Fourth Lecture:
On Optimal Strategies in
Timed Games

Jean-Frangois Raskin
Universite Libre de Bruxelles
Belgium

Artist2 Asian Summer School - Shanghai - July 2008




Preliminaries and

motivations




Timed Automata

[Alur&Dill 94]

> A timed automaton = finite state automaton + a set € of clocks;
> A state is a pair (I,v) where I is a location, v is a clock valuation (v : C—R");
> Clocks: evolve with time (X°=1),

can be reset (x:=0)

and compared to constants (X ~ €).




Timed Automata

[Alur&Dill 94]

Run of TA:

(0,(0,0))—0.8— (Io,(0.8,0.8))—ci — (/1,(0.8,0))—u— (I,(0.8,0))=3.1—(/,(3.9,3.1)) —~c2—(Goal,(3.9,3.1))




Weighted Timed Automata

[Alur et al. & Larsen et al.,2001]

Example from
[Bouyer et al, 2004]

cost(4p) =5

Locations are annotated with a cost (weight) per time unit (derivative)
Transitions are annotated with a cost (weight).




Weighted Timed Automata

[Alur et al. & Larsen et al.,2001]

Example from
[Bouyer et al, 2004]

(0,(0,0),0)—0.8— (Io,(0.8,0.8),4) —c1 — (11,(0.8,0),4) ~u~ (/,(0.8,0),4)=3.1—(,(3.9,3.1),35) —ca—(Goal,(3.9,3.1),36)

Costs are accumulated but are not “tested’ along the run.




Weighted Timed Automata

x> 2;co;c08t =1

Optimal Reachability Problem:

given a state (I,V), a set of states Goal and a cost ¢, decide if
there exists a run from (l,v) to Goal with cost bounded by c.




Weighted Timed Automata

x> 2;co;c08t =1

What is the optimal run from (lo,(0,0)) to Goal ?




Weighted Timed Automata

x> 2;co;c08t =1

What is the optimal run from (lo,(0,0)) to Goal ?
WVe have to decide:

> how much time to stay in I, (noted t) !

> which branch to take in [, ?




Weighted Timed Automata

x> 2;co;c08t =1

So, the minimal weight to reach Goal is equal to

Ming(bt +10(2 —t) + 1,5t + (2 —t) + 7) with 0 <t < 2




Weighted Timed Automata

x> 2;co;c08t =1

So, the minimal weight to reach Goal is equal to

Ming(bt +10(2 —t) + 1,5t + (2 —t) + 7) with 0 <t < 2

t=0, branch down, optimal weight equals 9.




Weighted Timed Automata

x> 2;co;c08t =1

Optimal reachability is decidable [ALPO|,BFHLPRVOI],
it is PSpace Complete [BBBRO7].

Need extensions of regions (theoretical complexity) and
zones (for useful symbolic algorithms, see UppAll-CORA).




Weighted Timed Automata

® _.are natural models for timed systems
with resource constraints ;

® ... useful to model embedded digital
controllers ;

® so, we should consider games on WTA
for controller synthesis.
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Square positions
belong to Player 2
(Environment)

'

0000

Rounded positions
belong to Player |
(Controller)




Rounded positions belong to Player |
Square positions belong to Player 2

'

0000

1110

A game is played as follows: in each round, the game is in a position, if
the game is in a rounded position, Player | resolves the choice for the next
state, if the game is in a square position, Player 2 resolves the choice. The
game is played for an infinite humber of rounds.




0000

Play : 0000




0000

Play : 0000 0100




0000

Play : 0000 0100 0101




0000

Play : 0000 0100 OI0I 1101l




0000

Play : 0000 0100 OI10I 1101 ...




Who is winning !

1101

'

0000

1110

Play : 0000 0100 OI101I 1101 ...




Who is winning !

1101

'

0000

1110

Play : 0000 0100 OI101I 1101 ...

s this a good or a bad play for Player 1 !




Who is winning !

'

0000

1110

A winning condition (for Player |)
is a set of plays

W C (Q1UQ2)”




Who is winning !

'

0000

1110

Example of a winning condition:
The set of plays that reach | | | |
This is called a reachability objective.




Strategies

Players are playing according to strategies.

A strategy for Player | is a function that, given
a sequence of positions (visited so far) that ends in a

Player I’s position, returns the choice for the next
position.

Player I's
position

Ai(OO0LT 1001 1101 001 D)=I1110

Choice for

PrEﬁX Of Play the next position




Strategies

Players are playing according to strategies.

A strategy for Player | is a function that, given
a sequence of positions (visited so far) that ends in a

Player I’s position, returns the choice for the next
position.

Strategies for Player |
are defined symetrically




Outcome of strategies

If we fix a strategy for the two players and we let the
two players apply their strategies, we get a play:

Outcome(A,\2)=1100 0011 0001 0011 ..

If we fix a strategy only for Player |, we get a set of plays

Outcome(A)=Ux, Outcome (A},A,)

A strategy for Player | is winning for objective W iff

Outcome(A)) € W




Outcome of strategies

A strategy for Player | is winning for objective W iff

Outcome(A) ¢ W

That is, no matter how Player Il resolves his choices,
when player | plays according to A the resulting
play belongs to W.

Player | can force the play to be in W.




Winning strategies

Controllers that enforce
winning plays




Algorithms for

reachability in
Two-Player Games




Reachability objective:
What are the winning states for player 1?

~N

.
State space




Reachability objective:
What are the winning states for player 1?

~N

.
State space

—i—
.:->




Reachability objective:
What are the winning states for player 1?

~N

.
State space

——
m:->




Reachability objective:
What are the winning states for player 1?

~N

.
State space




Reachability objective:
What are the winning states for player 1?

~N

.
State space

... Iterate ...




Reachability objective:
What are the winning states for player 1?

~N

.
State space

i Cpre(Goal)

r

Goal




Player | Controllable
Predecessors

X is a set of positions

1CPreg(X) ={qe Q1 |3¢ : 0(q,¢)N¢g € X}U{qe Q2 |Vq :0(q,q") : ¢ € X}

d

Set of Player | positions where she has
a choice of successor that lies in X

Set of Player |l positions where all
her choices for successors lie in X




Reachability objective:
What are the winning states for player 1?

~N

.
State space

(Cprez(GoaI)
i Cpre(Goal)

-

Goal




Reachability objective:
What are the winning states for player 1?

~

.
State space

Cpre?(Goal)
' Cpre(Goal)

-

Goal
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Games on WTA

[Alur et al, 2004]
[Boyer et al, 2004]

xr > 2;co;008t =1

To play games on WTA, we partition the transitions into:

controllable and uncontrollable




Games on WTA

xr > 2;co;008t =1

@ < 2c iy =0
A

State of the game =
location + clock values + accumulated cost




Games on WTA

A game on a WTA is played as follows: at any state q=(I,v,c)

Player | chooses a controllable action ¢ and time t such that

t )] C
qQ—dq — (1

then Player 2 chooses :

> either to wait for t and to play ¢, and the game proceeds to state q,
> or to play at ’<t an uncontrollable action u such that

t/ /) U

q —q — (42

and the game proceeds to @..




Cost based strategies

Reachability objectives: A run (a play) is winning if it reaches a
location labelled by “Goal”.

A Player | (cost based) strategy is a function
A :QXR*— 3 xR*

Given a state g and a strategy A, we define Outcome(g,\) as the set
of runs that can be obtained when Player | plays according to A.

The strategy A is winning from a state q if all runs of Outcome(q,\) are
winning.




Cost (weight) associated to a strategy
Optimal cost

tl €1 tn

The costofarunp=¢q >3 ... g, 3 gy IS

Wi(p) = ZWL(li) -t + Z Ws(es)

The cost associated with a winning strategy A and a state q is
defined by

Cost(g, \) =sup{W (p) | p € Outcome(q, \)}.

Given a state g, the optimal cost is given by

OptCost(q) = inf{Cost(q, A) | A is a winning strategy}.




Optimal cost problem

x> 2;co;c08t =1

4,6 r < 2;c1;y:=0
o

cost(lp) =5

Optimal Game Reachability Problem :

Given a WTA A a state (I,v) and an positive integer

¢, decide if there exists a winning Player | strategy A
from (I,v) such that Cost(q,\) < c.




Optimal cost problem

xr > 2;co;008t =1

cost(lp) =5

What is the optimal cost that Player | can ensure ?




Optimal cost problem

xr > 2;co;008t =1

cost(lp) =5

Player I's choice

N

Min,(Max(5t 4+ 10(2 — t) + 1,5t + (2 — t) + 7))
I

Player II’s choice




Optimal cost problem

xr > 2;co;008t =1

@ z<%ersyi=0
bo

cost(lp) =5

Min,(Max(5t 4+ 10(2 — t) + 1,5t + (2 — t) + 7))

Which is when t = Z and the cost is 142




Optimal cost problem

xr > 2;co;008t =1

@ z<%ersyi=0
bo

cost(lp) =5

S0, optimal moves are taken on rational
points (and not only on integer points).
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Symbolic Analysis

® Solving such a game can be seen as solving a hybrid automata game (add
a variable w which models a “credit”), so states are of the form (q,v,w)

Tr > 2;cCo
cost’ = cost — 1

T > 2;Co
cost’ = cost — 7




Symbolic Analysis

Solving such a game can be seen as solving a hybrid automata
game (add a variable w which models a ‘“credit”), so states are of the

form (g,v,w)

We can define (as usual) a CPre operator, see [BCFL04], then we can
try compute CPre*(Goal,w=0)

(q9,v,w) € CPre*(Goal,w=0)

iff
Player | has a winning strategy of cost bounded by w in (q,v)




CPre operator

Let S be a set of triples (lv,c). The controllable
predecessor of S, CPre(S), is the set of triples (I,v’,c’) such
that:

3t=0: 3(F,v')—a—(lv):
-c=c-W(T)-tXW(P)A(l,v,c)eS
-Vi'<t, V(l,v):
(FV)=0u—= (Lv) Ac=c-W(T)-txW(I):
(Lv,c)e$

This operator transforms polyhedral sets into polyhedral sets.




Symbolic Analysis

Solving such a game can be seen as solving a hybrid automata
game (add a variable w which models a “credit”), so states are of the
form (g,v,w)

We can define (as usual) a CPre operator, see [BCFL04], then we can
try compute CPre*(Goal,w=0)

(q9,v,w) € CPre*(Goal,w=0)

iff
Player | has a winning strategy of cost bounded by w in (q,v)

This fixpoint computation is guaranteed to terminate when “every
cycles in the region graph of the automaton has a cost
bounded away from zero’ see [BCFLO4]. The authors conjectured
that this property was not necessary for terminaison.
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CPre*(Goal,w>0) is not Computable

Given a2 2CM machine M, we can construct a WTA A such that

Player | has a strategy to reach Goal at a cost bounded by |
iff

M is halting

® Proof idea:
® Player | simulates the 2CM computation
® if M halts then the game ends in Goal with a cost w=< |

® if he does not : Player |l can force the game to Goal at a cost w>|




Encoding the values of counters

We use three clocks x,y,z to encode C=n

0 vy




Encoding the values of counters

When time evolves ...




Leaving the values of counter unchanged

Widget |

r<1ANy<1lAz<l1

Fig.4. Widget to let the value of a
counter unchanged.




Encoding the values of counters

Normal form... when x=0




Encoding of a counter in nhormal form

Widget I

r<1ANy<1Az<l1 =0

Fig. 5. Widget to put a counter encoding
in normal form.




Simplifications

® when modifying the value of counter Cj, the
value of counter C: is maintained by the
widget | (and vice versa);

® before modifying the value of a counter, it is
first put in normal form using widget |l




Simulating an increment

k:c, . =c; +1

@ ULl R T (J

U . - E ttttttttt n
x =0 “Yor=0 "
{vidget > %vidget W<}




Simulating an increment

k:c, . =c; +1

( next
- n

Enstructio

{vidget W>J %vidget W<J

Player | should reset x at the right moment
in order to obtain the encoding for Ci=n+|
when entering |




Simulating an increment

k:c, . =c; +1

( next
- n

Enstructio

{vidget W>J %vidget W J

Player Il will verify that Player |
has reset x at the right moment




Simulating an increment

k:c, . =c; +1

( next
- n

Enstructio
{vidget W>J %vidget W<J

At what time should Player | reset x ?




Simulating an increment

k:c :=c; +1




Simulating an increment

k:c :=c; +1

oot J

Enstructio




Simulating an increment

k:c :=c; +1

( next
- n

Enstructio

{vidget W>} Ezvidget W<}

reset X after

1 in 1
2n—|—2




Simulating an increment

k:c, . =c; +1

( next
- n

Enstructio

{vidget W>} %vidget W<}

reset X after

1 in 1
2n—|—2

We note t the
time spent in [,




Simulating an increment

k:c, . =c; +1

( next
- n

Enstructio

{vidget W>J %vidget W J

How can Player |l verify that
Player | has faithfully simulated the increment ?




Simulating an increment

k:c, . =c; +1

( next
- n

Enstructio

{vidget W>J szidget W<J

In [y, we have that

1
- 2n—|—2

t Sy+z=1.




Simulating an increment

k:c, . =c; +1

( next
- n

Linstructio

{vidget W>J %vidget W<J

If x+y>1, Player Il moves the game to Widget WW>
if x+y<lI, Player |l moves the game to Widget W<




Fig. 8. Widget W~ .

y+z>1< W(p) > 1.




Widget W~

Compute the
value of y at I2

Fig. 8. Widget W~ .

y+z>1< W(p) > 1.




Compute the
value of z at I2

Widget W~

Compute the
value of y at I2

Fig. 8. Widget W~ .

y+z>1< W(p) > 1.




Widget W=

Fig.13. Widget W<,

y+z<1s W(p)>1.




Increment summary

et J

Enstructio

{vidget W>J %vidget W<J

Player | reset x to simulate the increment of C
If it does not do it faithfully, Player || force the game either to widget V>

or W< and the game end with weight w>/, otherwise, the game proceeds
to the next instruction.




Summary of the construction

® We construct from the widgets a game where :

® if the 2CM is halting then Player | simulates faithfully the computation,
then

® ceither Player Il let Player | play and the game end in an goal state with
weight w=0

or Player |l stops the game after an increment or a decrement and the
game ends in a goal state with weight w=|

® if the 2CM is not halting then Player | does not have a winning strategy:

® cither Player | simulates the 2CM faithfully, in that case, the game
never reach a goal state

or Player | makes an error and Player |l stops the game using W> or
W< and the game reach a goal state with weight w>|
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Decidables subcases

Time optimal reachability: the
strategy that minimizes time to target (all

costs on locations are equal to |) is
computable (see [AM99,BHPRO7]);

One clock and costs 0 and d is decidable
(see [BBRO5] for details);




Termination for one clock,
costs 0 and d

® There exists an infinite game-
bisimulation quotient P

® | et P/ and P2 be two regions,

P < P;
iff
P2 | x=P2 | x and
Min(P1 | w)<Min(Pz | w)

. . Fig.11. The relation ~ with C = 4.
® < s wqo :this ensures the

termination




Decidables subcases

Time optimal reachability: the
strategy that minimizes time to target (all
costs on locations are equal to |) is

computable (see [AM99,BHPRO7]);

One clock and costs 0 and d is decidable
(see [BBRO5] for details);

One clock and any costs, €-optimality is
decidable [BLMRO6] ;




Conclusions

®  Games on WTA are natural models for open embedded systems with resource constraints

° Positive results:

Optimal Reachability Game is decidable under the hypthesis of “strong non-zenoness of costs” [Bouyer et al, 2004]

Bounded case (play for k times) is decidable [Alur et al, 2004]

Optimal time reachability problem is decidable [Asarin et al, 1999, Brihaye et al, 2007]

One clock two costs [BBR0O5], One clock any costs [BLMO07]

®  Negative results:

®  The general problem is undecidable [BBRO5, BLMRO06]

e Open problem:

®  can we approximate optimal cost ?

® can we develop a useful theory with discounting ?




