Third Lecture:

Basics of Timed Controller
Synthesis

Jean-Frangois Raskin
Université Libre de Bruxelles
Belgium

Artist2 Asian Summer School - Shanghai - July 2008

Goals of the talk

¢ Introduction to basic game technics to solve the
controller synthesis problem

¢ Timed games and symbolic technics (sketches)

® Show that the implementability of controller
models is an important issue

Goals of the talk

¢ Introduction to basic game technics to solve the
controller synthesis problem

¢ Timed games and symbolic technics (sketches)

® Show that the implementability of controller
models is an important issue

Give relevant pointers to literature

Context

® Make a model of the environment
Environment

® Make clear the control objective:
Bad

® Make a model of your control strategy:
ControllerMod

® Verify :

Does Environment || ControllerMod avoid Bad ?

Context

® Make a model of the environment
Environment

® Make clear the control objective:
Make the synthesis [@

® -Make-a-model of your control strategy:
ControllerMod

® Verify

® Good, but after ? | Is my controller
implementable ?

The synthesis problem

The synthesis problem

7 || Env

The synthesis problem

7 || Env

Cont

The synthesis problem

Env

= _dl Using algorithmic
methods

The synthesis problem

Specialize process A into C such that

A>Cand C|| B

So, C must refine A and
control B to enforce ¢

Basic technics:

finite state case

Are transition systems
adequate for synthesis !

® For the verification problem, the semantics of
processes is usually given by transition systems

® When we consider the transition system for A || B,
we loose the information about the components

Are transition systems
adequate for synthesis ?

® For the verification problem, the semantics of
processes is usually given by transition systems

® When we consider the transition system for A || B,
we loose the information about the components

So, we need richer models where identities

of processes are explicit:
two-player game structures

Iwo-player

game structures

'

0000

Rounded

positions belong
to Player |

Square positions
belong to Player 2

'

0000

Rounded

positions belong
to Player |

Rounded positions belong to Player |
Square positions belong to Player 2

'

0000

1110

A game is played as follows: in each round, the game is in a position, if
the game is in a rounded position, Player | resolves the choice for the next
state, if the game is in a square position, Play 2 resolves the choice. The
game is played for an infinite humber of rounds.

0000

Play : 0000

0000

Play : 0000 0100

0000

Play : 0000 0100 0101

0000

Play : 0000 0100 OI0I 1101l

0000

Play : 0000 0100 OI10I 1101 ...

Two-player Game Structure

A two-player game structure is a tuple
G = (Q1,Q2,t,0) where:

@1 and Q2 are two (finite and) disjoint sets
of positions

L € Q1 UQ2 is the initial position of the game

0 C (Q1UQ2) x (Q1UQ2) is the transition
relation of the game

We assume that Vg c Q1 U Q> : 3¢ € Q1 U Q2 : 6(q,q")

Plays, Prefixes of Plays

Plays, Prefixes of Plays

Let G = (Q1,Q2,¢,9),
coiln ... isaplayin G if

~

Vi>0:q; € Q1UCQ>

Plays, Prefixes of Plays

Let G = <Q1,Q2,L,5>,

Notations
Letw:qoqlqn

w(z) denotes position i

w(0,7) denotes the prefix
up to position |

last(w(0,7)) = w(7)

Plays, Prefixes of Plays

Let G = <Q1,Q2,L,5>,

1) w(0) =1
2) Vi>0:0(w(i),w(i+1))

We denote the set of plays in G by : Plays(G)
and

PrefPlays(G) = {qoq1 - - - q¢n | Fw € Plays(G) AV1 <i<n:w() =q;}
PrefPlays, (G) = {w € PrefPlays(G) A last(w) € Q}

Who is winning !

1101

'

0000

1110

Play : 0000 0100 OI101I 1101 ...

Who is winning ?

1101

'

0000

1110

Play : 0000 0100 OI101I 1101 ...

s this a good or a bad play for Player k!

Who is winning !

'

0000

1110

A winning condition (for Player k)
is a set of plays

W C (Q1UQ2)”

Game

Two-=-player game structure
+

Winning condition for Player k

Strategies

Players are playing according to strategies.

A Player k strategy in G is a function:

A PrefPIaysk(G) — Ql U QQ

with the restriction that:

Vw € PrefPlays, (G) : d(last(w), A(w))

Outcome of a strategy

w is a possible outcome of the Player k
strategy A\ if

Vi>0:w(i) € Qp:w(i+1) = \w(0,7))

w is a play where Player k plays
according to strategy \

Outcome of a strategy

w is a possible outcome of the Player k
strategy A\ if

Vi>0:w(i) € Qp:w(i+1) = \w(0,7))

The set of plays that have this property is denoted

Outcomeg (G, \)

Winning strategy

® Given a pair (G, W)

® We say that Player k wins the game (G, W)
if and only if:

3\ : Outcomer (G, \) C W

Winning strategy

® Given a pair (G, W)

® We say that Player k wins the game (G, W)
if and only if:

3\ : Outcomer (G, \) C W

That is, no matter how the other player resolves his choices, when player
k plays according to A , the resulting play belongs to W. Player k can
force the play to be in W.

Winning strategy

® Given a pair (G, W)

® We say that Player k wins the game (G, W)
if and only if:

3\ : Outcomer (G, \) C W

We say)\ that is a winning strategy for
player k in the game (G, W)

Winning strategies

Controllers that enforce
winning plays

Winning conditions

® Not all winning conditions are reasonable

® One often assumes that the set of winning
plays is a regular set

® VWe show here how to solve reachability
and safety games

Reachability Games

Reachability Game

(G,W)is a reachability game if

1Q C Q1 UQ : W ={w € Plays(G) | 3¢ : w(z) € Q}

That is W is a set of plays that reaches
the set of locations Q.

Reach(G, Q)

A Reachability Game

1101

0000 0
1110

Does Player |, who owns the rounded positions, have a

strategy (against any choices of Player Il) to reach the set
- 4

Safety Games

Safety Game

(G, W) is a safety game if

1Q C Q1 UQo: W ={w € Plays(G) | Vi > 0: w(i) € Q}

That is W is the set of plays that stay
within given set of positions Q.

Safe(G, Q)

A Safety Game

‘ 0100 0101 1101
—
| 1000 1010 1110

Does Player |, who owns the rounded positions, have a strategy
(against any choices of Player |l) to stay within the set of states

Q\{1111}|?

PO

Symbolic algorithms to

solve games

Player k Controllable
Predecessors

X is a set of positions

1CPreg(X) ={qe Q1 |3¢ :0(q,¢)N¢g € X} U{qe Q2 |Vq :0(q,q") : ¢ € X}

/

Set of Player | positions where he has
a choice of successor that lies in X

Set of Player |l positions where all
her choices for successors lie in X

Player k Controllable
Predecessors

1CPreq(X)={qe Q1 |3¢ :0(q,d)Nqd e X}U{qe Q2> |Vq :6(q,¢) : ¢’ € X}

Symmetrically

2CPreg(X) ={qe€ Q2 13¢ : 6(q,¢)Ng e X} U{qe Q1 |V :6(q,¢"): ¢ € X}

Player k Controllable
Predecessors

1CPreq(X)={qe Q1 |3¢ :0(q,d)Nqd e X}U{qe Q2> |Vq :6(q,¢) : ¢’ € X}

Monotonic functions over (2€1Y%2 C)

2CPreg(X) ={qe€ Q2 13¢ : 6(q,¢)Ng e X} U{qe Q1 |V :6(q,¢"): ¢ € X}

1CPre(

) =

{0000}

Rounded positions,
there exists a red successor

U{ 0100, 1101}

1CPre(

) =

{0000}

Rounded positions,
there exists a red successor

Squared positions,
all successors are red

Fixpoints to Solve Games

Reachability game for set Q
uX - QU 1CPre(X)

Safety game for set Q)
vX - N1CPre(X)

Fixpoint for a safety game

‘ 0100 0101 1101
—
1010 1110

Does Player |, who owns the rounded positions, have a
strategy to stay within the set of states

Q\{1111}|?

Fixpoint for a safety game

‘ 0100 0101 1101
—
1010 1110

We must compute

vX - (Q\ {1111}) N 1CPre(X)

To do that, we use the Tarski fixpoint theorem.

Fixpoint for a safety game

Xo = (Q\ {1111}) N 1CPre(@Q))

Fixpoint for a safety game

Fixpoint for a safety game

‘ 0100

RN
1101
1110
¥

Fixpoint for a safety game

Fixpoint for a safety game

Xo = (Q\ {1111}) N 1CPre(Q)
X, = (Q\ {1111}) N 1CPre(Xp)

Fixpoint for a safety game

= (Q\ {1111}) N 1CPre(Q)
= (Q\ {1111}) N[1CPre(X,)

Fixpoint for a safety game

1101

1110

Xo=(Q\{1111}) N 1CPre(Q)
X1 = (Q\ {1111}) N[LCPre(X))

Fixpoint for a safety game

0101 1101

0000 ~’. \@/ 1111

| 1000 1110

Xo=(Q\{1111}) N 1CPre(Q)
X1 =[(@\ {1111})|N[1CPre(X))

Fixpoint for a safety game

Fixpoint for a safety game

Xo = (Q\ {1111}) N 1CPre(Q)

X5 = (Q\ {1111}) N 1CPre[XH)

Fixpoint for a safety game

Xo = (Q\ {1111}) N 1CPre(Q)

Fixpoint for a safety game

1101

1110

Xo=(Q\ {1111}) N 1CPre(Q)
X1 =(Q\{1111}) N 1CPre(Xp)

Fixpoint for a safety game

0101 1101

0000 ~’. \@/ 1111

| 1000 1110

Xo=(Q\ {1111}) N 1CPre(Q)
X1 =(Q\{1111}) N 1CPre(Xp)

Fixpoint for a safety game

Xo = (Q\ {1111}) N 1CPre(Q)
X, = (Q\ {1111}) N 1CPre(X,)

v, @\ [T A TCPr(X)

Fixpoint for a safety game

Xo = (Q\ {1111}) N 1CPre(Q)
This is the B
greatest X1 = (Q \ {1111}) [].CPFG(X())

fixpoint A2 :_ = A1

Fixpoint for a safety game

Xz is exactly the set of positions
| from which Player | can avoid

entering {1111}, no matter how
Player Il behaves.

Xo = (Q\ {1111}) N 1CPre(Q)
This is the B
greatest X1 = (Q \ {1111}) [1CPre(X0)

fixpoint A2 :_

Theorem

Let G = (Q1,Q2,:,6) be a TGS, let
Reach(G, Q) be a reachability game

defined on G, Player | has a winning
strategy for this game iff

L€ puX - Q UILCPre(X)

Theorem

Let G = (Q1,Q2,:,6) be a TGS, let
Safe(G, Q) be a safety game defined

on G, Player | has a winning strategy
for this game iff

LevX -QN1CPre(X)

Some more results

Any finite state game with regular objective can be solved.

Some more results

Any finite state game with regular objective can be solved.

Strategies for safety and reachability games are
positional (no need for memory).

Some more results

Any finite state game with regular objective can be solved.

Strategies for safety and reachability games are
positional (no need for memory).

For more complicated games, like LTL games, finite
memory is needed.

Some more results

Any finite state game with regular objective can be solved.

Strategies for safety and reachability games are
positional (no need for memory).

For more complicated games, like LTL games, finite
memory is needed.

Determinacy theorem: In positional games (where a

position is owned by a player), games are determinate in
the following sense :

For any regular set of plays W,

Player | has a strategy to win (G, W)
iff
Player Il does not have a strategy to win (G, W)

From the red states, and only from
those states, Player |l has a strategy
to reach the state 1111

Timed Controller

Synthesis

Timed Automata [AD9%4]

Timed Automata [AD94]

Invariant

Clock reset

o

x<1

x>=1;z>0,d

TA=Finite State Automata+Clocks

State of a TA: (Lv) where | is a location and v is a
valuation of the clocks.

Timed Automata [AD94]

Clock reset

Invariant

TA=Finite State AutornmataCIrocKs

Ve need a game version

State of a TA: (v) where | is a location and v is a
valuation of the clocks.

Simple Timed Game Automata

(L1, Lo, lg, X, E, Inv)| where:

> L; and L; are locations where Player |, respectively
Player I, makes choices.

> Ip is the initial location.

Simple Timed Game Automata

(L1, Lo, lg, X, E, Inv)| where:

> X is a finite set of clocks
> F C L1 ULy x 2% x 28" x L1 U Ly, a set of edges
> [nv: L ULy — 2%, the invariants labeling locations

Simple Timed Games

As before, the positions of the games are partitioned
into positions that belong to Player | and positions that
belong to Player Il.

Games on STGA are played as follows:

In a Player’s k position, Player k proposes a time t and an
action a to be played. This choice must be valid in the
sense that it must not violate the invariant and the
action a must be enabled after t time units. The game
then proceeds to the next position.

Timed Pla

x>=1,

o

x<1

Timed Play :

(1o, (0,0,0)) —2-° (11, (0.5,0,0.5))

1

Player Il chooses to wait 0.5 and then to play i

Timed Pla

x>=1,

o

x<1

Timed Play :

(1o, (0,0,0)) —2-° (11, (0.5,0,0.5)) —2-° (I3, (0, 0.5, 1))

(/ a

Player | chooses to walit 0.5 and then to play a

Timed Two-player Game Structure

A timed two-player game structure is a tuple
G = {(Q1,Q2,t,0:) Where:

@1 and Q2 are two disjoint sets of
positions

L€ Q1 UQ2 is the initial position

0 € (Q1UQ2) X R x (Q1UQ2)

is the timed transition relation

We assume that vge Q,UQy:H e R:3¢ € Q1 UQ> : 6:(q.t,q)

From STGA to TTGS

<L1,L2,lo,X,E,[TL’U> m—- G = <Q17Q27[/75t>

Qr={l,v)|l € Li ANvEInv(l)}

Q:={(l,v) |l € Ly ANv = Inv(l)}

L = (lo, O|X|)

6((Lv), ¢, (I 0")) iff 3(l,rg.l') € E -

Vi':0<t' <t:v+tEInv(l) N v+itlEg AN vV =v+t[r:=0]

Timed Play

Let G = <Q17 Q27 Ls 5t>’

to tn

w = qo — qlﬁth_IQ...qn_)

is a timed play in G if

1) w(0) =
2) Vi > 0:0,(w(i)(q), w(i)(#), w(i+1)(q))

The set of timed plays of G is noted Plays(G)
PrefPlays(G) = {qgy —' ... —=!"1 q, | Jw € Plays(G)AV0 < i < n: w(i)(q) = ¢;Aw(i)(t) = t;}

PrefPlays, (G) = {w € PrefPlays(G) A last(w) € Q}

Timed Strategy

Players are playing according to timed strategies.

A Player k strategy in G is a function:

A : PrefPlays, (G) — R x Q1 U Qs

with the restriction that:

Vw € PrefPlays, (G) : d(last(w), AM(w)(t), A(w)(q))

Outcome of a timed strategy

to tn

w=4qo — ({1 —h q2 . . . 4n —

is a possible outcome of the Player k timed
strategy A if

Vi>0:¢q € Qr — t; = Mw(0,2))(t) A gi+1 = Mw(0,%))(q)

The set of timed plays that have this property is
denoted

Outcomeg (G, \)

Symbolic algorithms to

solve timed games

Player k timed controllable
predecessors

1CPreg(X) ={qe Q1| H e R,q :6:(q,t,d)Ng € X}U{qge Q2 |Vt € R,q : 6:(q,t,¢') — ¢ € X}

Set of Player | positions where he has
a choice of successor that lies in X

Set of Player |l positions where all
her choices for successors lie in X

Player k timed controllable
predecessors

1CPreg(X) ={qe Q1| H e R,q :6:(q,t,d)Ng € X}U{qge Q2 |Vt € R,q : 6:(q,t,¢') — ¢ € X}

Symmetrically

2CPreqg(X) ={qe Q2| € R, ¢ : 6:(q,t,¢)\g € X}U{qge Q1 |VtEe R,q :6:(q,t,¢') — ¢ € X}

Player k timed controllable
predecessors

1CPreg(X) ={qe Q1| H e R,q :6:(q,t,d)Ng € X}U{qge Q2 |Vt € R,q : 6:(q,t,¢') — ¢ € X}

Symmetrically

2CPreqg(X) ={qe Q2| € R, ¢ : 6:(q,t,¢)\g € X}U{qge Q1 |VtEe R,q :6:(q,t,¢') — ¢ € X}

Difficulty : here X ranges over the
subsets of an infinite set

Region equivalence

Region equivalence

/

AAAA
f 7

/

0, 1 2 3 4 X

Finite number of equivalence classes

Region equivalence

Y
3
2
|
O

Region equivalence

/

H A
f 7
\vaarara

|
N

O 1 2 3

4
Time elapsing and time predecessors preserve regions

Region equivalence

2 ya
| Vi
1 /

3 4 X

Reset and inverse reset operations preserve regions

1CPre preserves regions

Theorem. If X is a union of regions then 1CPre(X)
is a union of regions.

Corollary. Safety, Reachability and more generally
LTL games are decidable on timed game structures
generated by timed automata.

Zenoness

Not all timed strategies are reasonable

A timed Pla)’ w = qo —to d1 sl qs ...Qn —tn

is Zeno if: 3t ¢ R:Zti <t
1=0

Time does not diverge

Not all timed strategies are reasonable

Y

Does Player | have a timed strategy to avoid
entering location I !

Not all timed strategies are reasonable

Y

2

x=1

b, x<1

Consider the following timed strategy for Player I:

Let w € PrefPlay, (G) :

1 —v(x)

if last(w) = (lp,v) thenlett =1 —

1 —
£ last(w) = () then let £ = 1 — -~ (%)

Not all timed strategies are reasonable

Y

When Player | plays this strategy, the only outcome
of the games is:

Not all timed strategies are reasonable

Y

When Player | plays this strategy, the only outcome
of the games is:

(1, 0) Clearly, such a
strategy can
not be implemented

Not all timed strategies are reasonable

They are algorithmic solutions to avoid the
synthesis of Zzeno strategies. The correctness

of those solutions can be explained using the
region graph.

Not all timed strategies are reasonable

They are algorithmic solutions to avoid the
synthesis of Zzeno strategies. The correctness

of those solutions can be explained using the
region graph.

But Zenoness is not the only problem

Implementability issues

for timed models

UI_B UNIVERSITE LIBRE DE BRUXELLES

Model-based Development

Make a model of the environment
Environment

Make clear the control objective:
Bad

Make a model of your control strategy:
ControllerMod

Verify :

Does Environment || ControllerMod avoid Bad ?

Good, but after ?

UNIVERSITE LIBRE DE BRUXELLES

From Correct Models
to Correct Implementations

Should we verify code ?
— this may be difficult (too much details)

Can we translate model into code ?
... there are tools for that ...

... and preserve properties ?
... good question...

UNIVERSITE LIBRE DE BRUXELLES

Timed automata are (in general) not
implementable (in a formal sense)...

Why ?
— Zenoness : 0, 0.5, 0.75, 0.875, ...

— No minimal bound between two transitions :

0,0.5,1,1.75,2,2.875,3,...
— And more ... (robustness)

Problem

UNIVERSITE LIBRE DE BRUXELLES

No Minimal Bound
between Two Transitions

r=>1ANz>0

UNIVERSITE LIBRE DE BRUXELLES

It can be controlled

* §, :time in Iz during loop i

* the controller must ensure @ 3. =07 8 < 2o — wo

UNIVERSITE LIBRE DE BRUXELLES

More...

One can specify instantaneous responses
but not implement them.

Not implementable

bl

UNIVERSITE LIBRE DE BRUXELLES

More...

Instantaneous synchronisations between
environment and controller are not

implementable.
Environment

al

752,74

Classical controller
Not implementable

ar

7))

UNIVERSITE LIBRE DE BRUXELLES

More...

Models use continuous clocks and
implementations use digital clocks with

finite precision

<3

Classical controller
Not implementable

UNIVERSITE LIBRE DE BRUXELLES

Problems : Summary

My controller stragegy may be correct
because of

— ... 1t 1s zeno...

— ... it acts faster and faster?

— ... it reacts instanteously to events,
timeouts,...? (synchrony hypothesis)

— ... it uses infinitely precise clocks?

UNIVERSITE LIBRE DE BRUXELLES

A possible solution...

Give an alternative semantics to timed
automata : Almost ASAP semantics.

— enabled transitions of the controller become
urgent only after A time units;

— events from the environment are received by
the controller within A time units;

— truth values of guards are enlarged by f(A).

where A is a parameter

UNIVERSITE LIBRE DE BRUXELLES

Definition of
the AASAP semantics

Definition 13 [AASAP semantics| Given an ELASTIC controller
A = {Loc, [y, Var, Lab, Edg)

and A € Q=", the AASAP semantics of A, noted [[‘x‘l]]i‘ﬁ‘“p is the STTS
T = (S, ¢, Xin, Yout, Xr. —)

where:

UNIVERSITE LIBRE DE BRUXELLES IntUition
eoo

One can specify instantaneous responses
but not implement them.

Not implementable Solution : allow some delay

b!
b!

z:=0

UNIVERSITE LIBRE DE BRUXELLES

Intuition...

Instantaneous synchronisations between
environment and controller are not
implementable.

Environment

al

/0

Solution :
Classical controller Uncouple event from
Not implementable perception by the controller

ar

UNIVERSITE LIBRE DE BRUXELLES IntUItlon...

Models use continuous clocks and
implementations use digital clocks with

finite precision

<3
Classical controller Solution :
Not implementable Slightly relax the constraints

UNIVERSITE LIBRE DE BRUXELLES Verification

The question that we ask when we make
verification is no more:

Does Environment || ControllerMod avoid Bad ?

But:

for which values of A,
does Environment || ControllerMod(A) avoid Bad ?

UNIVERSITE LIBRE DE BRUXELLES Three variations

Fixed (you know your target platform) :

Given A>0,
does Environment || ControllerMod(A) avoid Bad ?

Existence (is my system implementable ?) :

does there exist A>0 such that
Environment || ControllerMod(A) avoid Bad ?

Max (how fast must my controller be ?) :

Max A such that

UI_B UNIVERSITE LIBRE DE BRUXELLES

Implementability of

the AASAP semantics

UNIVERSITE LIBRE DE BRUXELLES |ntUitiOn

ll\ f(A)

ASAP semantics
Implementation

AASAP semantics

AASAP semantics defines a “tube” of strategies instead
of a unique strategy in the ASAP semantics.

This tube can be refined into an implementation while
preserving safety properties verified on the AASAP-sem

UNIVERSITE LIBRE DE BRUXELLES Proof of “implementability” ?

We define an “implementation
semantics” based on:

Read System Clock
Update Sensor Values
Check all transitions and fire one if possible

The timed behaviour of this scheme is
determined by two values :

— Time length of a loop : A

— Time between two clock ticks : A-

UNIVERSITE LIBRE DE BRUXELLES Program SemantiCS

Definition 15 [Program Semantics| Let A be an ELASTIC controller and Ap,

Ap € Q7". We define As = A +2Ap. The (AL, Ap) program semantics of A,
F . . L

noted [A] ﬂrf..ﬂp is the structured timed transition system 7 = (S5, X, Xouts

Y., —) where:

(P1) S is the set of tuples (I, T, I, u.d, f) such that { € Loc, r is a function from
Var into B2, 7€ B2°, [is a function from Labi, into B2 U {L} U e RE",
deR>" and fe {T,L1}:

(P2) v = (l5,r,0,1,0,0, L) where r is such that for any = € Var, v(z) = 0, I is
such that for any o € Laby,, () = L:

(P3) Zin = Labiy, Zou = Labou, &> = Lab, ULab;, U {c};

(P4) the transition relation — is defined as follows:

e for the discrete transitions:
(P4.1) let o € Laboye. ((Lr, T w,d, L), o, ("¢, T, 1,u,0,T)) € iff there
exists (I,I',g,0, R) € Edg such that [T| 4, —r | a.ga. and ¢/ =
r[R = |T]|az]

(P4.2) let o € Labi,. ((I,r.T. 1 u.d. f), o, (L, T. I u.d. f)) €— Uff I(o) =
Land I' = [[a :=0];
(P4.3) let & € Laby,. (I, T, T,u.d, L), @, (I',+', T, I',u,0, T)) €— iff there
exists (1,1, g, 0, R) € Edg such that |T| A, — 1 = A.9a,, {(0) > u,
' =r[R:=|T|a.] and I' = [[o := 1];
(P4.4) let o € Lab-. (1,7, T, 1, u,d, L), o, (I" ¢, T, 1,u,0,T)) €— iff there
exists (1,1, g, 0, R) € Edg such that |T|a, — 7 = aAcga, and v’ =
r[R = |T]a,]
(P4.5) let o = e (e, T 1, u,d, f),a (Lr,T +u,1,0,d 1)) € iff either
f =T or the two following conditions hold:
- for any & such that o € Labi,, for any (1,1, 9,0, R) € Edg, we
have that either |T'|a, — 7 & Acga. or I{o) <u
- for any o € Labgy U Lab,, for any (I,1', 9,0, R) € Edg, we have
that [T A, — 7 £ Asga.
o for the continnous transitions:

(P4.6) (LT, Loud, f).t.(Lr,T. T +tu+t.d+t, f)) e— iffutt <Ay,

UNIVERSITE LIBRE DE BRUXELLES Proof Of “implementability” ?

Theorem :

For any timed controller, its AASAP semantics

simulates (in the formal sense) its

implementation semantics, provided that :
A>3A+4A-

In this case, the implementation is
guaranteed to preserve verified properties
of the model, that is:

Environment || ControllerMod(4) avoid Bad
implies

Environment || Controllerimpl(A.,Ar) avoid Bad

UNIVERSITE LIBRE DE BRUXELLES

Properties of the AASAP Semantics

Faster is better !

For any A:, A; such that Ai<A::
if
Environment || ControllerMod(A:) avoid Bad
then
Environment || ControllerMod (A1) avoid Bad

universite Liere oe sruxeLtes Properties of the AASAP Semantics

If A>0, we get for free a proof that strategies:

are nonzeno

are such that transitions does not need to be
taken faster and faster

If only A=0 guarantees some reachability
property, then the control strategy is not
implementable

UNIVERSITE LIBRE DE BRUXELLES An example

(a) The ASAP controller (b) The environment

If oc=1 then the system is safe if and only if A=0
If =2 then the system is safe if and only if A<0.25

UNIVERSITE LIBRE DE BRUXELLES In praCtice ?

The AASAP semantics can be coded into a
parametric timed automata with only one clock
compared to the parameter A € Q.

Unfortunately, the reachability problem for
that class of timed automata is undecidable...
Direct corollary of [CHROZ].

Hytech implements a semi-decision procedure
for that problem.

Does there exist A>0 such that
Environment || ControllerMod(A) avoid Bad ?

UNIVERSITE LIBRE DE BRUXELLES TOOI Set

Parametar Valu= rﬂ Environm=nt ErisTio Contooll=r ‘

L

F TPPAAL mpe=c. ‘ [ﬂ H+TECH spe=c. EriciOs C code ‘

Fig. 5. Structure of our tocl s=t.

UNIVERSITE LIBRE DE BRUXELLES MGthOdOlogy tO develop
controllers

Models using synchrony hypothesis
Environment || ControllerMod

Check
Does Environment || ControllerMod(0) avoid Bad ?

Compute the largest A1 such that
Environment || ControllerMod(A1) avoid Bad

if Ai>3 AL+ 4 Ap

Generate code
This code will enforce the safety property

UI_B UNIVERSITE LIBRE DE BRUXELLES

Conclusion

Two player games are natural theoretical
model to study the synthesis problem

There exist elegant algorithms to solve
general games

The step to go from a model to a correct
implementation needs more
investigations

Bibliography

General references on games and synthesis

[AHKO02] R. Alur, T.A. Henzinger, and O. Kupferman. Alternating-time temporal
logic. J. ACM, 49:672—713, 2002.

(GH82] Y. Gurevich and L. Harrington. Trees, automata, and games. STOC 1982: In Pro-
ceedings of the 14th International Symposium on Theory of Computing, pages 60—65, ACM
Press, 1984.

[PR90] A. Pnueli and R. Rosner. Distributed reactive systems are hard to synthesize. In

Proceedings of the 31st International Symposium on Foundations of Computer Science,
pages 746-757. IEEE Computer Society Press, 1990.

[Rei84] J.H. Reif. The complexity of two-player games of incomplete information. Journal on
Computer and System Sciences, 29:274-301, 1984.

'Tho95] W. Thomas. On the synthesis of strategies in infinite games. In Proceedings of the
12th International Symposium on Theoretical Aspects of Computer Science, volume 900 of
Lecture Notes in Computer Science, pages 1-13. Springer-Verlag, 1995.

[RW89] P.J.G. Ramadge and W.M. Wonham. The control of discrete-event systems.
IEEE Transactions on Control Theory, 77:81-98, 1989.

References on timed and hybrid games

[AMPS98] E. Asarin, O. Maler, A. Pnueli, and J. Sifakis. Controller synthesis for timed au-

tomata. In Proc. IFAC Symp. System Structure and Control, pages 469—474. Elsevier,
1998.

[BDMPO2] P. Bouyer, D. D’Souza, P. Madhusudan, and A. Petit. Timed control with partial
observability. Research Report LSV-02-5, LSV, ENS de Cachan, France, 2002.

[CHRO2] F. Cassez, T.A. Henzinger; and J.-F. Raskin. A comparison of control problems for
timed and hybrid systems. In Proc. 5th Int. Works. Hybrid Systems: Computation and
Control (HSCC’02), volume 2289 of LNCS, pages 134—148. Springer, 2002.

[HHM99] T.A. Henzinger, B. Horowitz, and R. Majumdar. Rectangular hybrid games.

In Concurrency Theory, Lect. Notes in Comp. Sci. 1664, pages 320-335. Springer,
1999.

[HK99] T.A. Henzinger and P.W. Kopke. Discrete-time control for rectangular hybrid
automata. Theor. Comp. Sci., 221:369-392, 1999.

References on implementability issues and robustness

IDDR04] M. De Wulf, L. Doyen, and J.-F. Raskin. Almost ASAP semantics: From
timed models to timed implementations. In HSCC 04: Hybrid Systems—
Computation and Control, Lecture Notes in Computer Science 2993, pages

296-310. Springer-Verlag, 2004.

Martin De Wulf, Laurent Doyen, Nicolas Markey, and Jean-Francgois Raskin.
Robustness and Implementability of Timed Automata. In FORMATS'04, Lecture Notes
in Computer Science, 3253, pp. 118-133, Springer Verlag, 2004.

Martin De Wulf, Laurent Doyen, Jean-Francois Raskin. Systematic Implementations of
Timed Models. In Formal Methods Europe'05, LNCS 3582, pp. 139-156, Springer
Verlag, 2005.

K. Altisen and S. Tripakis. Implementation of timed automata: an issue of semantics or
modeling?. In FORMATS'05 (to appear). A previous version of this paper is available
as VERIMAG Technical Report TR-2005-12.

[Pur98] Anuj Puri. Dynamical properties of timed automata. In Proceedings of
Formal Techniques wn Real-Time and Fault-Tolerant Systems, 5th Interna-
tional Symposium, FTRTFT’98, Lyngby, Denmark, September 14-18, 1998,
volume 1486 of Lecture Notes in Computer Science, pages 210-227. Springer,
1998.

|[GHJ97] V. Gupta, T.A. Henzinger, and R. Jagadeesan. Robust timed automata,
HART 97: Hybrid and Real-time Systems. LNCS 1201, Springer-Verlag, 331-345,
1997.

