largest Δ1 such that
Environment  ControllerMod(Δ1) avoid Bad 

if Δ1 > 3 ΔL + 4 ΔP

Generate code
This code will enforce the safety property

❶

❷

❹

❸

❶

❷

❸

❹

❺



Conclusion

• Two player games are natural theoretical 
model to study the synthesis problem

• There exist elegant algorithms to solve 
general games

• The step to go from a model to a correct 
implementation needs more 
investigations
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References on implementability issues and robustness

of the sequence goes to infinity, is around 2.84 bits per seconds. This may look
quite low and we could think that far better throughput could be obtained by a
hand-made implementation. But this is not the case. Indeed, we can show using
the results of Ho and Wong-Toi [HWT95] and by taking into account only the
imprecision due to reading on digital clocks every time slice, that the throughput
of the protocol on Lego MindstormsTM is bounded from above by around 4.16
bits per seconds. So, the price in term of performance loss to obtain automati-
cally generated and correct code is not too high in our opinion. Let us also note
that we were only able to find error by testing when the throughput was set
around 7 bits per seconds. That shows the limit of testing at least when done in
a naive way.
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