
Fourth Lecture:
On Optimal Strategies in

Timed Games
Jean-François Raskin

Université Libre de Bruxelles
Belgium

Artist2 Asian Summer School - Shanghai - July 2008

Preliminaries and
motivations

Timed Automata

2

More recently, the ability to consider more general performance measures has been

given. Priced extensions of timed automata have been introduced where a cost c is asso-
ciated with each location ! giving the cost of a unit of time spent in !. In [3] cost-bound
reachability has been shown decidable. [8] and [5] independently solve the cost-optimal

reachability problem for priced timed automata. Efficient incorporation in UPPAAL is

provided by use of so-called priced zones as a main data structure [25]. In [29] the im-

plementation of cost-optimal reachability is improved considerably by exploiting the

duality with linear programming problems over zones (min-cost flow problems). More

recently [11], the problem of computing optimal infinite schedules (in terms of minimal

limit-ratios) is solved for the model of priced timed automata.

The Optimal Cost Control Problem for Timed Games. In this paper we combine the

notions of game and price and solve the problem of cost-optimal winning strategies

for priced timed game automata.The problem we consider is: “Given a timed game

automaton A, a goal location Goal, what is the optimal cost we can achieve to reach
Goal inA?”. We refer to this problem as the Optimal Cost Problem (OCP). Consider the
example of a priced timed game automaton given in Fig. 1. Here the cost-rates (cost per

time unit) in locations !0, !2 and !3 are 5, 10 and 1 respectively. In !1 the environment
may choose to move to either !2 or !3 (dashed arrows are uncontrollable). However, due
to the invariant y = 0 this choice must be made instantaneous. Obviously, once !2 or !3
has been reached the optimal strategy for the controller is to move to Goal immediately
(however there is a discrete cost (resp. 1 and 7) on each discrete transition). The crucial
(and only remaining) question is how long the controller should wait in !0 before taking
the transition to !1. Obviously, in order for the controller to win this duration must be
no more than two time units. However, what is the optimal choice for the duration in the

sense that the overall cost of reaching Goal is minimal? Denote by t the chosen delay
in !0. Then 5t + 10(2 − t) + 1 is the minimal cost through !2 and 5t + (2 − t) + 7 is
the minimal cost through !3. As the environment chooses between these two transitions
the best choice for the controller is to delay t ≤ 2 such that max(21 − 5t, 9 + 4t) is
minimum, which is t = 4

3 giving a minimal cost of 14 1
3 .

!0

cost(!0) = 5

!1

[y = 0]

!2

cost(!2) = 10

!3

cost(!3) = 1

Goal
x ≤ 2; c1 ; y := 0

u

u

x ≥ 2; c2; cost = 1

x ≥ 2; c2 ; cost = 7

Fig. 1. A Reachability Priced Time Game Automaton A

Related Work. Acyclic priced (or weighted) timed games have been studied in [23] and

the more general case of non-acyclic games have been recently considered in [1]. In [1],

the problem they consider is “compute the optimal cost within k steps” (we refer to this

➢ A timed automaton = finite state automaton + a set C of clocks;
➢ A state is a pair (l,v) where l is a location, v is a clock valuation (v : C→R+);
➢ Clocks: evolve with time (x’=1),
 can be reset (x:=0)
 and compared to constants (x ~ c).

[Alur&Dill 94]

Timed Automata

2

More recently, the ability to consider more general performance measures has been

given. Priced extensions of timed automata have been introduced where a cost c is asso-
ciated with each location ! giving the cost of a unit of time spent in !. In [3] cost-bound
reachability has been shown decidable. [8] and [5] independently solve the cost-optimal

reachability problem for priced timed automata. Efficient incorporation in UPPAAL is

provided by use of so-called priced zones as a main data structure [25]. In [29] the im-

plementation of cost-optimal reachability is improved considerably by exploiting the

duality with linear programming problems over zones (min-cost flow problems). More

recently [11], the problem of computing optimal infinite schedules (in terms of minimal

limit-ratios) is solved for the model of priced timed automata.

The Optimal Cost Control Problem for Timed Games. In this paper we combine the

notions of game and price and solve the problem of cost-optimal winning strategies

for priced timed game automata.The problem we consider is: “Given a timed game

automaton A, a goal location Goal, what is the optimal cost we can achieve to reach
Goal inA?”. We refer to this problem as the Optimal Cost Problem (OCP). Consider the
example of a priced timed game automaton given in Fig. 1. Here the cost-rates (cost per

time unit) in locations !0, !2 and !3 are 5, 10 and 1 respectively. In !1 the environment
may choose to move to either !2 or !3 (dashed arrows are uncontrollable). However, due
to the invariant y = 0 this choice must be made instantaneous. Obviously, once !2 or !3
has been reached the optimal strategy for the controller is to move to Goal immediately
(however there is a discrete cost (resp. 1 and 7) on each discrete transition). The crucial
(and only remaining) question is how long the controller should wait in !0 before taking
the transition to !1. Obviously, in order for the controller to win this duration must be
no more than two time units. However, what is the optimal choice for the duration in the

sense that the overall cost of reaching Goal is minimal? Denote by t the chosen delay
in !0. Then 5t + 10(2 − t) + 1 is the minimal cost through !2 and 5t + (2 − t) + 7 is
the minimal cost through !3. As the environment chooses between these two transitions
the best choice for the controller is to delay t ≤ 2 such that max(21 − 5t, 9 + 4t) is
minimum, which is t = 4

3 giving a minimal cost of 14 1
3 .

!0

cost(!0) = 5

!1

[y = 0]

!2

cost(!2) = 10

!3

cost(!3) = 1

Goal
x ≤ 2; c1 ; y := 0

u

u

x ≥ 2; c2; cost = 1

x ≥ 2; c2 ; cost = 7

Fig. 1. A Reachability Priced Time Game Automaton A

Related Work. Acyclic priced (or weighted) timed games have been studied in [23] and

the more general case of non-acyclic games have been recently considered in [1]. In [1],

the problem they consider is “compute the optimal cost within k steps” (we refer to this

[Alur&Dill 94]

(l0,(0,0))−0.8→(l0,(0.8,0.8))−c1→(l1,(0.8,0))−u− (l2,(0.8,0))−3.1→(l2,(3.9,3.1)) −c2→(Goal,(3.9,3.1))

Run of TA:

Weighted Timed Automata

2

More recently, the ability to consider more general performance measures has been

given. Priced extensions of timed automata have been introduced where a cost c is asso-
ciated with each location ! giving the cost of a unit of time spent in !. In [3] cost-bound
reachability has been shown decidable. [8] and [5] independently solve the cost-optimal

reachability problem for priced timed automata. Efficient incorporation in UPPAAL is

provided by use of so-called priced zones as a main data structure [25]. In [29] the im-

plementation of cost-optimal reachability is improved considerably by exploiting the

duality with linear programming problems over zones (min-cost flow problems). More

recently [11], the problem of computing optimal infinite schedules (in terms of minimal

limit-ratios) is solved for the model of priced timed automata.

The Optimal Cost Control Problem for Timed Games. In this paper we combine the

notions of game and price and solve the problem of cost-optimal winning strategies

for priced timed game automata.The problem we consider is: “Given a timed game

automaton A, a goal location Goal, what is the optimal cost we can achieve to reach
Goal inA?”. We refer to this problem as the Optimal Cost Problem (OCP). Consider the
example of a priced timed game automaton given in Fig. 1. Here the cost-rates (cost per

time unit) in locations !0, !2 and !3 are 5, 10 and 1 respectively. In !1 the environment
may choose to move to either !2 or !3 (dashed arrows are uncontrollable). However, due
to the invariant y = 0 this choice must be made instantaneous. Obviously, once !2 or !3
has been reached the optimal strategy for the controller is to move to Goal immediately
(however there is a discrete cost (resp. 1 and 7) on each discrete transition). The crucial
(and only remaining) question is how long the controller should wait in !0 before taking
the transition to !1. Obviously, in order for the controller to win this duration must be
no more than two time units. However, what is the optimal choice for the duration in the

sense that the overall cost of reaching Goal is minimal? Denote by t the chosen delay
in !0. Then 5t + 10(2 − t) + 1 is the minimal cost through !2 and 5t + (2 − t) + 7 is
the minimal cost through !3. As the environment chooses between these two transitions
the best choice for the controller is to delay t ≤ 2 such that max(21 − 5t, 9 + 4t) is
minimum, which is t = 4

3 giving a minimal cost of 14 1
3 .

!0

cost(!0) = 5

!1

[y = 0]

!2

cost(!2) = 10

!3

cost(!3) = 1

Goal
x ≤ 2; c1 ; y := 0

u

u

x ≥ 2; c2; cost = 1

x ≥ 2; c2 ; cost = 7

Fig. 1. A Reachability Priced Time Game Automaton A

Related Work. Acyclic priced (or weighted) timed games have been studied in [23] and

the more general case of non-acyclic games have been recently considered in [1]. In [1],

the problem they consider is “compute the optimal cost within k steps” (we refer to this

Locations are annotated with a cost (weight) per time unit (derivative)
Transitions are annotated with a cost (weight).

[Alur et al. & Larsen et al., 2001]

Example from
[Bouyer et al, 2004]

Weighted Timed Automata

2

More recently, the ability to consider more general performance measures has been

given. Priced extensions of timed automata have been introduced where a cost c is asso-
ciated with each location ! giving the cost of a unit of time spent in !. In [3] cost-bound
reachability has been shown decidable. [8] and [5] independently solve the cost-optimal

reachability problem for priced timed automata. Efficient incorporation in UPPAAL is

provided by use of so-called priced zones as a main data structure [25]. In [29] the im-

plementation of cost-optimal reachability is improved considerably by exploiting the

duality with linear programming problems over zones (min-cost flow problems). More

recently [11], the problem of computing optimal infinite schedules (in terms of minimal

limit-ratios) is solved for the model of priced timed automata.

The Optimal Cost Control Problem for Timed Games. In this paper we combine the

notions of game and price and solve the problem of cost-optimal winning strategies

for priced timed game automata.The problem we consider is: “Given a timed game

automaton A, a goal location Goal, what is the optimal cost we can achieve to reach
Goal inA?”. We refer to this problem as the Optimal Cost Problem (OCP). Consider the
example of a priced timed game automaton given in Fig. 1. Here the cost-rates (cost per

time unit) in locations !0, !2 and !3 are 5, 10 and 1 respectively. In !1 the environment
may choose to move to either !2 or !3 (dashed arrows are uncontrollable). However, due
to the invariant y = 0 this choice must be made instantaneous. Obviously, once !2 or !3
has been reached the optimal strategy for the controller is to move to Goal immediately
(however there is a discrete cost (resp. 1 and 7) on each discrete transition). The crucial
(and only remaining) question is how long the controller should wait in !0 before taking
the transition to !1. Obviously, in order for the controller to win this duration must be
no more than two time units. However, what is the optimal choice for the duration in the

sense that the overall cost of reaching Goal is minimal? Denote by t the chosen delay
in !0. Then 5t + 10(2 − t) + 1 is the minimal cost through !2 and 5t + (2 − t) + 7 is
the minimal cost through !3. As the environment chooses between these two transitions
the best choice for the controller is to delay t ≤ 2 such that max(21 − 5t, 9 + 4t) is
minimum, which is t = 4

3 giving a minimal cost of 14 1
3 .

!0

cost(!0) = 5

!1

[y = 0]

!2

cost(!2) = 10

!3

cost(!3) = 1

Goal
x ≤ 2; c1 ; y := 0

u

u

x ≥ 2; c2; cost = 1

x ≥ 2; c2 ; cost = 7

Fig. 1. A Reachability Priced Time Game Automaton A

Related Work. Acyclic priced (or weighted) timed games have been studied in [23] and

the more general case of non-acyclic games have been recently considered in [1]. In [1],

the problem they consider is “compute the optimal cost within k steps” (we refer to this

[Alur et al. & Larsen et al., 2001]

Example from
[Bouyer et al, 2004]

(l0,(0,0),0)−0.8→(l0,(0.8,0.8),4)−c1→(l1,(0.8,0),4)−u− (l2,(0.8,0),4)−3.1→(l2,(3.9,3.1),35) −c2→(Goal,(3.9,3.1),36)

Costs are accumulated but are not “tested” along the run.

2

More recently, the ability to consider more general performance measures has been

given. Priced extensions of timed automata have been introduced where a cost c is asso-
ciated with each location ! giving the cost of a unit of time spent in !. In [3] cost-bound
reachability has been shown decidable. [8] and [5] independently solve the cost-optimal

reachability problem for priced timed automata. Efficient incorporation in UPPAAL is

provided by use of so-called priced zones as a main data structure [25]. In [29] the im-

plementation of cost-optimal reachability is improved considerably by exploiting the

duality with linear programming problems over zones (min-cost flow problems). More

recently [11], the problem of computing optimal infinite schedules (in terms of minimal

limit-ratios) is solved for the model of priced timed automata.

The Optimal Cost Control Problem for Timed Games. In this paper we combine the

notions of game and price and solve the problem of cost-optimal winning strategies

for priced timed game automata.The problem we consider is: “Given a timed game

automaton A, a goal location Goal, what is the optimal cost we can achieve to reach
Goal inA?”. We refer to this problem as the Optimal Cost Problem (OCP). Consider the
example of a priced timed game automaton given in Fig. 1. Here the cost-rates (cost per

time unit) in locations !0, !2 and !3 are 5, 10 and 1 respectively. In !1 the environment
may choose to move to either !2 or !3 (dashed arrows are uncontrollable). However, due
to the invariant y = 0 this choice must be made instantaneous. Obviously, once !2 or !3
has been reached the optimal strategy for the controller is to move to Goal immediately
(however there is a discrete cost (resp. 1 and 7) on each discrete transition). The crucial
(and only remaining) question is how long the controller should wait in !0 before taking
the transition to !1. Obviously, in order for the controller to win this duration must be
no more than two time units. However, what is the optimal choice for the duration in the

sense that the overall cost of reaching Goal is minimal? Denote by t the chosen delay
in !0. Then 5t + 10(2 − t) + 1 is the minimal cost through !2 and 5t + (2 − t) + 7 is
the minimal cost through !3. As the environment chooses between these two transitions
the best choice for the controller is to delay t ≤ 2 such that max(21 − 5t, 9 + 4t) is
minimum, which is t = 4

3 giving a minimal cost of 14 1
3 .

!0

cost(!0) = 5

!1

[y = 0]

!2

cost(!2) = 10

!3

cost(!3) = 1

Goal
x ≤ 2; c1 ; y := 0

u

u

x ≥ 2; c2; cost = 1

x ≥ 2; c2 ; cost = 7

Fig. 1. A Reachability Priced Time Game Automaton A

Related Work. Acyclic priced (or weighted) timed games have been studied in [23] and

the more general case of non-acyclic games have been recently considered in [1]. In [1],

the problem they consider is “compute the optimal cost within k steps” (we refer to this
given a state (l,v), a set of states Goal and a cost c, decide if
there exists a run from (l,v) to Goal with cost bounded by c.

Weighted Timed Automata

Optimal Reachability Problem:

2

More recently, the ability to consider more general performance measures has been

given. Priced extensions of timed automata have been introduced where a cost c is asso-
ciated with each location ! giving the cost of a unit of time spent in !. In [3] cost-bound
reachability has been shown decidable. [8] and [5] independently solve the cost-optimal

reachability problem for priced timed automata. Efficient incorporation in UPPAAL is

provided by use of so-called priced zones as a main data structure [25]. In [29] the im-

plementation of cost-optimal reachability is improved considerably by exploiting the

duality with linear programming problems over zones (min-cost flow problems). More

recently [11], the problem of computing optimal infinite schedules (in terms of minimal

limit-ratios) is solved for the model of priced timed automata.

The Optimal Cost Control Problem for Timed Games. In this paper we combine the

notions of game and price and solve the problem of cost-optimal winning strategies

for priced timed game automata.The problem we consider is: “Given a timed game

automaton A, a goal location Goal, what is the optimal cost we can achieve to reach
Goal inA?”. We refer to this problem as the Optimal Cost Problem (OCP). Consider the
example of a priced timed game automaton given in Fig. 1. Here the cost-rates (cost per

time unit) in locations !0, !2 and !3 are 5, 10 and 1 respectively. In !1 the environment
may choose to move to either !2 or !3 (dashed arrows are uncontrollable). However, due
to the invariant y = 0 this choice must be made instantaneous. Obviously, once !2 or !3
has been reached the optimal strategy for the controller is to move to Goal immediately
(however there is a discrete cost (resp. 1 and 7) on each discrete transition). The crucial
(and only remaining) question is how long the controller should wait in !0 before taking
the transition to !1. Obviously, in order for the controller to win this duration must be
no more than two time units. However, what is the optimal choice for the duration in the

sense that the overall cost of reaching Goal is minimal? Denote by t the chosen delay
in !0. Then 5t + 10(2 − t) + 1 is the minimal cost through !2 and 5t + (2 − t) + 7 is
the minimal cost through !3. As the environment chooses between these two transitions
the best choice for the controller is to delay t ≤ 2 such that max(21 − 5t, 9 + 4t) is
minimum, which is t = 4

3 giving a minimal cost of 14 1
3 .

!0

cost(!0) = 5

!1

[y = 0]

!2

cost(!2) = 10

!3

cost(!3) = 1

Goal
x ≤ 2; c1 ; y := 0

u

u

x ≥ 2; c2; cost = 1

x ≥ 2; c2 ; cost = 7

Fig. 1. A Reachability Priced Time Game Automaton A

Related Work. Acyclic priced (or weighted) timed games have been studied in [23] and

the more general case of non-acyclic games have been recently considered in [1]. In [1],

the problem they consider is “compute the optimal cost within k steps” (we refer to this

What is the optimal run from (l0,(0,0)) to Goal ?

Weighted Timed Automata

2

More recently, the ability to consider more general performance measures has been

given. Priced extensions of timed automata have been introduced where a cost c is asso-
ciated with each location ! giving the cost of a unit of time spent in !. In [3] cost-bound
reachability has been shown decidable. [8] and [5] independently solve the cost-optimal

reachability problem for priced timed automata. Efficient incorporation in UPPAAL is

provided by use of so-called priced zones as a main data structure [25]. In [29] the im-

plementation of cost-optimal reachability is improved considerably by exploiting the

duality with linear programming problems over zones (min-cost flow problems). More

recently [11], the problem of computing optimal infinite schedules (in terms of minimal

limit-ratios) is solved for the model of priced timed automata.

The Optimal Cost Control Problem for Timed Games. In this paper we combine the

notions of game and price and solve the problem of cost-optimal winning strategies

for priced timed game automata.The problem we consider is: “Given a timed game

automaton A, a goal location Goal, what is the optimal cost we can achieve to reach
Goal inA?”. We refer to this problem as the Optimal Cost Problem (OCP). Consider the
example of a priced timed game automaton given in Fig. 1. Here the cost-rates (cost per

time unit) in locations !0, !2 and !3 are 5, 10 and 1 respectively. In !1 the environment
may choose to move to either !2 or !3 (dashed arrows are uncontrollable). However, due
to the invariant y = 0 this choice must be made instantaneous. Obviously, once !2 or !3
has been reached the optimal strategy for the controller is to move to Goal immediately
(however there is a discrete cost (resp. 1 and 7) on each discrete transition). The crucial
(and only remaining) question is how long the controller should wait in !0 before taking
the transition to !1. Obviously, in order for the controller to win this duration must be
no more than two time units. However, what is the optimal choice for the duration in the

sense that the overall cost of reaching Goal is minimal? Denote by t the chosen delay
in !0. Then 5t + 10(2 − t) + 1 is the minimal cost through !2 and 5t + (2 − t) + 7 is
the minimal cost through !3. As the environment chooses between these two transitions
the best choice for the controller is to delay t ≤ 2 such that max(21 − 5t, 9 + 4t) is
minimum, which is t = 4

3 giving a minimal cost of 14 1
3 .

!0

cost(!0) = 5

!1

[y = 0]

!2

cost(!2) = 10

!3

cost(!3) = 1

Goal
x ≤ 2; c1 ; y := 0

u

u

x ≥ 2; c2; cost = 1

x ≥ 2; c2 ; cost = 7

Fig. 1. A Reachability Priced Time Game Automaton A

Related Work. Acyclic priced (or weighted) timed games have been studied in [23] and

the more general case of non-acyclic games have been recently considered in [1]. In [1],

the problem they consider is “compute the optimal cost within k steps” (we refer to this

What is the optimal run from (l0,(0,0)) to Goal ?
We have to decide:
 ➢ how much time to stay in l0 (noted t) ?
 ➢ which branch to take in l1 ?

Weighted Timed Automata

2

More recently, the ability to consider more general performance measures has been

given. Priced extensions of timed automata have been introduced where a cost c is asso-
ciated with each location ! giving the cost of a unit of time spent in !. In [3] cost-bound
reachability has been shown decidable. [8] and [5] independently solve the cost-optimal

reachability problem for priced timed automata. Efficient incorporation in UPPAAL is

provided by use of so-called priced zones as a main data structure [25]. In [29] the im-

plementation of cost-optimal reachability is improved considerably by exploiting the

duality with linear programming problems over zones (min-cost flow problems). More

recently [11], the problem of computing optimal infinite schedules (in terms of minimal

limit-ratios) is solved for the model of priced timed automata.

The Optimal Cost Control Problem for Timed Games. In this paper we combine the

notions of game and price and solve the problem of cost-optimal winning strategies

for priced timed game automata.The problem we consider is: “Given a timed game

automaton A, a goal location Goal, what is the optimal cost we can achieve to reach
Goal inA?”. We refer to this problem as the Optimal Cost Problem (OCP). Consider the
example of a priced timed game automaton given in Fig. 1. Here the cost-rates (cost per

time unit) in locations !0, !2 and !3 are 5, 10 and 1 respectively. In !1 the environment
may choose to move to either !2 or !3 (dashed arrows are uncontrollable). However, due
to the invariant y = 0 this choice must be made instantaneous. Obviously, once !2 or !3
has been reached the optimal strategy for the controller is to move to Goal immediately
(however there is a discrete cost (resp. 1 and 7) on each discrete transition). The crucial
(and only remaining) question is how long the controller should wait in !0 before taking
the transition to !1. Obviously, in order for the controller to win this duration must be
no more than two time units. However, what is the optimal choice for the duration in the

sense that the overall cost of reaching Goal is minimal? Denote by t the chosen delay
in !0. Then 5t + 10(2 − t) + 1 is the minimal cost through !2 and 5t + (2 − t) + 7 is
the minimal cost through !3. As the environment chooses between these two transitions
the best choice for the controller is to delay t ≤ 2 such that max(21 − 5t, 9 + 4t) is
minimum, which is t = 4

3 giving a minimal cost of 14 1
3 .

!0

cost(!0) = 5

!1

[y = 0]

!2

cost(!2) = 10

!3

cost(!3) = 1

Goal
x ≤ 2; c1 ; y := 0

u

u

x ≥ 2; c2; cost = 1

x ≥ 2; c2 ; cost = 7

Fig. 1. A Reachability Priced Time Game Automaton A

Related Work. Acyclic priced (or weighted) timed games have been studied in [23] and

the more general case of non-acyclic games have been recently considered in [1]. In [1],

the problem they consider is “compute the optimal cost within k steps” (we refer to this

So, the minimal weight to reach Goal is equal to

Mint(5t + 10(2 − t) + 1, 5t + (2 − t) + 7) with 0 ≤ t ≤ 2

Weighted Timed Automata

2

More recently, the ability to consider more general performance measures has been

given. Priced extensions of timed automata have been introduced where a cost c is asso-
ciated with each location ! giving the cost of a unit of time spent in !. In [3] cost-bound
reachability has been shown decidable. [8] and [5] independently solve the cost-optimal

reachability problem for priced timed automata. Efficient incorporation in UPPAAL is

provided by use of so-called priced zones as a main data structure [25]. In [29] the im-

plementation of cost-optimal reachability is improved considerably by exploiting the

duality with linear programming problems over zones (min-cost flow problems). More

recently [11], the problem of computing optimal infinite schedules (in terms of minimal

limit-ratios) is solved for the model of priced timed automata.

The Optimal Cost Control Problem for Timed Games. In this paper we combine the

notions of game and price and solve the problem of cost-optimal winning strategies

for priced timed game automata.The problem we consider is: “Given a timed game

automaton A, a goal location Goal, what is the optimal cost we can achieve to reach
Goal inA?”. We refer to this problem as the Optimal Cost Problem (OCP). Consider the
example of a priced timed game automaton given in Fig. 1. Here the cost-rates (cost per

time unit) in locations !0, !2 and !3 are 5, 10 and 1 respectively. In !1 the environment
may choose to move to either !2 or !3 (dashed arrows are uncontrollable). However, due
to the invariant y = 0 this choice must be made instantaneous. Obviously, once !2 or !3
has been reached the optimal strategy for the controller is to move to Goal immediately
(however there is a discrete cost (resp. 1 and 7) on each discrete transition). The crucial
(and only remaining) question is how long the controller should wait in !0 before taking
the transition to !1. Obviously, in order for the controller to win this duration must be
no more than two time units. However, what is the optimal choice for the duration in the

sense that the overall cost of reaching Goal is minimal? Denote by t the chosen delay
in !0. Then 5t + 10(2 − t) + 1 is the minimal cost through !2 and 5t + (2 − t) + 7 is
the minimal cost through !3. As the environment chooses between these two transitions
the best choice for the controller is to delay t ≤ 2 such that max(21 − 5t, 9 + 4t) is
minimum, which is t = 4

3 giving a minimal cost of 14 1
3 .

!0

cost(!0) = 5

!1

[y = 0]

!2

cost(!2) = 10

!3

cost(!3) = 1

Goal
x ≤ 2; c1 ; y := 0

u

u

x ≥ 2; c2; cost = 1

x ≥ 2; c2 ; cost = 7

Fig. 1. A Reachability Priced Time Game Automaton A

Related Work. Acyclic priced (or weighted) timed games have been studied in [23] and

the more general case of non-acyclic games have been recently considered in [1]. In [1],

the problem they consider is “compute the optimal cost within k steps” (we refer to thisMint(5t + 10(2 − t) + 1, 5t + (2 − t) + 7) with 0 ≤ t ≤ 2

Weighted Timed Automata

t=0, branch down, optimal weight equals 9.

So, the minimal weight to reach Goal is equal to

2

More recently, the ability to consider more general performance measures has been

given. Priced extensions of timed automata have been introduced where a cost c is asso-
ciated with each location ! giving the cost of a unit of time spent in !. In [3] cost-bound
reachability has been shown decidable. [8] and [5] independently solve the cost-optimal

reachability problem for priced timed automata. Efficient incorporation in UPPAAL is

provided by use of so-called priced zones as a main data structure [25]. In [29] the im-

plementation of cost-optimal reachability is improved considerably by exploiting the

duality with linear programming problems over zones (min-cost flow problems). More

recently [11], the problem of computing optimal infinite schedules (in terms of minimal

limit-ratios) is solved for the model of priced timed automata.

The Optimal Cost Control Problem for Timed Games. In this paper we combine the

notions of game and price and solve the problem of cost-optimal winning strategies

for priced timed game automata.The problem we consider is: “Given a timed game

automaton A, a goal location Goal, what is the optimal cost we can achieve to reach
Goal inA?”. We refer to this problem as the Optimal Cost Problem (OCP). Consider the
example of a priced timed game automaton given in Fig. 1. Here the cost-rates (cost per

time unit) in locations !0, !2 and !3 are 5, 10 and 1 respectively. In !1 the environment
may choose to move to either !2 or !3 (dashed arrows are uncontrollable). However, due
to the invariant y = 0 this choice must be made instantaneous. Obviously, once !2 or !3
has been reached the optimal strategy for the controller is to move to Goal immediately
(however there is a discrete cost (resp. 1 and 7) on each discrete transition). The crucial
(and only remaining) question is how long the controller should wait in !0 before taking
the transition to !1. Obviously, in order for the controller to win this duration must be
no more than two time units. However, what is the optimal choice for the duration in the

sense that the overall cost of reaching Goal is minimal? Denote by t the chosen delay
in !0. Then 5t + 10(2 − t) + 1 is the minimal cost through !2 and 5t + (2 − t) + 7 is
the minimal cost through !3. As the environment chooses between these two transitions
the best choice for the controller is to delay t ≤ 2 such that max(21 − 5t, 9 + 4t) is
minimum, which is t = 4

3 giving a minimal cost of 14 1
3 .

!0

cost(!0) = 5

!1

[y = 0]

!2

cost(!2) = 10

!3

cost(!3) = 1

Goal
x ≤ 2; c1 ; y := 0

u

u

x ≥ 2; c2; cost = 1

x ≥ 2; c2 ; cost = 7

Fig. 1. A Reachability Priced Time Game Automaton A

Related Work. Acyclic priced (or weighted) timed games have been studied in [23] and

the more general case of non-acyclic games have been recently considered in [1]. In [1],

the problem they consider is “compute the optimal cost within k steps” (we refer to this

Optimal reachability is decidable [ALP01,BFHLPRV01],
it is PSpace Complete [BBBR07].
Need extensions of regions (theoretical complexity) and
zones (for useful symbolic algorithms, see UppAll-CORA).

Weighted Timed Automata

• ... are natural models for timed systems
with resource constraints ;

• ... useful to model embedded digital
controllers ;

• so, we should consider games on WTA
for controller synthesis.

Weighted Timed Automata

What is on the menu ?

• Premilinaries and motivations

• Two-player games - Fixed point algorithms

• Games on Weighted Timed Automata

• Symbolic semi-algorithm

• Undecidability

• Decidable subcases

• Conclusion - Bibliography

0000

0101

1010

0100

1000

1101

1110

1111

Rounded positions
belong to Player I

(Controller)

Square positions
belong to Player 2

(Environment)

A game is played as follows: in each round, the game is in a position, if
the game is in a rounded position, Player I resolves the choice for the next
state, if the game is in a square position, Player 2 resolves the choice. The
game is played for an infinite number of rounds.

0000

0101

1010

0100

1000

1101

1110

1111

Rounded positions belong to Player I
Square positions belong to Player 2

0000

0101

1010

0100

1000

1101

1110

1111

Play : 0000

0000

0101

1010

0100

1000

1101

1110

1111

Play : 0000 0100

0000

0101

1010

0100

1000

1101

1110

1111

Play : 0000 0100 0101

0000

0101

1010

0100

1000

1101

1110

1111

Play : 0000 0100 0101 1101

0000

0101

1010

0100

1000

1101

1110

1111

Play : 0000 0100 0101 1101 ...

0000

0101

1010

0100

1000

1101

1110

1111

Play : 0000 0100 0101 1101 ...

Who is winning ?

0000

0101

1010

0100

1000

1101

1110

1111

Play : 0000 0100 0101 1101 ...

Is this a good or a bad play for Player 1 ?

Who is winning ?

0000

0101

1010

0100

1000

1101

1110

1111

Who is winning ?

A winning condition (for Player 1)
is a set of plays
W ⊆ (Q1 ∪ Q2)

ω

0000

0101

1010

0100

1000

1101

1110

1111

Who is winning ?

Example of a winning condition:
The set of plays that reach 1111
This is called a reachability objective.

Strategies
Players are playing according to strategies.

A strategy for Player I is a function that, given
a sequence of positions (visited so far) that ends in a
Player I’s position, returns the choice for the next
position.

 λ1(0011 1001 1101 0011)=1110

prefix of play

Player I’s
position

Choice for
the next position

Strategies
Players are playing according to strategies.

A strategy for Player I is a function that, given
a sequence of positions (visited so far) that ends in a
Player I’s position, returns the choice for the next
position.

 λ1(0011 1001 1101 0011)=1110

prefix of play

Player I’s
position

Choice for
the next position

Strategies for Player II
are defined symetrically

Outcome of strategies
If we fix a strategy for the two players and we let the
two players apply their strategies, we get a play:

Outcome(λ1,λ2)=1100 0011 0001 0011 ...

If we fix a strategy only for Player I, we get a set of plays

Outcome(λ1)=∪λ2 Outcome (λ1,λ2)

A strategy for Player I is winning for objective W iff

Outcome(λ1) ⊆ W

Outcome of strategies

A strategy for Player I is winning for objective W iff

Outcome(λ1) ⊆ W

That is, no matter how Player II resolves his choices,
when player I plays according to λI the resulting
play belongs to W.

Player I can force the play to be in W.

Winning strategies

=

Controllers that enforce
winning plays

Algorithms for
reachability in

Two-Player Games

Goal

Reachability objective: Goal
What are the winning states for player I ?

State space

Goal

Reachability objective: Goal
What are the winning states for player I ?

State space

Goal

✔

✔

✕

✕

Reachability objective: Goal
What are the winning states for player I ?

State space

Goal

✔

✔

Reachability objective: Goal
What are the winning states for player I ?

State space

Goal

✔

✔

Reachability objective: Goal
What are the winning states for player I ?

State space

... iterate ...

Goal

Reachability objective: Goal
What are the winning states for player I ?

State space

Cpre(Goal)

Player 1 Controllable
Predecessors

Set of Player I positions where she has
a choice of successor that lies in X

Set of Player II positions where all
her choices for successors lie in X

1CPreG(X) = {q ∈ Q1 | ∃q′ : δ(q, q′)∧ q′ ∈ X}∪{ q ∈ Q2 | ∀q′ : δ(q, q′) : q′ ∈ X}

X is a set of positions

Goal

Reachability objective: Goal
What are the winning states for player I ?

State space

Cpre(Goal)

Cpre2(Goal)

Goal

Reachability objective: Goal
What are the winning states for player I ?

State space

...

Fixed point: Cpre*(Goal)
=winning states for reachability

Cpre(Goal)

Cpre2(Goal)

What is on the menu ?

• Premilinaries and motivations

• Two-player games - Fixed point algorithms

• Games on Weighted Timed Automata

• Symbolic semi-algorithm

• Undecidability

• Decidable subcases

• Conclusion - Bibliography

Games on WTA

2

More recently, the ability to consider more general performance measures has been

given. Priced extensions of timed automata have been introduced where a cost c is asso-
ciated with each location ! giving the cost of a unit of time spent in !. In [3] cost-bound
reachability has been shown decidable. [8] and [5] independently solve the cost-optimal

reachability problem for priced timed automata. Efficient incorporation in UPPAAL is

provided by use of so-called priced zones as a main data structure [25]. In [29] the im-

plementation of cost-optimal reachability is improved considerably by exploiting the

duality with linear programming problems over zones (min-cost flow problems). More

recently [11], the problem of computing optimal infinite schedules (in terms of minimal

limit-ratios) is solved for the model of priced timed automata.

The Optimal Cost Control Problem for Timed Games. In this paper we combine the

notions of game and price and solve the problem of cost-optimal winning strategies

for priced timed game automata.The problem we consider is: “Given a timed game

automaton A, a goal location Goal, what is the optimal cost we can achieve to reach
Goal inA?”. We refer to this problem as the Optimal Cost Problem (OCP). Consider the
example of a priced timed game automaton given in Fig. 1. Here the cost-rates (cost per

time unit) in locations !0, !2 and !3 are 5, 10 and 1 respectively. In !1 the environment
may choose to move to either !2 or !3 (dashed arrows are uncontrollable). However, due
to the invariant y = 0 this choice must be made instantaneous. Obviously, once !2 or !3
has been reached the optimal strategy for the controller is to move to Goal immediately
(however there is a discrete cost (resp. 1 and 7) on each discrete transition). The crucial
(and only remaining) question is how long the controller should wait in !0 before taking
the transition to !1. Obviously, in order for the controller to win this duration must be
no more than two time units. However, what is the optimal choice for the duration in the

sense that the overall cost of reaching Goal is minimal? Denote by t the chosen delay
in !0. Then 5t + 10(2 − t) + 1 is the minimal cost through !2 and 5t + (2 − t) + 7 is
the minimal cost through !3. As the environment chooses between these two transitions
the best choice for the controller is to delay t ≤ 2 such that max(21 − 5t, 9 + 4t) is
minimum, which is t = 4

3 giving a minimal cost of 14 1
3 .

!0

cost(!0) = 5

!1

[y = 0]

!2

cost(!2) = 10

!3

cost(!3) = 1

Goal
x ≤ 2; c1 ; y := 0

u

u

x ≥ 2; c2; cost = 1

x ≥ 2; c2 ; cost = 7

Fig. 1. A Reachability Priced Time Game Automaton A

Related Work. Acyclic priced (or weighted) timed games have been studied in [23] and

the more general case of non-acyclic games have been recently considered in [1]. In [1],

the problem they consider is “compute the optimal cost within k steps” (we refer to this

To play games on WTA, we partition the transitions into:

controllable and uncontrollable

[Alur et al, 2004]
[Boyer et al, 2004]

2

More recently, the ability to consider more general performance measures has been

given. Priced extensions of timed automata have been introduced where a cost c is asso-
ciated with each location ! giving the cost of a unit of time spent in !. In [3] cost-bound
reachability has been shown decidable. [8] and [5] independently solve the cost-optimal

reachability problem for priced timed automata. Efficient incorporation in UPPAAL is

provided by use of so-called priced zones as a main data structure [25]. In [29] the im-

plementation of cost-optimal reachability is improved considerably by exploiting the

duality with linear programming problems over zones (min-cost flow problems). More

recently [11], the problem of computing optimal infinite schedules (in terms of minimal

limit-ratios) is solved for the model of priced timed automata.

The Optimal Cost Control Problem for Timed Games. In this paper we combine the

notions of game and price and solve the problem of cost-optimal winning strategies

for priced timed game automata.The problem we consider is: “Given a timed game

automaton A, a goal location Goal, what is the optimal cost we can achieve to reach
Goal inA?”. We refer to this problem as the Optimal Cost Problem (OCP). Consider the
example of a priced timed game automaton given in Fig. 1. Here the cost-rates (cost per

time unit) in locations !0, !2 and !3 are 5, 10 and 1 respectively. In !1 the environment
may choose to move to either !2 or !3 (dashed arrows are uncontrollable). However, due
to the invariant y = 0 this choice must be made instantaneous. Obviously, once !2 or !3
has been reached the optimal strategy for the controller is to move to Goal immediately
(however there is a discrete cost (resp. 1 and 7) on each discrete transition). The crucial
(and only remaining) question is how long the controller should wait in !0 before taking
the transition to !1. Obviously, in order for the controller to win this duration must be
no more than two time units. However, what is the optimal choice for the duration in the

sense that the overall cost of reaching Goal is minimal? Denote by t the chosen delay
in !0. Then 5t + 10(2 − t) + 1 is the minimal cost through !2 and 5t + (2 − t) + 7 is
the minimal cost through !3. As the environment chooses between these two transitions
the best choice for the controller is to delay t ≤ 2 such that max(21 − 5t, 9 + 4t) is
minimum, which is t = 4

3 giving a minimal cost of 14 1
3 .

!0

cost(!0) = 5

!1

[y = 0]

!2

cost(!2) = 10

!3

cost(!3) = 1

Goal
x ≤ 2; c1 ; y := 0

u

u

x ≥ 2; c2; cost = 1

x ≥ 2; c2 ; cost = 7

Fig. 1. A Reachability Priced Time Game Automaton A

Related Work. Acyclic priced (or weighted) timed games have been studied in [23] and

the more general case of non-acyclic games have been recently considered in [1]. In [1],

the problem they consider is “compute the optimal cost within k steps” (we refer to this

State of the game =
location + clock values + accumulated cost

Games on WTA

A game on a WTA is played as follows: at any state q=(l,v,c)

Player 1 chooses a controllable action c and time t such that

then Player 2 chooses :

➢ either to wait for t and to play c, and the game proceeds to state q1,
➢ or to play at t’≤t an uncontrollable action u such that

and the game proceeds to q2.

q
t
→ q

′ c
→ q1

q
t
′

→ q
′′ u
→ q2

Games on WTA

Cost based strategies

A Player I (cost based) strategy is a function

Given a state q and a strategy λ, we define Outcome(q,λ) as the set
of runs that can be obtained when Player 1 plays according to λ.

The strategy λ is winning from a state q if all runs of Outcome(q,λ) are
winning.

Reachability objectives: A run (a play) is winning if it reaches a
location labelled by “Goal”.

λ : Q×R+→Σc×R+

Cost (weight) associated to a strategy
Optimal cost

The cost of a run isρ = q1
t1
→

e1

→ . . . qn

tn

→
en

→ qn+1

W (ρ) =
n∑

i=1

WL(li) · ti +
n∑

i=1

Wδ(ei)

The cost associated with a winning strategy λ and a state q is
defined by

2.2 Timed games and related cost problems

We now introduce the notion of timed game on a weighted timed automaton
and some related cost problems.

The timed game on a weighted timed automaton A = (L, LF , X, Σ, δ, Inv,
WL, Wδ) is played by two players, Player 1 (the controller) and Player 2 (the
environment). Let Σu = Σ \ {u}. At any state q, Player 1 picks a time t and an
action a ∈ Σu such that there exists a transition q →t·e q′ in A with Action(e) =
a. Player 2 has two choices:

– either it can wait for time t′, 0 ≤ t′ ≤ t, and execute a transition q →t′·e′

q′′

with Action(e′) = u,
– or it can decide to wait for time t and execute the1 transition q →t·e q′

proposed by Player 1.

The game then evolves to a new state (according to the choice of Player 2) and
the two players proceed to play as before.

Comments 1. Notice that in the definition of a timed game, it is implicitely
supposed that Player 1 has always a choice (t, a) to formulate in any reachable
state q of the game.

We now introduce the concept of strategy. A (Player 1) strategy is a function
λ : Q $→ R+ × Σu. A finite or infinite run ρ = q1 →t1·e1 q2 →t2·e2 · · · →tk·ek

qk+1 · · · is said to be played2 according to λ if for every i, if λ(qi) = (t′i, ai),
then either ti ≤ t′i and Action(ei) = u, or ti = t′i and Action(ei) = ai. The run
ρ is winning if for some i, we have qi = (li, νi) with li ∈ LF being a target
location. Suppose that qi is the first state of ρ such that li ∈ LF , and let ρ′ be
the prefix run of ρ equal to q1 →t1·e1 · · · →ti−1·ei−1 qi. Then we say that W (ρ′)
is the cost of ρ to reach LF and we abusively denote it by W (ρ). Given a state
q and a strategy λ, we define Outcome(q, λ) as the set of runs starting from q
and played according to λ. The strategy λ is winning from state q if all runs of
Outcome(q, λ) are winning.

Finally, we define two notions of cost in relation with winning strategies as
proposed in [9], and we state the problems that will be studied in this paper.
The cost Cost(q, λ) associated with a winning strategy λ and a state q is defined
by

Cost(q, λ) = sup{W (ρ) | ρ ∈ Outcome(q, λ)}.

Intuitively, the presence of the supremum is explained by the fact that Player 2
tries to make choices that lead to cost W (ρ) as large as possible. Given a state
q, the optimal cost OptCost(q) is then equal to

OptCost(q) = inf{Cost(q, λ) | λ is a winning strategy}.

A winning strategy λ from state q is said to be optimal whenever Cost(q, λ) =
OptCost(q). We are interested in the following problems.

1 Recall that A is assumed to be c-deterministic.
2 This definition is from [4]. A third condition is added in the definition given in

[9],[11].

Given a state q, the optimal cost is given by

2.2 Timed games and related cost problems

We now introduce the notion of timed game on a weighted timed automaton
and some related cost problems.

The timed game on a weighted timed automaton A = (L, LF , X, Σ, δ, Inv,
WL, Wδ) is played by two players, Player 1 (the controller) and Player 2 (the
environment). Let Σu = Σ \ {u}. At any state q, Player 1 picks a time t and an
action a ∈ Σu such that there exists a transition q →t·e q′ in A with Action(e) =
a. Player 2 has two choices:

– either it can wait for time t′, 0 ≤ t′ ≤ t, and execute a transition q →t′·e′

q′′

with Action(e′) = u,
– or it can decide to wait for time t and execute the1 transition q →t·e q′

proposed by Player 1.

The game then evolves to a new state (according to the choice of Player 2) and
the two players proceed to play as before.

Comments 1. Notice that in the definition of a timed game, it is implicitely
supposed that Player 1 has always a choice (t, a) to formulate in any reachable
state q of the game.

We now introduce the concept of strategy. A (Player 1) strategy is a function
λ : Q $→ R+ × Σu. A finite or infinite run ρ = q1 →t1·e1 q2 →t2·e2 · · · →tk·ek

qk+1 · · · is said to be played2 according to λ if for every i, if λ(qi) = (t′i, ai),
then either ti ≤ t′i and Action(ei) = u, or ti = t′i and Action(ei) = ai. The run
ρ is winning if for some i, we have qi = (li, νi) with li ∈ LF being a target
location. Suppose that qi is the first state of ρ such that li ∈ LF , and let ρ′ be
the prefix run of ρ equal to q1 →t1·e1 · · · →ti−1·ei−1 qi. Then we say that W (ρ′)
is the cost of ρ to reach LF and we abusively denote it by W (ρ). Given a state
q and a strategy λ, we define Outcome(q, λ) as the set of runs starting from q
and played according to λ. The strategy λ is winning from state q if all runs of
Outcome(q, λ) are winning.

Finally, we define two notions of cost in relation with winning strategies as
proposed in [9], and we state the problems that will be studied in this paper.
The cost Cost(q, λ) associated with a winning strategy λ and a state q is defined
by

Cost(q, λ) = sup{W (ρ) | ρ ∈ Outcome(q, λ)}.

Intuitively, the presence of the supremum is explained by the fact that Player 2
tries to make choices that lead to cost W (ρ) as large as possible. Given a state
q, the optimal cost OptCost(q) is then equal to

OptCost(q) = inf{Cost(q, λ) | λ is a winning strategy}.

A winning strategy λ from state q is said to be optimal whenever Cost(q, λ) =
OptCost(q). We are interested in the following problems.

1 Recall that A is assumed to be c-deterministic.
2 This definition is from [4]. A third condition is added in the definition given in

[9],[11].

Optimal cost problem

Given a WTA A, a state (l,v) and an positive integer
c, decide if there exists a winning Player I strategy λ
from (l,v) such that Cost(q,λ) ≤ c.

2

More recently, the ability to consider more general performance measures has been

given. Priced extensions of timed automata have been introduced where a cost c is asso-
ciated with each location ! giving the cost of a unit of time spent in !. In [3] cost-bound
reachability has been shown decidable. [8] and [5] independently solve the cost-optimal

reachability problem for priced timed automata. Efficient incorporation in UPPAAL is

provided by use of so-called priced zones as a main data structure [25]. In [29] the im-

plementation of cost-optimal reachability is improved considerably by exploiting the

duality with linear programming problems over zones (min-cost flow problems). More

recently [11], the problem of computing optimal infinite schedules (in terms of minimal

limit-ratios) is solved for the model of priced timed automata.

The Optimal Cost Control Problem for Timed Games. In this paper we combine the

notions of game and price and solve the problem of cost-optimal winning strategies

for priced timed game automata.The problem we consider is: “Given a timed game

automaton A, a goal location Goal, what is the optimal cost we can achieve to reach
Goal inA?”. We refer to this problem as the Optimal Cost Problem (OCP). Consider the
example of a priced timed game automaton given in Fig. 1. Here the cost-rates (cost per

time unit) in locations !0, !2 and !3 are 5, 10 and 1 respectively. In !1 the environment
may choose to move to either !2 or !3 (dashed arrows are uncontrollable). However, due
to the invariant y = 0 this choice must be made instantaneous. Obviously, once !2 or !3
has been reached the optimal strategy for the controller is to move to Goal immediately
(however there is a discrete cost (resp. 1 and 7) on each discrete transition). The crucial
(and only remaining) question is how long the controller should wait in !0 before taking
the transition to !1. Obviously, in order for the controller to win this duration must be
no more than two time units. However, what is the optimal choice for the duration in the

sense that the overall cost of reaching Goal is minimal? Denote by t the chosen delay
in !0. Then 5t + 10(2 − t) + 1 is the minimal cost through !2 and 5t + (2 − t) + 7 is
the minimal cost through !3. As the environment chooses between these two transitions
the best choice for the controller is to delay t ≤ 2 such that max(21 − 5t, 9 + 4t) is
minimum, which is t = 4

3 giving a minimal cost of 14 1
3 .

!0

cost(!0) = 5

!1

[y = 0]

!2

cost(!2) = 10

!3

cost(!3) = 1

Goal
x ≤ 2; c1 ; y := 0

u

u

x ≥ 2; c2; cost = 1

x ≥ 2; c2 ; cost = 7

Fig. 1. A Reachability Priced Time Game Automaton A

Related Work. Acyclic priced (or weighted) timed games have been studied in [23] and

the more general case of non-acyclic games have been recently considered in [1]. In [1],

the problem they consider is “compute the optimal cost within k steps” (we refer to this

Optimal Game Reachability Problem :

2

More recently, the ability to consider more general performance measures has been

given. Priced extensions of timed automata have been introduced where a cost c is asso-
ciated with each location ! giving the cost of a unit of time spent in !. In [3] cost-bound
reachability has been shown decidable. [8] and [5] independently solve the cost-optimal

reachability problem for priced timed automata. Efficient incorporation in UPPAAL is

provided by use of so-called priced zones as a main data structure [25]. In [29] the im-

plementation of cost-optimal reachability is improved considerably by exploiting the

duality with linear programming problems over zones (min-cost flow problems). More

recently [11], the problem of computing optimal infinite schedules (in terms of minimal

limit-ratios) is solved for the model of priced timed automata.

The Optimal Cost Control Problem for Timed Games. In this paper we combine the

notions of game and price and solve the problem of cost-optimal winning strategies

for priced timed game automata.The problem we consider is: “Given a timed game

automaton A, a goal location Goal, what is the optimal cost we can achieve to reach
Goal inA?”. We refer to this problem as the Optimal Cost Problem (OCP). Consider the
example of a priced timed game automaton given in Fig. 1. Here the cost-rates (cost per

time unit) in locations !0, !2 and !3 are 5, 10 and 1 respectively. In !1 the environment
may choose to move to either !2 or !3 (dashed arrows are uncontrollable). However, due
to the invariant y = 0 this choice must be made instantaneous. Obviously, once !2 or !3
has been reached the optimal strategy for the controller is to move to Goal immediately
(however there is a discrete cost (resp. 1 and 7) on each discrete transition). The crucial
(and only remaining) question is how long the controller should wait in !0 before taking
the transition to !1. Obviously, in order for the controller to win this duration must be
no more than two time units. However, what is the optimal choice for the duration in the

sense that the overall cost of reaching Goal is minimal? Denote by t the chosen delay
in !0. Then 5t + 10(2 − t) + 1 is the minimal cost through !2 and 5t + (2 − t) + 7 is
the minimal cost through !3. As the environment chooses between these two transitions
the best choice for the controller is to delay t ≤ 2 such that max(21 − 5t, 9 + 4t) is
minimum, which is t = 4

3 giving a minimal cost of 14 1
3 .

!0

cost(!0) = 5

!1

[y = 0]

!2

cost(!2) = 10

!3

cost(!3) = 1

Goal
x ≤ 2; c1 ; y := 0

u

u

x ≥ 2; c2; cost = 1

x ≥ 2; c2 ; cost = 7

Fig. 1. A Reachability Priced Time Game Automaton A

Related Work. Acyclic priced (or weighted) timed games have been studied in [23] and

the more general case of non-acyclic games have been recently considered in [1]. In [1],

the problem they consider is “compute the optimal cost within k steps” (we refer to this

What is the optimal cost that Player I can ensure ?

Optimal cost problem

2

More recently, the ability to consider more general performance measures has been

given. Priced extensions of timed automata have been introduced where a cost c is asso-
ciated with each location ! giving the cost of a unit of time spent in !. In [3] cost-bound
reachability has been shown decidable. [8] and [5] independently solve the cost-optimal

reachability problem for priced timed automata. Efficient incorporation in UPPAAL is

provided by use of so-called priced zones as a main data structure [25]. In [29] the im-

plementation of cost-optimal reachability is improved considerably by exploiting the

duality with linear programming problems over zones (min-cost flow problems). More

recently [11], the problem of computing optimal infinite schedules (in terms of minimal

limit-ratios) is solved for the model of priced timed automata.

The Optimal Cost Control Problem for Timed Games. In this paper we combine the

notions of game and price and solve the problem of cost-optimal winning strategies

for priced timed game automata.The problem we consider is: “Given a timed game

automaton A, a goal location Goal, what is the optimal cost we can achieve to reach
Goal inA?”. We refer to this problem as the Optimal Cost Problem (OCP). Consider the
example of a priced timed game automaton given in Fig. 1. Here the cost-rates (cost per

time unit) in locations !0, !2 and !3 are 5, 10 and 1 respectively. In !1 the environment
may choose to move to either !2 or !3 (dashed arrows are uncontrollable). However, due
to the invariant y = 0 this choice must be made instantaneous. Obviously, once !2 or !3
has been reached the optimal strategy for the controller is to move to Goal immediately
(however there is a discrete cost (resp. 1 and 7) on each discrete transition). The crucial
(and only remaining) question is how long the controller should wait in !0 before taking
the transition to !1. Obviously, in order for the controller to win this duration must be
no more than two time units. However, what is the optimal choice for the duration in the

sense that the overall cost of reaching Goal is minimal? Denote by t the chosen delay
in !0. Then 5t + 10(2 − t) + 1 is the minimal cost through !2 and 5t + (2 − t) + 7 is
the minimal cost through !3. As the environment chooses between these two transitions
the best choice for the controller is to delay t ≤ 2 such that max(21 − 5t, 9 + 4t) is
minimum, which is t = 4

3 giving a minimal cost of 14 1
3 .

!0

cost(!0) = 5

!1

[y = 0]

!2

cost(!2) = 10

!3

cost(!3) = 1

Goal
x ≤ 2; c1 ; y := 0

u

u

x ≥ 2; c2; cost = 1

x ≥ 2; c2 ; cost = 7

Fig. 1. A Reachability Priced Time Game Automaton A

Related Work. Acyclic priced (or weighted) timed games have been studied in [23] and

the more general case of non-acyclic games have been recently considered in [1]. In [1],

the problem they consider is “compute the optimal cost within k steps” (we refer to this

Mint(Max(5t + 10(2 − t) + 1, 5t + (2 − t) + 7))

Player I’s choice

Player II’s choice

Optimal cost problem

2

More recently, the ability to consider more general performance measures has been

given. Priced extensions of timed automata have been introduced where a cost c is asso-
ciated with each location ! giving the cost of a unit of time spent in !. In [3] cost-bound
reachability has been shown decidable. [8] and [5] independently solve the cost-optimal

reachability problem for priced timed automata. Efficient incorporation in UPPAAL is

provided by use of so-called priced zones as a main data structure [25]. In [29] the im-

plementation of cost-optimal reachability is improved considerably by exploiting the

duality with linear programming problems over zones (min-cost flow problems). More

recently [11], the problem of computing optimal infinite schedules (in terms of minimal

limit-ratios) is solved for the model of priced timed automata.

The Optimal Cost Control Problem for Timed Games. In this paper we combine the

notions of game and price and solve the problem of cost-optimal winning strategies

for priced timed game automata.The problem we consider is: “Given a timed game

automaton A, a goal location Goal, what is the optimal cost we can achieve to reach
Goal inA?”. We refer to this problem as the Optimal Cost Problem (OCP). Consider the
example of a priced timed game automaton given in Fig. 1. Here the cost-rates (cost per

time unit) in locations !0, !2 and !3 are 5, 10 and 1 respectively. In !1 the environment
may choose to move to either !2 or !3 (dashed arrows are uncontrollable). However, due
to the invariant y = 0 this choice must be made instantaneous. Obviously, once !2 or !3
has been reached the optimal strategy for the controller is to move to Goal immediately
(however there is a discrete cost (resp. 1 and 7) on each discrete transition). The crucial
(and only remaining) question is how long the controller should wait in !0 before taking
the transition to !1. Obviously, in order for the controller to win this duration must be
no more than two time units. However, what is the optimal choice for the duration in the

sense that the overall cost of reaching Goal is minimal? Denote by t the chosen delay
in !0. Then 5t + 10(2 − t) + 1 is the minimal cost through !2 and 5t + (2 − t) + 7 is
the minimal cost through !3. As the environment chooses between these two transitions
the best choice for the controller is to delay t ≤ 2 such that max(21 − 5t, 9 + 4t) is
minimum, which is t = 4

3 giving a minimal cost of 14 1
3 .

!0

cost(!0) = 5

!1

[y = 0]

!2

cost(!2) = 10

!3

cost(!3) = 1

Goal
x ≤ 2; c1 ; y := 0

u

u

x ≥ 2; c2; cost = 1

x ≥ 2; c2 ; cost = 7

Fig. 1. A Reachability Priced Time Game Automaton A

Related Work. Acyclic priced (or weighted) timed games have been studied in [23] and

the more general case of non-acyclic games have been recently considered in [1]. In [1],

the problem they consider is “compute the optimal cost within k steps” (we refer to this

Mint(Max(5t + 10(2 − t) + 1, 5t + (2 − t) + 7))

Which is when t =
3

4
and the cost is 14

3

4

Optimal cost problem

2

More recently, the ability to consider more general performance measures has been

given. Priced extensions of timed automata have been introduced where a cost c is asso-
ciated with each location ! giving the cost of a unit of time spent in !. In [3] cost-bound
reachability has been shown decidable. [8] and [5] independently solve the cost-optimal

reachability problem for priced timed automata. Efficient incorporation in UPPAAL is

provided by use of so-called priced zones as a main data structure [25]. In [29] the im-

plementation of cost-optimal reachability is improved considerably by exploiting the

duality with linear programming problems over zones (min-cost flow problems). More

recently [11], the problem of computing optimal infinite schedules (in terms of minimal

limit-ratios) is solved for the model of priced timed automata.

The Optimal Cost Control Problem for Timed Games. In this paper we combine the

notions of game and price and solve the problem of cost-optimal winning strategies

for priced timed game automata.The problem we consider is: “Given a timed game

automaton A, a goal location Goal, what is the optimal cost we can achieve to reach
Goal inA?”. We refer to this problem as the Optimal Cost Problem (OCP). Consider the
example of a priced timed game automaton given in Fig. 1. Here the cost-rates (cost per

time unit) in locations !0, !2 and !3 are 5, 10 and 1 respectively. In !1 the environment
may choose to move to either !2 or !3 (dashed arrows are uncontrollable). However, due
to the invariant y = 0 this choice must be made instantaneous. Obviously, once !2 or !3
has been reached the optimal strategy for the controller is to move to Goal immediately
(however there is a discrete cost (resp. 1 and 7) on each discrete transition). The crucial
(and only remaining) question is how long the controller should wait in !0 before taking
the transition to !1. Obviously, in order for the controller to win this duration must be
no more than two time units. However, what is the optimal choice for the duration in the

sense that the overall cost of reaching Goal is minimal? Denote by t the chosen delay
in !0. Then 5t + 10(2 − t) + 1 is the minimal cost through !2 and 5t + (2 − t) + 7 is
the minimal cost through !3. As the environment chooses between these two transitions
the best choice for the controller is to delay t ≤ 2 such that max(21 − 5t, 9 + 4t) is
minimum, which is t = 4

3 giving a minimal cost of 14 1
3 .

!0

cost(!0) = 5

!1

[y = 0]

!2

cost(!2) = 10

!3

cost(!3) = 1

Goal
x ≤ 2; c1 ; y := 0

u

u

x ≥ 2; c2; cost = 1

x ≥ 2; c2 ; cost = 7

Fig. 1. A Reachability Priced Time Game Automaton A

Related Work. Acyclic priced (or weighted) timed games have been studied in [23] and

the more general case of non-acyclic games have been recently considered in [1]. In [1],

the problem they consider is “compute the optimal cost within k steps” (we refer to this

So, optimal moves are taken on rational
points (and not only on integer points).

Optimal cost problem

What is on the menu ?

• Premilinaries and motivations

• Two-player games - Fixed point algorithms

• Games on Weighted Timed Automata

• Symbolic semi-algorithm

• Undecidability

• Decidable subcases

• Conclusion - Bibliography

Symbolic Analysis

10

The semantics of a PTGA A = (L, !0,Act,X,E, inv, f) is a PTG SA = ((L ×
RX

≥0, (!0,0),Act,−→),Cost)where−→ consists of: i) discrete steps: (!, v)
e

−→ (!′, v′)

if there exists (!, g, e, R, !′) ∈ E s.t. v |= g and v′ = v[R]; Cost((!, v)
e

−→ (!′, v′)) =

f(!, g, e, R, !′) ; ii) time steps: (!, v)
δ

−→ (!, v′) if δ ∈ R≥0, v
′ = v + δ and v, v′ ∈

inv(!); and Cost((!, v)
δ

−→ (!, v′)) = δ · f(!). Note that this definition of Cost gives a
cost function as defined in Def. 7.

FromOptimal Reachability Game to Reachability Game. Assume we want to compute

the optimal cost to win a reachability priced timed game automaton A. We define a
(usual and unpriced) LHGH as follows: we use a variable cost in the LHG to stand for
the cost value. We build H with the same discrete structure as A and specify a rate for

cost in each location: if the cost increases with a rate of +k per unit of time in A, then
we set the derivative of cost to be −k in H; if the cost of a discrete transition is +k
in A, then we update cost by cost := cost − k in H . To each state q in (the semantics
of) A there are many corresponding states (q, c) in H , where c is the value of the cost
variable. For such a state (q, c) we denote ∃cost.(q, c) the state q. If X is a set of states

in (the semantics of) H then ∃cost.X = {q | ∃c ≥ 0 | (q, c) ∈ X}. From the PTGA of
Fig. 1 we obtain the LHG of Fig. 2.

!0

dcost
dt

= −5

!1

y = 0

!2

dcost
dt

= −10

!3

dcost
dt

= −1

Goal
x ≤ 2; c1 ; y := 0

u

u

x ≥ 2; c2

cost’ = cost− 1

x ≥ 2; c2

cost’ = cost− 7

Fig. 2. The Linear Hybrid Game H .

Now we solve the following control problem on the LHG: can we win inH with the

goal states Goal ∧ cost ≥ 0 ? Intuitively speaking we are asking the question: ”what is
the minimal amount of resource (cost) needed to win the control gameH?” For a PTGA
A we can compute the winning states ofH with the semi-algorithm CompWin (defined
at the end of section 2) and if it terminates the wining set of statesWH = CompWin(H)
is a union of zones of the form (!, R ∧ cost (h) where ! is a location, R ⊆ RX

≥0, h
is a piece-wise affine function on R and (∈ {>,≥}. Hence we have the answer to the
optimal reachability game: we intersect the set of initial states with the set of winning

statesWH , and in case it is not empty, the projection on the cost axis yields a constraint
on the cost like cost (k with k ∈ Q≥0 and (∈ {>,≥}. By definition of winning set
of states in reachability games, i.e. this is the largest set from which we can win, no cost

lower than or equal to k is winning and we can deduce that k is the optimal cost. Also
we can decide whether there is an optimal strategy or not: if (is equal to > there is no

optimal strategy and if (is ≥ there is one.

• Solving such a game can be seen as solving a hybrid automata game (add
a variable w which models a “credit”), so states are of the form (q,v,w)

Symbolic Analysis

• Solving such a game can be seen as solving a hybrid automata
game (add a variable w which models a “credit”), so states are of the
form (q,v,w)

• We can define (as usual) a CPre operator, see [BCFL04], then we can
try compute CPre*(Goal,w≥0)

• (q,v,w) ∈ CPre*(Goal,w≥0)

iff
Player I has a winning strategy of cost bounded by w in (q,v)

CPre operator

Let S be a set of triples (l,v,c). The controllable
predecessor of S, CPre(S), is the set of triples (l’,v’,c’) such
that:

∃t≥0: ∃(l’,v’)−σc→(l,v):

-c=c’-W(σc)-t×W(l’)∧(l,v,c)∈S
-∀t’≤t, ∀(l,v):

(l’,v’)−σu→(l,v)∧c=c’-W(σu)-t’×W(l’):
(l,v,c)∈S

This operator transforms polyhedral sets into polyhedral sets.

Symbolic Analysis

• Solving such a game can be seen as solving a hybrid automata
game (add a variable w which models a “credit”), so states are of the
form (q,v,w)

• We can define (as usual) a CPre operator, see [BCFL04], then we can
try compute CPre*(Goal,w≥0)

• (q,v,w) ∈ CPre*(Goal,w≥0)

iff
Player I has a winning strategy of cost bounded by w in (q,v)

• This fixpoint computation is guaranteed to terminate when “every
cycles in the region graph of the automaton has a cost
bounded away from zero” see [BCFL04]. The authors conjectured
that this property was not necessary for terminaison.

What is on the menu ?

• Premilinaries and motivations

• Two-player games - Fixed point algorithms

• Games on Weighted Timed Automata

• Symbolic semi-algorithm

• Undecidability

• Decidable subcases

• Conclusion - Bibliography

CPre*(Goal,w≥0) is not Computable

• Given a 2CM machine M, we can construct a WTA A such that

Player I has a strategy to reach Goal at a cost bounded by 1
iff

M is halting

• Proof idea:

• Player I simulates the 2CM computation

• if M halts then the game ends in Goal with a cost w≤1

• if he does not : Player II can force the game to Goal at a cost w>1

Encoding the values of counters

We use three clocks x,y,z to encode C=n

y z x

+

=
1

2n+1
=

= =
1

2n+1

0 1

x − z

1 − x + y

When time evolves ...

y zx

+ =
1

2n+1
=

= =
1

2n+1

0 1

1 − z + x

y − x

Encoding the values of counters

Leaving the values of counter unchanged

Widget I

counter c2 using three clocks x2, y2, z2
4. The clock values are always between 0

and 1. To keep the notation simple, we use the same notation to denote the clock
or its value. When clear from the context, we often drop the subscript, that is,
counter c is described by clocks x, y and z. Counter ci, i = 1, 2, has value n ∈ N,

ci = n (1)

if and only if one of the following three conditions is satisfied :

– 0 ≤ xi ≤ yi ≤ zi ≤ 1, yi − xi = 1
2n+1 , and xi + (1 − zi) = 1

2n+1 ,
– 0 ≤ zi ≤ xi ≤ yi ≤ 1, yi − xi = 1

2n+1 , and xi − zi = 1
2n+1 ,

– 0 ≤ yi ≤ zi ≤ xi ≤ 1, (1 − xi) + yi = 1
2n+1 , and xi − zi = 1

2n+1 .

The first condition is given in Figure 1.5 We say that the encoding is in
normal form if xi = 0 (see Figure 2).

x y z

1

2n+1
α β

Fig. 1. One among the three encodings
of c1 = n, with α + β = 1

2n+1 .

x y z

1

2n+1
1

2n+1

Fig. 2. The encoding of c1 = n in nor-
mal form.

The automaton A = (L, LF , X, Σ, δ, Inv, WL, Wδ) has thus a set X of six
clocks (xi, yi and zi, i = 1, 2). The costs given by function WL to the locations
are either 0 or 1. The function Wδ assigns a null cost to each transition.6 The
set L contains a location for each label k of the machine M , which is labeled by
σk in a way to remember the label k. For each such k, the related location l is as
depicted in Figure 3 where i is equal to 1 or 2. We notice that the control spends
no time in location l, and that one of the two counters, ci, is encoded in normal
form. This is the way configurations (k, c1, c2) of the machine M are encoded by
states (l, ν) of the automaton A with locations l like in Figure 3. In particular,
the stop instruction of M which is labeled by ks is encoded by a location l like
in Figure 3, such that σks

replaces σk and l ∈ LF is a target location.

xi := 0 l

σk

xi = 0

Fig. 3. Location labeled by σk

x = 1 ; x := 0
y = 1 ; y := 0
z = 1 ; z := 0

l

x ≤ 1 ∧ y ≤ 1 ∧ z ≤ 1

Fig. 4. Widget to let the value of a
counter unchanged.

In the sequel, we present widgets used by Player 1 to simulate the instruc-
tions of the machine M . These widgets are fragments of the automaton A; they

4 An encoding using five clocks is possible, but the exposition would be more technical.
5 The two other conditions are cyclic– or mod 1, representations of the first condition.
6 In the following figures, the cost if not indicated is supposed to be equal to zero.

Normal form... when x=0

y z=x

=
1

2n+1
=

= =
1

2n+1

0 1

1 − z

y

Encoding the values of counters

Encoding of a counter in normal form

Widget II

y = 1 ; y := 0
z = 1 ; z := 0

x = 1 ; x := 0
l l′

x ≤ 1 ∧ y ≤ 1 ∧ z ≤ 1 x = 0

Fig. 5. Widget to put a counter encoding
in normal form.

instr. k′

instr. k′′

l

σk

x = 0

y = z

y < z

Fig. 6. Widget for zero test.

in Figure 3. No time can elapse in l. Clearly to test that n = 0 is equivalent to
test that y = z as done in this widget.

Widget W4 for increment - In this paragraph, we indicate how to simulate an
increment instruction k : c := c + 1. While the previous widgets have controlled
transitions only, and null costs on every location, the widget for incrementing
counter c uses two uncontrolled transitions, and have cost equal to 1 for certain
locations. This widget is composed of several parts.

(1) First part of widget W4.
Consider Figure 7. We can suppose that the control reaches location l0 with the

l0

σk

l1 l2

x = 0 z < 1 x = 0

y := 0 x := 0

Fig. 7. First part of the widget for increment.

value n of counter c encoded by x, y, z in normal form, such that x = 0, y = 1
2n+1

and z = 1 − 1
2n+1 . The transition from l0 to l1 has to be taken immediately. As

the transition from l1 to l2 is controlled, Player 1 has to choose the amount
of time t that it waits in l1 before taking the transition to l2. Because of the
invariant labeling l1, we know that t < 1

2n+1 . When entering location l2, the
clock values are as follows: x = 0, y = t and z = 1 − 1

2n+1 + t. Note that to
faithfully simulate the increment of counter c, Player 1 should choose t = 1

2n+2 .
It is easy to verify that in location l2,

t =
1

2n+2
⇔ y + z = 1. (2)

So, we are in the following situation: to verify that Player 1 has faithfully chosen
t to simulate the increment of counter c, we simply have to check that in l2,
y + z = 1. Hereafter, we show how Player 2 observes in location l2 the possible
simulation errors of Player 1. Notice that in l2, the clock values x, y, z satisfy
0 = x < y < z ≤ 1.

(2) Part of widget W4 to check if y + z $= 1.

Simplifications

• when modifying the value of counter C1, the
value of counter C2 is maintained by the
widget 1 (and vice versa);

• before modifying the value of a counter, it is
first put in normal form using widget II

Simulating an increment

Problem 1. Given a weighted timed automaton A, a state q of A and a constant
c ∈ N, decide if there exists a winning strategy λ from q such that Cost(q, λ) ≤ c.

Problem 2. Given a weighted timed automaton A and a state q of A, determine
the optimal cost OptCost(q), and decide whether there exists an optimal winning
strategy.

Comments 2. Concerning Problem 2, there exists an optimal winning strategy
from state q if and only if the infimum can be replaced by a minimum in the
definition of OptCost(q). Notice that Problem 1 is decidable if Problem 2 can be
solved. Indeed, there exists a winning strategy λ from q such that Cost(q, λ) ≤ c
if and only if either OptCost(q) < c, or OptCost(q) = c and there exists an
optimal strategy from q.

3 Undecidability results

This section is devoted to the main result of this article, that is, Problems 1 is
undecidable. By Comments 2, it follows Problem 2 cannot be solved.

Theorem 1. Problem 1 is undecidable.

Proof. The idea of the proof is the following one. Given a two-counter machine
M , we will construct a weighted timed automaton A and propose a timed game
on A. In this game, Player 1 will simulate the execution of M , and Player 2 will
observe the possible simulation errors done by Player 1. We will prove that for a
well-chosen state q, there exists a winning strategy λ from q with Cost(q, λ) ≤ 1
if and only if the machine M halts. It will follow that Problem 1 is undecidable.

We here consider the classical model of two-counter machine [12]. The two
counters are denoted by c1 and c2, and the different types of labeled instructions
are given in Table 1.3 A configuration of the machine M is given by a triple

zero test k : if ci = 0 then goto k′ else goto k′′

increment k : ci := ci + 1
decrement k : ci := ci − 1
stop k : STOP

Table 1. The possible instructions of a two-counter machine.

(k, c1, c2) which represents the (label of the) current instruction of M and two
counter values. The first instruction of M is supposed to be labeled by k0 and
the stop instruction for which M halts, is supposed to be labeled by ks. The
initial configuration of M is thus (k0, 0, 0).

We first define how the counter values are encoded in the states of A. We
encode the value of counter c1 using three clocks x1, y1, z1 and the value of

3 We assume that there is a zero test before each decrementation instruction such that
the counter value is not modified each time it is equal to zero.

l0 l1 l2
next

instruction

widget W
> widget W

<

x = 0 z ≤ 1 x = 0

y := 0 x := 0

u u

Fig. 9. Widget W4 for increment.

Player 1 does not simulate the increment instruction, i.e. y + z != 1, then Player
2 can take a decision such that the game reaches a target location with a cost
strictly greater than 1. Indeed, if y + z > 1, it decides to use the widget W> (see
(3)), otherwise it uses the widget W< (see (5) in the Appendix).

Widget W5 for decrement - As for the increment instruction, the widget for
decrement is in several parts. We only present the first part in details, where
Player 1 has to faithfully simulate the decrement. The other parts where Player
2 observes the possible simulation errors of Player 1 are identical to Cases (i)
and (ii) of the increment widget.

Let us assume that we enter location l0 of the widget of Figure 10 with x = 0,
y = 1

2n+1 and z = 1 − 1
2n+1 . We also assume that n > 1 (see footnote 3).

l0 l1 l2 l3 l4

x = 0 z ≤ 1 y ≤ 1 x ≤ 1 ∧ y ≤ 1 x = 0

z = 1
x := 0 z := 0

y = 1 ; y := 0

x = 1
x := 0

Fig. 10. First part of the widget for decrement.

When the control leaves location l1, the clock values are respectively equal
to x = 0, z = 1, and y = 1

2n+1 + 1
2n+1 . Then Player 1 has to choose the amount of

time t that it waits in location l2 before taking the transition to l3. To faithfully
simulate the decrement, Player 1 should choose t = 1

2n . In location l4, we are now
in the same situation as in location l2 of the increment widget (see Figure 9):
t = 1

2n ⇔ y + z = 1. So, we just have to plug in l4 the two widgets W>, W<

and a transition to the next instruction of the machine M . The situation is the
same as for the increment. Indeed if Player 1 faithfully simulates the decrement
instruction, then the cost is bounded by 1 whatever the Player 2’s decision. If
Player 1 does not simulate it, then Player 2 can take a decision such that the
game reaches a target location with a cost strictly greater than 1.

It should now be clear to the reader why we can reduce the halting of a two-
counter machine to the existence of a winning strategy for Player 1 to reach a
target location with a cost bounded by 1. Let M be a two-counter machine and
A the weighted timed automaton constructed from the widgets as above. The
target locations of A are either the location associated with the stop instruction
of M , or the target locations of the widgets depicted in Figures 8 and 13. Let

Problem 1. Given a weighted timed automaton A, a state q of A and a constant
c ∈ N, decide if there exists a winning strategy λ from q such that Cost(q, λ) ≤ c.

Problem 2. Given a weighted timed automaton A and a state q of A, determine
the optimal cost OptCost(q), and decide whether there exists an optimal winning
strategy.

Comments 2. Concerning Problem 2, there exists an optimal winning strategy
from state q if and only if the infimum can be replaced by a minimum in the
definition of OptCost(q). Notice that Problem 1 is decidable if Problem 2 can be
solved. Indeed, there exists a winning strategy λ from q such that Cost(q, λ) ≤ c
if and only if either OptCost(q) < c, or OptCost(q) = c and there exists an
optimal strategy from q.

3 Undecidability results

This section is devoted to the main result of this article, that is, Problems 1 is
undecidable. By Comments 2, it follows Problem 2 cannot be solved.

Theorem 1. Problem 1 is undecidable.

Proof. The idea of the proof is the following one. Given a two-counter machine
M , we will construct a weighted timed automaton A and propose a timed game
on A. In this game, Player 1 will simulate the execution of M , and Player 2 will
observe the possible simulation errors done by Player 1. We will prove that for a
well-chosen state q, there exists a winning strategy λ from q with Cost(q, λ) ≤ 1
if and only if the machine M halts. It will follow that Problem 1 is undecidable.

We here consider the classical model of two-counter machine [12]. The two
counters are denoted by c1 and c2, and the different types of labeled instructions
are given in Table 1.3 A configuration of the machine M is given by a triple

zero test k : if ci = 0 then goto k′ else goto k′′

increment k : ci := ci + 1
decrement k : ci := ci − 1
stop k : STOP

Table 1. The possible instructions of a two-counter machine.

(k, c1, c2) which represents the (label of the) current instruction of M and two
counter values. The first instruction of M is supposed to be labeled by k0 and
the stop instruction for which M halts, is supposed to be labeled by ks. The
initial configuration of M is thus (k0, 0, 0).

We first define how the counter values are encoded in the states of A. We
encode the value of counter c1 using three clocks x1, y1, z1 and the value of

3 We assume that there is a zero test before each decrementation instruction such that
the counter value is not modified each time it is equal to zero.

Player 1 should reset x at the right moment
in order to obtain the encoding for Ci=n+1

when entering l2

l0 l1 l2
next

instruction

widget W
> widget W

<

x = 0 z ≤ 1 x = 0

y := 0 x := 0

u u

Fig. 9. Widget W4 for increment.

Player 1 does not simulate the increment instruction, i.e. y + z != 1, then Player
2 can take a decision such that the game reaches a target location with a cost
strictly greater than 1. Indeed, if y + z > 1, it decides to use the widget W> (see
(3)), otherwise it uses the widget W< (see (5) in the Appendix).

Widget W5 for decrement - As for the increment instruction, the widget for
decrement is in several parts. We only present the first part in details, where
Player 1 has to faithfully simulate the decrement. The other parts where Player
2 observes the possible simulation errors of Player 1 are identical to Cases (i)
and (ii) of the increment widget.

Let us assume that we enter location l0 of the widget of Figure 10 with x = 0,
y = 1

2n+1 and z = 1 − 1
2n+1 . We also assume that n > 1 (see footnote 3).

l0 l1 l2 l3 l4

x = 0 z ≤ 1 y ≤ 1 x ≤ 1 ∧ y ≤ 1 x = 0

z = 1
x := 0 z := 0

y = 1 ; y := 0

x = 1
x := 0

Fig. 10. First part of the widget for decrement.

When the control leaves location l1, the clock values are respectively equal
to x = 0, z = 1, and y = 1

2n+1 + 1
2n+1 . Then Player 1 has to choose the amount of

time t that it waits in location l2 before taking the transition to l3. To faithfully
simulate the decrement, Player 1 should choose t = 1

2n . In location l4, we are now
in the same situation as in location l2 of the increment widget (see Figure 9):
t = 1

2n ⇔ y + z = 1. So, we just have to plug in l4 the two widgets W>, W<

and a transition to the next instruction of the machine M . The situation is the
same as for the increment. Indeed if Player 1 faithfully simulates the decrement
instruction, then the cost is bounded by 1 whatever the Player 2’s decision. If
Player 1 does not simulate it, then Player 2 can take a decision such that the
game reaches a target location with a cost strictly greater than 1.

It should now be clear to the reader why we can reduce the halting of a two-
counter machine to the existence of a winning strategy for Player 1 to reach a
target location with a cost bounded by 1. Let M be a two-counter machine and
A the weighted timed automaton constructed from the widgets as above. The
target locations of A are either the location associated with the stop instruction
of M , or the target locations of the widgets depicted in Figures 8 and 13. Let

Simulating an increment

Problem 1. Given a weighted timed automaton A, a state q of A and a constant
c ∈ N, decide if there exists a winning strategy λ from q such that Cost(q, λ) ≤ c.

Problem 2. Given a weighted timed automaton A and a state q of A, determine
the optimal cost OptCost(q), and decide whether there exists an optimal winning
strategy.

Comments 2. Concerning Problem 2, there exists an optimal winning strategy
from state q if and only if the infimum can be replaced by a minimum in the
definition of OptCost(q). Notice that Problem 1 is decidable if Problem 2 can be
solved. Indeed, there exists a winning strategy λ from q such that Cost(q, λ) ≤ c
if and only if either OptCost(q) < c, or OptCost(q) = c and there exists an
optimal strategy from q.

3 Undecidability results

This section is devoted to the main result of this article, that is, Problems 1 is
undecidable. By Comments 2, it follows Problem 2 cannot be solved.

Theorem 1. Problem 1 is undecidable.

Proof. The idea of the proof is the following one. Given a two-counter machine
M , we will construct a weighted timed automaton A and propose a timed game
on A. In this game, Player 1 will simulate the execution of M , and Player 2 will
observe the possible simulation errors done by Player 1. We will prove that for a
well-chosen state q, there exists a winning strategy λ from q with Cost(q, λ) ≤ 1
if and only if the machine M halts. It will follow that Problem 1 is undecidable.

We here consider the classical model of two-counter machine [12]. The two
counters are denoted by c1 and c2, and the different types of labeled instructions
are given in Table 1.3 A configuration of the machine M is given by a triple

zero test k : if ci = 0 then goto k′ else goto k′′

increment k : ci := ci + 1
decrement k : ci := ci − 1
stop k : STOP

Table 1. The possible instructions of a two-counter machine.

(k, c1, c2) which represents the (label of the) current instruction of M and two
counter values. The first instruction of M is supposed to be labeled by k0 and
the stop instruction for which M halts, is supposed to be labeled by ks. The
initial configuration of M is thus (k0, 0, 0).

We first define how the counter values are encoded in the states of A. We
encode the value of counter c1 using three clocks x1, y1, z1 and the value of

3 We assume that there is a zero test before each decrementation instruction such that
the counter value is not modified each time it is equal to zero.

Player II will verify that Player I
has reset x at the right moment

l0 l1 l2
next

instruction

widget W
> widget W

<

x = 0 z ≤ 1 x = 0

y := 0 x := 0

u u

Fig. 9. Widget W4 for increment.

Player 1 does not simulate the increment instruction, i.e. y + z != 1, then Player
2 can take a decision such that the game reaches a target location with a cost
strictly greater than 1. Indeed, if y + z > 1, it decides to use the widget W> (see
(3)), otherwise it uses the widget W< (see (5) in the Appendix).

Widget W5 for decrement - As for the increment instruction, the widget for
decrement is in several parts. We only present the first part in details, where
Player 1 has to faithfully simulate the decrement. The other parts where Player
2 observes the possible simulation errors of Player 1 are identical to Cases (i)
and (ii) of the increment widget.

Let us assume that we enter location l0 of the widget of Figure 10 with x = 0,
y = 1

2n+1 and z = 1 − 1
2n+1 . We also assume that n > 1 (see footnote 3).

l0 l1 l2 l3 l4

x = 0 z ≤ 1 y ≤ 1 x ≤ 1 ∧ y ≤ 1 x = 0

z = 1
x := 0 z := 0

y = 1 ; y := 0

x = 1
x := 0

Fig. 10. First part of the widget for decrement.

When the control leaves location l1, the clock values are respectively equal
to x = 0, z = 1, and y = 1

2n+1 + 1
2n+1 . Then Player 1 has to choose the amount of

time t that it waits in location l2 before taking the transition to l3. To faithfully
simulate the decrement, Player 1 should choose t = 1

2n . In location l4, we are now
in the same situation as in location l2 of the increment widget (see Figure 9):
t = 1

2n ⇔ y + z = 1. So, we just have to plug in l4 the two widgets W>, W<

and a transition to the next instruction of the machine M . The situation is the
same as for the increment. Indeed if Player 1 faithfully simulates the decrement
instruction, then the cost is bounded by 1 whatever the Player 2’s decision. If
Player 1 does not simulate it, then Player 2 can take a decision such that the
game reaches a target location with a cost strictly greater than 1.

It should now be clear to the reader why we can reduce the halting of a two-
counter machine to the existence of a winning strategy for Player 1 to reach a
target location with a cost bounded by 1. Let M be a two-counter machine and
A the weighted timed automaton constructed from the widgets as above. The
target locations of A are either the location associated with the stop instruction
of M , or the target locations of the widgets depicted in Figures 8 and 13. Let

Simulating an increment

Problem 1. Given a weighted timed automaton A, a state q of A and a constant
c ∈ N, decide if there exists a winning strategy λ from q such that Cost(q, λ) ≤ c.

Problem 2. Given a weighted timed automaton A and a state q of A, determine
the optimal cost OptCost(q), and decide whether there exists an optimal winning
strategy.

Comments 2. Concerning Problem 2, there exists an optimal winning strategy
from state q if and only if the infimum can be replaced by a minimum in the
definition of OptCost(q). Notice that Problem 1 is decidable if Problem 2 can be
solved. Indeed, there exists a winning strategy λ from q such that Cost(q, λ) ≤ c
if and only if either OptCost(q) < c, or OptCost(q) = c and there exists an
optimal strategy from q.

3 Undecidability results

This section is devoted to the main result of this article, that is, Problems 1 is
undecidable. By Comments 2, it follows Problem 2 cannot be solved.

Theorem 1. Problem 1 is undecidable.

Proof. The idea of the proof is the following one. Given a two-counter machine
M , we will construct a weighted timed automaton A and propose a timed game
on A. In this game, Player 1 will simulate the execution of M , and Player 2 will
observe the possible simulation errors done by Player 1. We will prove that for a
well-chosen state q, there exists a winning strategy λ from q with Cost(q, λ) ≤ 1
if and only if the machine M halts. It will follow that Problem 1 is undecidable.

We here consider the classical model of two-counter machine [12]. The two
counters are denoted by c1 and c2, and the different types of labeled instructions
are given in Table 1.3 A configuration of the machine M is given by a triple

zero test k : if ci = 0 then goto k′ else goto k′′

increment k : ci := ci + 1
decrement k : ci := ci − 1
stop k : STOP

Table 1. The possible instructions of a two-counter machine.

(k, c1, c2) which represents the (label of the) current instruction of M and two
counter values. The first instruction of M is supposed to be labeled by k0 and
the stop instruction for which M halts, is supposed to be labeled by ks. The
initial configuration of M is thus (k0, 0, 0).

We first define how the counter values are encoded in the states of A. We
encode the value of counter c1 using three clocks x1, y1, z1 and the value of

3 We assume that there is a zero test before each decrementation instruction such that
the counter value is not modified each time it is equal to zero.

At what time should Player I reset x ?

l0 l1 l2
next

instruction

widget W
> widget W

<

x = 0 z ≤ 1 x = 0

y := 0 x := 0

u u

Fig. 9. Widget W4 for increment.

Player 1 does not simulate the increment instruction, i.e. y + z != 1, then Player
2 can take a decision such that the game reaches a target location with a cost
strictly greater than 1. Indeed, if y + z > 1, it decides to use the widget W> (see
(3)), otherwise it uses the widget W< (see (5) in the Appendix).

Widget W5 for decrement - As for the increment instruction, the widget for
decrement is in several parts. We only present the first part in details, where
Player 1 has to faithfully simulate the decrement. The other parts where Player
2 observes the possible simulation errors of Player 1 are identical to Cases (i)
and (ii) of the increment widget.

Let us assume that we enter location l0 of the widget of Figure 10 with x = 0,
y = 1

2n+1 and z = 1 − 1
2n+1 . We also assume that n > 1 (see footnote 3).

l0 l1 l2 l3 l4

x = 0 z ≤ 1 y ≤ 1 x ≤ 1 ∧ y ≤ 1 x = 0

z = 1
x := 0 z := 0

y = 1 ; y := 0

x = 1
x := 0

Fig. 10. First part of the widget for decrement.

When the control leaves location l1, the clock values are respectively equal
to x = 0, z = 1, and y = 1

2n+1 + 1
2n+1 . Then Player 1 has to choose the amount of

time t that it waits in location l2 before taking the transition to l3. To faithfully
simulate the decrement, Player 1 should choose t = 1

2n . In location l4, we are now
in the same situation as in location l2 of the increment widget (see Figure 9):
t = 1

2n ⇔ y + z = 1. So, we just have to plug in l4 the two widgets W>, W<

and a transition to the next instruction of the machine M . The situation is the
same as for the increment. Indeed if Player 1 faithfully simulates the decrement
instruction, then the cost is bounded by 1 whatever the Player 2’s decision. If
Player 1 does not simulate it, then Player 2 can take a decision such that the
game reaches a target location with a cost strictly greater than 1.

It should now be clear to the reader why we can reduce the halting of a two-
counter machine to the existence of a winning strategy for Player 1 to reach a
target location with a cost bounded by 1. Let M be a two-counter machine and
A the weighted timed automaton constructed from the widgets as above. The
target locations of A are either the location associated with the stop instruction
of M , or the target locations of the widgets depicted in Figures 8 and 13. Let

Simulating an increment

Problem 1. Given a weighted timed automaton A, a state q of A and a constant
c ∈ N, decide if there exists a winning strategy λ from q such that Cost(q, λ) ≤ c.

Problem 2. Given a weighted timed automaton A and a state q of A, determine
the optimal cost OptCost(q), and decide whether there exists an optimal winning
strategy.

Comments 2. Concerning Problem 2, there exists an optimal winning strategy
from state q if and only if the infimum can be replaced by a minimum in the
definition of OptCost(q). Notice that Problem 1 is decidable if Problem 2 can be
solved. Indeed, there exists a winning strategy λ from q such that Cost(q, λ) ≤ c
if and only if either OptCost(q) < c, or OptCost(q) = c and there exists an
optimal strategy from q.

3 Undecidability results

This section is devoted to the main result of this article, that is, Problems 1 is
undecidable. By Comments 2, it follows Problem 2 cannot be solved.

Theorem 1. Problem 1 is undecidable.

Proof. The idea of the proof is the following one. Given a two-counter machine
M , we will construct a weighted timed automaton A and propose a timed game
on A. In this game, Player 1 will simulate the execution of M , and Player 2 will
observe the possible simulation errors done by Player 1. We will prove that for a
well-chosen state q, there exists a winning strategy λ from q with Cost(q, λ) ≤ 1
if and only if the machine M halts. It will follow that Problem 1 is undecidable.

We here consider the classical model of two-counter machine [12]. The two
counters are denoted by c1 and c2, and the different types of labeled instructions
are given in Table 1.3 A configuration of the machine M is given by a triple

zero test k : if ci = 0 then goto k′ else goto k′′

increment k : ci := ci + 1
decrement k : ci := ci − 1
stop k : STOP

Table 1. The possible instructions of a two-counter machine.

(k, c1, c2) which represents the (label of the) current instruction of M and two
counter values. The first instruction of M is supposed to be labeled by k0 and
the stop instruction for which M halts, is supposed to be labeled by ks. The
initial configuration of M is thus (k0, 0, 0).

We first define how the counter values are encoded in the states of A. We
encode the value of counter c1 using three clocks x1, y1, z1 and the value of

3 We assume that there is a zero test before each decrementation instruction such that
the counter value is not modified each time it is equal to zero.

in
1

2n+1
1 −

1

2n+1
0 1

x y z

l0

l0 l1 l2
next

instruction

widget W
> widget W

<

x = 0 z ≤ 1 x = 0

y := 0 x := 0

u u

Fig. 9. Widget W4 for increment.

Player 1 does not simulate the increment instruction, i.e. y + z != 1, then Player
2 can take a decision such that the game reaches a target location with a cost
strictly greater than 1. Indeed, if y + z > 1, it decides to use the widget W> (see
(3)), otherwise it uses the widget W< (see (5) in the Appendix).

Widget W5 for decrement - As for the increment instruction, the widget for
decrement is in several parts. We only present the first part in details, where
Player 1 has to faithfully simulate the decrement. The other parts where Player
2 observes the possible simulation errors of Player 1 are identical to Cases (i)
and (ii) of the increment widget.

Let us assume that we enter location l0 of the widget of Figure 10 with x = 0,
y = 1

2n+1 and z = 1 − 1
2n+1 . We also assume that n > 1 (see footnote 3).

l0 l1 l2 l3 l4

x = 0 z ≤ 1 y ≤ 1 x ≤ 1 ∧ y ≤ 1 x = 0

z = 1
x := 0 z := 0

y = 1 ; y := 0

x = 1
x := 0

Fig. 10. First part of the widget for decrement.

When the control leaves location l1, the clock values are respectively equal
to x = 0, z = 1, and y = 1

2n+1 + 1
2n+1 . Then Player 1 has to choose the amount of

time t that it waits in location l2 before taking the transition to l3. To faithfully
simulate the decrement, Player 1 should choose t = 1

2n . In location l4, we are now
in the same situation as in location l2 of the increment widget (see Figure 9):
t = 1

2n ⇔ y + z = 1. So, we just have to plug in l4 the two widgets W>, W<

and a transition to the next instruction of the machine M . The situation is the
same as for the increment. Indeed if Player 1 faithfully simulates the decrement
instruction, then the cost is bounded by 1 whatever the Player 2’s decision. If
Player 1 does not simulate it, then Player 2 can take a decision such that the
game reaches a target location with a cost strictly greater than 1.

It should now be clear to the reader why we can reduce the halting of a two-
counter machine to the existence of a winning strategy for Player 1 to reach a
target location with a cost bounded by 1. Let M be a two-counter machine and
A the weighted timed automaton constructed from the widgets as above. The
target locations of A are either the location associated with the stop instruction
of M , or the target locations of the widgets depicted in Figures 8 and 13. Let

Simulating an increment

Problem 1. Given a weighted timed automaton A, a state q of A and a constant
c ∈ N, decide if there exists a winning strategy λ from q such that Cost(q, λ) ≤ c.

Problem 2. Given a weighted timed automaton A and a state q of A, determine
the optimal cost OptCost(q), and decide whether there exists an optimal winning
strategy.

Comments 2. Concerning Problem 2, there exists an optimal winning strategy
from state q if and only if the infimum can be replaced by a minimum in the
definition of OptCost(q). Notice that Problem 1 is decidable if Problem 2 can be
solved. Indeed, there exists a winning strategy λ from q such that Cost(q, λ) ≤ c
if and only if either OptCost(q) < c, or OptCost(q) = c and there exists an
optimal strategy from q.

3 Undecidability results

This section is devoted to the main result of this article, that is, Problems 1 is
undecidable. By Comments 2, it follows Problem 2 cannot be solved.

Theorem 1. Problem 1 is undecidable.

Proof. The idea of the proof is the following one. Given a two-counter machine
M , we will construct a weighted timed automaton A and propose a timed game
on A. In this game, Player 1 will simulate the execution of M , and Player 2 will
observe the possible simulation errors done by Player 1. We will prove that for a
well-chosen state q, there exists a winning strategy λ from q with Cost(q, λ) ≤ 1
if and only if the machine M halts. It will follow that Problem 1 is undecidable.

We here consider the classical model of two-counter machine [12]. The two
counters are denoted by c1 and c2, and the different types of labeled instructions
are given in Table 1.3 A configuration of the machine M is given by a triple

zero test k : if ci = 0 then goto k′ else goto k′′

increment k : ci := ci + 1
decrement k : ci := ci − 1
stop k : STOP

Table 1. The possible instructions of a two-counter machine.

(k, c1, c2) which represents the (label of the) current instruction of M and two
counter values. The first instruction of M is supposed to be labeled by k0 and
the stop instruction for which M halts, is supposed to be labeled by ks. The
initial configuration of M is thus (k0, 0, 0).

We first define how the counter values are encoded in the states of A. We
encode the value of counter c1 using three clocks x1, y1, z1 and the value of

3 We assume that there is a zero test before each decrementation instruction such that
the counter value is not modified each time it is equal to zero.

in
1

2n+1
1 −

1

2n+1
0 1

x y z

l0 in

0 1

x z

1

2n+2
1 −

1

2n+2

l2

l0 l1 l2
next

instruction

widget W
> widget W

<

x = 0 z ≤ 1 x = 0

y := 0 x := 0

u u

Fig. 9. Widget W4 for increment.

Player 1 does not simulate the increment instruction, i.e. y + z != 1, then Player
2 can take a decision such that the game reaches a target location with a cost
strictly greater than 1. Indeed, if y + z > 1, it decides to use the widget W> (see
(3)), otherwise it uses the widget W< (see (5) in the Appendix).

Widget W5 for decrement - As for the increment instruction, the widget for
decrement is in several parts. We only present the first part in details, where
Player 1 has to faithfully simulate the decrement. The other parts where Player
2 observes the possible simulation errors of Player 1 are identical to Cases (i)
and (ii) of the increment widget.

Let us assume that we enter location l0 of the widget of Figure 10 with x = 0,
y = 1

2n+1 and z = 1 − 1
2n+1 . We also assume that n > 1 (see footnote 3).

l0 l1 l2 l3 l4

x = 0 z ≤ 1 y ≤ 1 x ≤ 1 ∧ y ≤ 1 x = 0

z = 1
x := 0 z := 0

y = 1 ; y := 0

x = 1
x := 0

Fig. 10. First part of the widget for decrement.

When the control leaves location l1, the clock values are respectively equal
to x = 0, z = 1, and y = 1

2n+1 + 1
2n+1 . Then Player 1 has to choose the amount of

time t that it waits in location l2 before taking the transition to l3. To faithfully
simulate the decrement, Player 1 should choose t = 1

2n . In location l4, we are now
in the same situation as in location l2 of the increment widget (see Figure 9):
t = 1

2n ⇔ y + z = 1. So, we just have to plug in l4 the two widgets W>, W<

and a transition to the next instruction of the machine M . The situation is the
same as for the increment. Indeed if Player 1 faithfully simulates the decrement
instruction, then the cost is bounded by 1 whatever the Player 2’s decision. If
Player 1 does not simulate it, then Player 2 can take a decision such that the
game reaches a target location with a cost strictly greater than 1.

It should now be clear to the reader why we can reduce the halting of a two-
counter machine to the existence of a winning strategy for Player 1 to reach a
target location with a cost bounded by 1. Let M be a two-counter machine and
A the weighted timed automaton constructed from the widgets as above. The
target locations of A are either the location associated with the stop instruction
of M , or the target locations of the widgets depicted in Figures 8 and 13. Let

y

Simulating an increment

Problem 1. Given a weighted timed automaton A, a state q of A and a constant
c ∈ N, decide if there exists a winning strategy λ from q such that Cost(q, λ) ≤ c.

Problem 2. Given a weighted timed automaton A and a state q of A, determine
the optimal cost OptCost(q), and decide whether there exists an optimal winning
strategy.

Comments 2. Concerning Problem 2, there exists an optimal winning strategy
from state q if and only if the infimum can be replaced by a minimum in the
definition of OptCost(q). Notice that Problem 1 is decidable if Problem 2 can be
solved. Indeed, there exists a winning strategy λ from q such that Cost(q, λ) ≤ c
if and only if either OptCost(q) < c, or OptCost(q) = c and there exists an
optimal strategy from q.

3 Undecidability results

This section is devoted to the main result of this article, that is, Problems 1 is
undecidable. By Comments 2, it follows Problem 2 cannot be solved.

Theorem 1. Problem 1 is undecidable.

Proof. The idea of the proof is the following one. Given a two-counter machine
M , we will construct a weighted timed automaton A and propose a timed game
on A. In this game, Player 1 will simulate the execution of M , and Player 2 will
observe the possible simulation errors done by Player 1. We will prove that for a
well-chosen state q, there exists a winning strategy λ from q with Cost(q, λ) ≤ 1
if and only if the machine M halts. It will follow that Problem 1 is undecidable.

We here consider the classical model of two-counter machine [12]. The two
counters are denoted by c1 and c2, and the different types of labeled instructions
are given in Table 1.3 A configuration of the machine M is given by a triple

zero test k : if ci = 0 then goto k′ else goto k′′

increment k : ci := ci + 1
decrement k : ci := ci − 1
stop k : STOP

Table 1. The possible instructions of a two-counter machine.

(k, c1, c2) which represents the (label of the) current instruction of M and two
counter values. The first instruction of M is supposed to be labeled by k0 and
the stop instruction for which M halts, is supposed to be labeled by ks. The
initial configuration of M is thus (k0, 0, 0).

We first define how the counter values are encoded in the states of A. We
encode the value of counter c1 using three clocks x1, y1, z1 and the value of

3 We assume that there is a zero test before each decrementation instruction such that
the counter value is not modified each time it is equal to zero.

reset after
in

1

2n+1
1 −

1

2n+1
0 1

x y z

l0 in

0 1

x y z

1

2n+2
1 −

1

2n+2

l2

1

2n+2

in l1

x

l0 l1 l2
next

instruction

widget W
> widget W

<

x = 0 z ≤ 1 x = 0

y := 0 x := 0

u u

Fig. 9. Widget W4 for increment.

Player 1 does not simulate the increment instruction, i.e. y + z != 1, then Player
2 can take a decision such that the game reaches a target location with a cost
strictly greater than 1. Indeed, if y + z > 1, it decides to use the widget W> (see
(3)), otherwise it uses the widget W< (see (5) in the Appendix).

Widget W5 for decrement - As for the increment instruction, the widget for
decrement is in several parts. We only present the first part in details, where
Player 1 has to faithfully simulate the decrement. The other parts where Player
2 observes the possible simulation errors of Player 1 are identical to Cases (i)
and (ii) of the increment widget.

Let us assume that we enter location l0 of the widget of Figure 10 with x = 0,
y = 1

2n+1 and z = 1 − 1
2n+1 . We also assume that n > 1 (see footnote 3).

l0 l1 l2 l3 l4

x = 0 z ≤ 1 y ≤ 1 x ≤ 1 ∧ y ≤ 1 x = 0

z = 1
x := 0 z := 0

y = 1 ; y := 0

x = 1
x := 0

Fig. 10. First part of the widget for decrement.

When the control leaves location l1, the clock values are respectively equal
to x = 0, z = 1, and y = 1

2n+1 + 1
2n+1 . Then Player 1 has to choose the amount of

time t that it waits in location l2 before taking the transition to l3. To faithfully
simulate the decrement, Player 1 should choose t = 1

2n . In location l4, we are now
in the same situation as in location l2 of the increment widget (see Figure 9):
t = 1

2n ⇔ y + z = 1. So, we just have to plug in l4 the two widgets W>, W<

and a transition to the next instruction of the machine M . The situation is the
same as for the increment. Indeed if Player 1 faithfully simulates the decrement
instruction, then the cost is bounded by 1 whatever the Player 2’s decision. If
Player 1 does not simulate it, then Player 2 can take a decision such that the
game reaches a target location with a cost strictly greater than 1.

It should now be clear to the reader why we can reduce the halting of a two-
counter machine to the existence of a winning strategy for Player 1 to reach a
target location with a cost bounded by 1. Let M be a two-counter machine and
A the weighted timed automaton constructed from the widgets as above. The
target locations of A are either the location associated with the stop instruction
of M , or the target locations of the widgets depicted in Figures 8 and 13. Let

Simulating an increment

Problem 1. Given a weighted timed automaton A, a state q of A and a constant
c ∈ N, decide if there exists a winning strategy λ from q such that Cost(q, λ) ≤ c.

Problem 2. Given a weighted timed automaton A and a state q of A, determine
the optimal cost OptCost(q), and decide whether there exists an optimal winning
strategy.

Comments 2. Concerning Problem 2, there exists an optimal winning strategy
from state q if and only if the infimum can be replaced by a minimum in the
definition of OptCost(q). Notice that Problem 1 is decidable if Problem 2 can be
solved. Indeed, there exists a winning strategy λ from q such that Cost(q, λ) ≤ c
if and only if either OptCost(q) < c, or OptCost(q) = c and there exists an
optimal strategy from q.

3 Undecidability results

This section is devoted to the main result of this article, that is, Problems 1 is
undecidable. By Comments 2, it follows Problem 2 cannot be solved.

Theorem 1. Problem 1 is undecidable.

Proof. The idea of the proof is the following one. Given a two-counter machine
M , we will construct a weighted timed automaton A and propose a timed game
on A. In this game, Player 1 will simulate the execution of M , and Player 2 will
observe the possible simulation errors done by Player 1. We will prove that for a
well-chosen state q, there exists a winning strategy λ from q with Cost(q, λ) ≤ 1
if and only if the machine M halts. It will follow that Problem 1 is undecidable.

We here consider the classical model of two-counter machine [12]. The two
counters are denoted by c1 and c2, and the different types of labeled instructions
are given in Table 1.3 A configuration of the machine M is given by a triple

zero test k : if ci = 0 then goto k′ else goto k′′

increment k : ci := ci + 1
decrement k : ci := ci − 1
stop k : STOP

Table 1. The possible instructions of a two-counter machine.

(k, c1, c2) which represents the (label of the) current instruction of M and two
counter values. The first instruction of M is supposed to be labeled by k0 and
the stop instruction for which M halts, is supposed to be labeled by ks. The
initial configuration of M is thus (k0, 0, 0).

We first define how the counter values are encoded in the states of A. We
encode the value of counter c1 using three clocks x1, y1, z1 and the value of

3 We assume that there is a zero test before each decrementation instruction such that
the counter value is not modified each time it is equal to zero.

We note t the
time spent in

in
1

2n+1
1 −

1

2n+1
0 1

x y z

l0 in

0 1

x

1

2n+2
1 −

1

2n+2

l2reset after
1

2n+2

in l1

x

l1

l0 l1 l2
next

instruction

widget W
> widget W

<

x = 0 z ≤ 1 x = 0

y := 0 x := 0

u u

Fig. 9. Widget W4 for increment.

Player 1 does not simulate the increment instruction, i.e. y + z != 1, then Player
2 can take a decision such that the game reaches a target location with a cost
strictly greater than 1. Indeed, if y + z > 1, it decides to use the widget W> (see
(3)), otherwise it uses the widget W< (see (5) in the Appendix).

Widget W5 for decrement - As for the increment instruction, the widget for
decrement is in several parts. We only present the first part in details, where
Player 1 has to faithfully simulate the decrement. The other parts where Player
2 observes the possible simulation errors of Player 1 are identical to Cases (i)
and (ii) of the increment widget.

Let us assume that we enter location l0 of the widget of Figure 10 with x = 0,
y = 1

2n+1 and z = 1 − 1
2n+1 . We also assume that n > 1 (see footnote 3).

l0 l1 l2 l3 l4

x = 0 z ≤ 1 y ≤ 1 x ≤ 1 ∧ y ≤ 1 x = 0

z = 1
x := 0 z := 0

y = 1 ; y := 0

x = 1
x := 0

Fig. 10. First part of the widget for decrement.

When the control leaves location l1, the clock values are respectively equal
to x = 0, z = 1, and y = 1

2n+1 + 1
2n+1 . Then Player 1 has to choose the amount of

time t that it waits in location l2 before taking the transition to l3. To faithfully
simulate the decrement, Player 1 should choose t = 1

2n . In location l4, we are now
in the same situation as in location l2 of the increment widget (see Figure 9):
t = 1

2n ⇔ y + z = 1. So, we just have to plug in l4 the two widgets W>, W<

and a transition to the next instruction of the machine M . The situation is the
same as for the increment. Indeed if Player 1 faithfully simulates the decrement
instruction, then the cost is bounded by 1 whatever the Player 2’s decision. If
Player 1 does not simulate it, then Player 2 can take a decision such that the
game reaches a target location with a cost strictly greater than 1.

It should now be clear to the reader why we can reduce the halting of a two-
counter machine to the existence of a winning strategy for Player 1 to reach a
target location with a cost bounded by 1. Let M be a two-counter machine and
A the weighted timed automaton constructed from the widgets as above. The
target locations of A are either the location associated with the stop instruction
of M , or the target locations of the widgets depicted in Figures 8 and 13. Let

y z

Simulating an increment

Problem 1. Given a weighted timed automaton A, a state q of A and a constant
c ∈ N, decide if there exists a winning strategy λ from q such that Cost(q, λ) ≤ c.

Problem 2. Given a weighted timed automaton A and a state q of A, determine
the optimal cost OptCost(q), and decide whether there exists an optimal winning
strategy.

Comments 2. Concerning Problem 2, there exists an optimal winning strategy
from state q if and only if the infimum can be replaced by a minimum in the
definition of OptCost(q). Notice that Problem 1 is decidable if Problem 2 can be
solved. Indeed, there exists a winning strategy λ from q such that Cost(q, λ) ≤ c
if and only if either OptCost(q) < c, or OptCost(q) = c and there exists an
optimal strategy from q.

3 Undecidability results

This section is devoted to the main result of this article, that is, Problems 1 is
undecidable. By Comments 2, it follows Problem 2 cannot be solved.

Theorem 1. Problem 1 is undecidable.

Proof. The idea of the proof is the following one. Given a two-counter machine
M , we will construct a weighted timed automaton A and propose a timed game
on A. In this game, Player 1 will simulate the execution of M , and Player 2 will
observe the possible simulation errors done by Player 1. We will prove that for a
well-chosen state q, there exists a winning strategy λ from q with Cost(q, λ) ≤ 1
if and only if the machine M halts. It will follow that Problem 1 is undecidable.

We here consider the classical model of two-counter machine [12]. The two
counters are denoted by c1 and c2, and the different types of labeled instructions
are given in Table 1.3 A configuration of the machine M is given by a triple

zero test k : if ci = 0 then goto k′ else goto k′′

increment k : ci := ci + 1
decrement k : ci := ci − 1
stop k : STOP

Table 1. The possible instructions of a two-counter machine.

(k, c1, c2) which represents the (label of the) current instruction of M and two
counter values. The first instruction of M is supposed to be labeled by k0 and
the stop instruction for which M halts, is supposed to be labeled by ks. The
initial configuration of M is thus (k0, 0, 0).

We first define how the counter values are encoded in the states of A. We
encode the value of counter c1 using three clocks x1, y1, z1 and the value of

3 We assume that there is a zero test before each decrementation instruction such that
the counter value is not modified each time it is equal to zero.

How can Player II verify that
Player I has faithfully simulated the increment ?

l0 l1 l2
next

instruction

widget W
> widget W

<

x = 0 z ≤ 1 x = 0

y := 0 x := 0

u u

Fig. 9. Widget W4 for increment.

Player 1 does not simulate the increment instruction, i.e. y + z != 1, then Player
2 can take a decision such that the game reaches a target location with a cost
strictly greater than 1. Indeed, if y + z > 1, it decides to use the widget W> (see
(3)), otherwise it uses the widget W< (see (5) in the Appendix).

Widget W5 for decrement - As for the increment instruction, the widget for
decrement is in several parts. We only present the first part in details, where
Player 1 has to faithfully simulate the decrement. The other parts where Player
2 observes the possible simulation errors of Player 1 are identical to Cases (i)
and (ii) of the increment widget.

Let us assume that we enter location l0 of the widget of Figure 10 with x = 0,
y = 1

2n+1 and z = 1 − 1
2n+1 . We also assume that n > 1 (see footnote 3).

l0 l1 l2 l3 l4

x = 0 z ≤ 1 y ≤ 1 x ≤ 1 ∧ y ≤ 1 x = 0

z = 1
x := 0 z := 0

y = 1 ; y := 0

x = 1
x := 0

Fig. 10. First part of the widget for decrement.

When the control leaves location l1, the clock values are respectively equal
to x = 0, z = 1, and y = 1

2n+1 + 1
2n+1 . Then Player 1 has to choose the amount of

time t that it waits in location l2 before taking the transition to l3. To faithfully
simulate the decrement, Player 1 should choose t = 1

2n . In location l4, we are now
in the same situation as in location l2 of the increment widget (see Figure 9):
t = 1

2n ⇔ y + z = 1. So, we just have to plug in l4 the two widgets W>, W<

and a transition to the next instruction of the machine M . The situation is the
same as for the increment. Indeed if Player 1 faithfully simulates the decrement
instruction, then the cost is bounded by 1 whatever the Player 2’s decision. If
Player 1 does not simulate it, then Player 2 can take a decision such that the
game reaches a target location with a cost strictly greater than 1.

It should now be clear to the reader why we can reduce the halting of a two-
counter machine to the existence of a winning strategy for Player 1 to reach a
target location with a cost bounded by 1. Let M be a two-counter machine and
A the weighted timed automaton constructed from the widgets as above. The
target locations of A are either the location associated with the stop instruction
of M , or the target locations of the widgets depicted in Figures 8 and 13. Let

Simulating an increment

Problem 1. Given a weighted timed automaton A, a state q of A and a constant
c ∈ N, decide if there exists a winning strategy λ from q such that Cost(q, λ) ≤ c.

Problem 2. Given a weighted timed automaton A and a state q of A, determine
the optimal cost OptCost(q), and decide whether there exists an optimal winning
strategy.

Comments 2. Concerning Problem 2, there exists an optimal winning strategy
from state q if and only if the infimum can be replaced by a minimum in the
definition of OptCost(q). Notice that Problem 1 is decidable if Problem 2 can be
solved. Indeed, there exists a winning strategy λ from q such that Cost(q, λ) ≤ c
if and only if either OptCost(q) < c, or OptCost(q) = c and there exists an
optimal strategy from q.

3 Undecidability results

This section is devoted to the main result of this article, that is, Problems 1 is
undecidable. By Comments 2, it follows Problem 2 cannot be solved.

Theorem 1. Problem 1 is undecidable.

Proof. The idea of the proof is the following one. Given a two-counter machine
M , we will construct a weighted timed automaton A and propose a timed game
on A. In this game, Player 1 will simulate the execution of M , and Player 2 will
observe the possible simulation errors done by Player 1. We will prove that for a
well-chosen state q, there exists a winning strategy λ from q with Cost(q, λ) ≤ 1
if and only if the machine M halts. It will follow that Problem 1 is undecidable.

We here consider the classical model of two-counter machine [12]. The two
counters are denoted by c1 and c2, and the different types of labeled instructions
are given in Table 1.3 A configuration of the machine M is given by a triple

zero test k : if ci = 0 then goto k′ else goto k′′

increment k : ci := ci + 1
decrement k : ci := ci − 1
stop k : STOP

Table 1. The possible instructions of a two-counter machine.

(k, c1, c2) which represents the (label of the) current instruction of M and two
counter values. The first instruction of M is supposed to be labeled by k0 and
the stop instruction for which M halts, is supposed to be labeled by ks. The
initial configuration of M is thus (k0, 0, 0).

We first define how the counter values are encoded in the states of A. We
encode the value of counter c1 using three clocks x1, y1, z1 and the value of

3 We assume that there is a zero test before each decrementation instruction such that
the counter value is not modified each time it is equal to zero.

y = 1 ; y := 0
z = 1 ; z := 0

x = 1 ; x := 0
l l′

x ≤ 1 ∧ y ≤ 1 ∧ z ≤ 1 x = 0

Fig. 5. Widget to put a counter encoding
in normal form.

instr. k′

instr. k′′

l

σk

x = 0

y = z

y < z

Fig. 6. Widget for zero test.

in Figure 3. No time can elapse in l. Clearly to test that n = 0 is equivalent to
test that y = z as done in this widget.

Widget W4 for increment - In this paragraph, we indicate how to simulate an
increment instruction k : c := c + 1. While the previous widgets have controlled
transitions only, and null costs on every location, the widget for incrementing
counter c uses two uncontrolled transitions, and have cost equal to 1 for certain
locations. This widget is composed of several parts.

(1) First part of widget W4.
Consider Figure 7. We can suppose that the control reaches location l0 with the

l0

σk

l1 l2

x = 0 z < 1 x = 0

y := 0 x := 0

Fig. 7. First part of the widget for increment.

value n of counter c encoded by x, y, z in normal form, such that x = 0, y = 1
2n+1

and z = 1 − 1
2n+1 . The transition from l0 to l1 has to be taken immediately. As

the transition from l1 to l2 is controlled, Player 1 has to choose the amount
of time t that it waits in l1 before taking the transition to l2. Because of the
invariant labeling l1, we know that t < 1

2n+1 . When entering location l2, the
clock values are as follows: x = 0, y = t and z = 1 − 1

2n+1 + t. Note that to
faithfully simulate the increment of counter c, Player 1 should choose t = 1

2n+2 .
It is easy to verify that in location l2,

t =
1

2n+2
⇔ y + z = 1. (2)

So, we are in the following situation: to verify that Player 1 has faithfully chosen
t to simulate the increment of counter c, we simply have to check that in l2,
y + z = 1. Hereafter, we show how Player 2 observes in location l2 the possible
simulation errors of Player 1. Notice that in l2, the clock values x, y, z satisfy
0 = x < y < z ≤ 1.

(2) Part of widget W4 to check if y + z $= 1.

In l2, we have that

l0 l1 l2
next

instruction

widget W
> widget W

<

x = 0 z ≤ 1 x = 0

y := 0 x := 0

u u

Fig. 9. Widget W4 for increment.

Player 1 does not simulate the increment instruction, i.e. y + z != 1, then Player
2 can take a decision such that the game reaches a target location with a cost
strictly greater than 1. Indeed, if y + z > 1, it decides to use the widget W> (see
(3)), otherwise it uses the widget W< (see (5) in the Appendix).

Widget W5 for decrement - As for the increment instruction, the widget for
decrement is in several parts. We only present the first part in details, where
Player 1 has to faithfully simulate the decrement. The other parts where Player
2 observes the possible simulation errors of Player 1 are identical to Cases (i)
and (ii) of the increment widget.

Let us assume that we enter location l0 of the widget of Figure 10 with x = 0,
y = 1

2n+1 and z = 1 − 1
2n+1 . We also assume that n > 1 (see footnote 3).

l0 l1 l2 l3 l4

x = 0 z ≤ 1 y ≤ 1 x ≤ 1 ∧ y ≤ 1 x = 0

z = 1
x := 0 z := 0

y = 1 ; y := 0

x = 1
x := 0

Fig. 10. First part of the widget for decrement.

When the control leaves location l1, the clock values are respectively equal
to x = 0, z = 1, and y = 1

2n+1 + 1
2n+1 . Then Player 1 has to choose the amount of

time t that it waits in location l2 before taking the transition to l3. To faithfully
simulate the decrement, Player 1 should choose t = 1

2n . In location l4, we are now
in the same situation as in location l2 of the increment widget (see Figure 9):
t = 1

2n ⇔ y + z = 1. So, we just have to plug in l4 the two widgets W>, W<

and a transition to the next instruction of the machine M . The situation is the
same as for the increment. Indeed if Player 1 faithfully simulates the decrement
instruction, then the cost is bounded by 1 whatever the Player 2’s decision. If
Player 1 does not simulate it, then Player 2 can take a decision such that the
game reaches a target location with a cost strictly greater than 1.

It should now be clear to the reader why we can reduce the halting of a two-
counter machine to the existence of a winning strategy for Player 1 to reach a
target location with a cost bounded by 1. Let M be a two-counter machine and
A the weighted timed automaton constructed from the widgets as above. The
target locations of A are either the location associated with the stop instruction
of M , or the target locations of the widgets depicted in Figures 8 and 13. Let

Simulating an increment

Problem 1. Given a weighted timed automaton A, a state q of A and a constant
c ∈ N, decide if there exists a winning strategy λ from q such that Cost(q, λ) ≤ c.

Problem 2. Given a weighted timed automaton A and a state q of A, determine
the optimal cost OptCost(q), and decide whether there exists an optimal winning
strategy.

Comments 2. Concerning Problem 2, there exists an optimal winning strategy
from state q if and only if the infimum can be replaced by a minimum in the
definition of OptCost(q). Notice that Problem 1 is decidable if Problem 2 can be
solved. Indeed, there exists a winning strategy λ from q such that Cost(q, λ) ≤ c
if and only if either OptCost(q) < c, or OptCost(q) = c and there exists an
optimal strategy from q.

3 Undecidability results

This section is devoted to the main result of this article, that is, Problems 1 is
undecidable. By Comments 2, it follows Problem 2 cannot be solved.

Theorem 1. Problem 1 is undecidable.

Proof. The idea of the proof is the following one. Given a two-counter machine
M , we will construct a weighted timed automaton A and propose a timed game
on A. In this game, Player 1 will simulate the execution of M , and Player 2 will
observe the possible simulation errors done by Player 1. We will prove that for a
well-chosen state q, there exists a winning strategy λ from q with Cost(q, λ) ≤ 1
if and only if the machine M halts. It will follow that Problem 1 is undecidable.

We here consider the classical model of two-counter machine [12]. The two
counters are denoted by c1 and c2, and the different types of labeled instructions
are given in Table 1.3 A configuration of the machine M is given by a triple

zero test k : if ci = 0 then goto k′ else goto k′′

increment k : ci := ci + 1
decrement k : ci := ci − 1
stop k : STOP

Table 1. The possible instructions of a two-counter machine.

(k, c1, c2) which represents the (label of the) current instruction of M and two
counter values. The first instruction of M is supposed to be labeled by k0 and
the stop instruction for which M halts, is supposed to be labeled by ks. The
initial configuration of M is thus (k0, 0, 0).

We first define how the counter values are encoded in the states of A. We
encode the value of counter c1 using three clocks x1, y1, z1 and the value of

3 We assume that there is a zero test before each decrementation instruction such that
the counter value is not modified each time it is equal to zero.

l0 l1 l2
next

instruction

widget W
> widget W

<

x = 0 z ≤ 1 x = 0

y := 0 x := 0

u u

Fig. 9. Widget W4 for increment.

Player 1 does not simulate the increment instruction, i.e. y + z != 1, then Player
2 can take a decision such that the game reaches a target location with a cost
strictly greater than 1. Indeed, if y + z > 1, it decides to use the widget W> (see
(3)), otherwise it uses the widget W< (see (5) in the Appendix).

Widget W5 for decrement - As for the increment instruction, the widget for
decrement is in several parts. We only present the first part in details, where
Player 1 has to faithfully simulate the decrement. The other parts where Player
2 observes the possible simulation errors of Player 1 are identical to Cases (i)
and (ii) of the increment widget.

Let us assume that we enter location l0 of the widget of Figure 10 with x = 0,
y = 1

2n+1 and z = 1 − 1
2n+1 . We also assume that n > 1 (see footnote 3).

l0 l1 l2 l3 l4

x = 0 z ≤ 1 y ≤ 1 x ≤ 1 ∧ y ≤ 1 x = 0

z = 1
x := 0 z := 0

y = 1 ; y := 0

x = 1
x := 0

Fig. 10. First part of the widget for decrement.

When the control leaves location l1, the clock values are respectively equal
to x = 0, z = 1, and y = 1

2n+1 + 1
2n+1 . Then Player 1 has to choose the amount of

time t that it waits in location l2 before taking the transition to l3. To faithfully
simulate the decrement, Player 1 should choose t = 1

2n . In location l4, we are now
in the same situation as in location l2 of the increment widget (see Figure 9):
t = 1

2n ⇔ y + z = 1. So, we just have to plug in l4 the two widgets W>, W<

and a transition to the next instruction of the machine M . The situation is the
same as for the increment. Indeed if Player 1 faithfully simulates the decrement
instruction, then the cost is bounded by 1 whatever the Player 2’s decision. If
Player 1 does not simulate it, then Player 2 can take a decision such that the
game reaches a target location with a cost strictly greater than 1.

It should now be clear to the reader why we can reduce the halting of a two-
counter machine to the existence of a winning strategy for Player 1 to reach a
target location with a cost bounded by 1. Let M be a two-counter machine and
A the weighted timed automaton constructed from the widgets as above. The
target locations of A are either the location associated with the stop instruction
of M , or the target locations of the widgets depicted in Figures 8 and 13. Let

If x+y>1, Player II moves the game to Widget W>
if x+y<1, Player II moves the game to Widget W<

Simulating an increment

Widget W>

l2 l3 l4

l5l6l7

0 0 1

010

x = 0 y ≤ 1 ∧ z ≤ 1 x ≤ 1

z ≤ 1x ≤ 1 ∧ y ≤ 1

u

z = 1 ; z := 0

y = 1
y := 0

x = 1
x := 0

z = 1
z := 0

y = 1 ; y := 0

x = 1
x := 0

Fig. 8. Widget W
>.

For clarity, we distinguish the case where (i) y + z > 1 from the case where (ii)
y + z < 1. We only treat with Case (i). The widget W> is given in Figure 8.
Case (ii) with its widget W< is detailed in the Appendix. Notice that the first
location of this widget is equal to the last one of the widget of Figure 7, and that
the first transition is uncontrolled. Location l7 is a target location, i.e. l7 ∈ LF .
The idea is as follows: we use the cost W (ρ) of the run ρ from l2 to l7 to compute
the value y + z. The cost of each location is null except for locations l4 and l6
where WL(l4) = 1 and WL(l6) = 1. Let ρ be a run from l2 to l7 such that y
and z are clock values in l2. Recall that in location l2, the clock values x, y, z
satisfy 0 = x < y < z ≤ 1. We can verify that the cost of ρ is equal to y + z (a
cost y in location l4 and a cost z in location l6). This verification is postponed
in Lemma 6 in the Appendix. Therefore we have

y + z > 1 ⇔ W (ρ) > 1. (3)

(3) Complete widget for increment.
The complete widget for increment is composed of the widgets given in Figures 7,
8 and Figure 13 in the Appendix, as it is schematically given in Figure 9. The
counter that we want to increment has value n. First the control enters the first
part of the widget for incrementation with x = 0, y = 1

2n+1 , z = 1− 1
2n+1 . As we

have seen before, Player 1 has to choose the amount of time t that it waits in l1
before taking the transition to l2. The only way to reach l2 with y + z = 1 is to
simulate faithfully the increment of the counter (see (2)). Then in location l2,
Player 1 proposes to Player 2 to move the control to the widget that encodes the
next instruction of the machine M . Player has three choices: either accept the
move of Player 1, either move the control to the widget W> (Case (i) above), or
move the control to the widget W< (Case (ii) in the Appendix).

So, looking at Figure 9, the situation is as follows. Suppose that Player 1
faithfully simulates the increment instruction, i.e. y + z = 1 (see (2)). Either
Player 2 lets the game evolving to the next instruction of M , and the cost
remains null. Or it decides to use one of the two widgets W>, W<, and the game
reaches a target location with a cost equal to 1 (see (3) and (5) in the Appendix).
So whatever the Player 2’s decision, the cost is bounded by 1. Suppose now that

l2 l3 l4

l5l6l7

0 0 1

010

x = 0 y ≤ 1 ∧ z ≤ 1 x ≤ 1

z ≤ 1x ≤ 1 ∧ y ≤ 1

u

z = 1 ; z := 0

y = 1
y := 0

x = 1
x := 0

z = 1
z := 0

y = 1 ; y := 0

x = 1
x := 0

Fig. 8. Widget W
>.

For clarity, we distinguish the case where (i) y + z > 1 from the case where (ii)
y + z < 1. We only treat with Case (i). The widget W> is given in Figure 8.
Case (ii) with its widget W< is detailed in the Appendix. Notice that the first
location of this widget is equal to the last one of the widget of Figure 7, and that
the first transition is uncontrolled. Location l7 is a target location, i.e. l7 ∈ LF .
The idea is as follows: we use the cost W (ρ) of the run ρ from l2 to l7 to compute
the value y + z. The cost of each location is null except for locations l4 and l6
where WL(l4) = 1 and WL(l6) = 1. Let ρ be a run from l2 to l7 such that y
and z are clock values in l2. Recall that in location l2, the clock values x, y, z
satisfy 0 = x < y < z ≤ 1. We can verify that the cost of ρ is equal to y + z (a
cost y in location l4 and a cost z in location l6). This verification is postponed
in Lemma 6 in the Appendix. Therefore we have

y + z > 1 ⇔ W (ρ) > 1. (3)

(3) Complete widget for increment.
The complete widget for increment is composed of the widgets given in Figures 7,
8 and Figure 13 in the Appendix, as it is schematically given in Figure 9. The
counter that we want to increment has value n. First the control enters the first
part of the widget for incrementation with x = 0, y = 1

2n+1 , z = 1− 1
2n+1 . As we

have seen before, Player 1 has to choose the amount of time t that it waits in l1
before taking the transition to l2. The only way to reach l2 with y + z = 1 is to
simulate faithfully the increment of the counter (see (2)). Then in location l2,
Player 1 proposes to Player 2 to move the control to the widget that encodes the
next instruction of the machine M . Player has three choices: either accept the
move of Player 1, either move the control to the widget W> (Case (i) above), or
move the control to the widget W< (Case (ii) in the Appendix).

So, looking at Figure 9, the situation is as follows. Suppose that Player 1
faithfully simulates the increment instruction, i.e. y + z = 1 (see (2)). Either
Player 2 lets the game evolving to the next instruction of M , and the cost
remains null. Or it decides to use one of the two widgets W>, W<, and the game
reaches a target location with a cost equal to 1 (see (3) and (5) in the Appendix).
So whatever the Player 2’s decision, the cost is bounded by 1. Suppose now that

l2 l3 l4

l5l6l7

0 0 1

010

x = 0 y ≤ 1 ∧ z ≤ 1 x ≤ 1

z ≤ 1x ≤ 1 ∧ y ≤ 1

u

z = 1 ; z := 0

y = 1
y := 0

x = 1
x := 0

z = 1
z := 0

y = 1 ; y := 0

x = 1
x := 0

Fig. 8. Widget W
>.

For clarity, we distinguish the case where (i) y + z > 1 from the case where (ii)
y + z < 1. We only treat with Case (i). The widget W> is given in Figure 8.
Case (ii) with its widget W< is detailed in the Appendix. Notice that the first
location of this widget is equal to the last one of the widget of Figure 7, and that
the first transition is uncontrolled. Location l7 is a target location, i.e. l7 ∈ LF .
The idea is as follows: we use the cost W (ρ) of the run ρ from l2 to l7 to compute
the value y + z. The cost of each location is null except for locations l4 and l6
where WL(l4) = 1 and WL(l6) = 1. Let ρ be a run from l2 to l7 such that y
and z are clock values in l2. Recall that in location l2, the clock values x, y, z
satisfy 0 = x < y < z ≤ 1. We can verify that the cost of ρ is equal to y + z (a
cost y in location l4 and a cost z in location l6). This verification is postponed
in Lemma 6 in the Appendix. Therefore we have

y + z > 1 ⇔ W (ρ) > 1. (3)

(3) Complete widget for increment.
The complete widget for increment is composed of the widgets given in Figures 7,
8 and Figure 13 in the Appendix, as it is schematically given in Figure 9. The
counter that we want to increment has value n. First the control enters the first
part of the widget for incrementation with x = 0, y = 1

2n+1 , z = 1− 1
2n+1 . As we

have seen before, Player 1 has to choose the amount of time t that it waits in l1
before taking the transition to l2. The only way to reach l2 with y + z = 1 is to
simulate faithfully the increment of the counter (see (2)). Then in location l2,
Player 1 proposes to Player 2 to move the control to the widget that encodes the
next instruction of the machine M . Player has three choices: either accept the
move of Player 1, either move the control to the widget W> (Case (i) above), or
move the control to the widget W< (Case (ii) in the Appendix).

So, looking at Figure 9, the situation is as follows. Suppose that Player 1
faithfully simulates the increment instruction, i.e. y + z = 1 (see (2)). Either
Player 2 lets the game evolving to the next instruction of M , and the cost
remains null. Or it decides to use one of the two widgets W>, W<, and the game
reaches a target location with a cost equal to 1 (see (3) and (5) in the Appendix).
So whatever the Player 2’s decision, the cost is bounded by 1. Suppose now that

l2 l3 l4

l5l6l7

0 0 1

010

x = 0 y ≤ 1 ∧ z ≤ 1 x ≤ 1

z ≤ 1x ≤ 1 ∧ y ≤ 1

u

z = 1 ; z := 0

y = 1
y := 0

x = 1
x := 0

z = 1
z := 0

y = 1 ; y := 0

x = 1
x := 0

Fig. 8. Widget W
>.

For clarity, we distinguish the case where (i) y + z > 1 from the case where (ii)
y + z < 1. We only treat with Case (i). The widget W> is given in Figure 8.
Case (ii) with its widget W< is detailed in the Appendix. Notice that the first
location of this widget is equal to the last one of the widget of Figure 7, and that
the first transition is uncontrolled. Location l7 is a target location, i.e. l7 ∈ LF .
The idea is as follows: we use the cost W (ρ) of the run ρ from l2 to l7 to compute
the value y + z. The cost of each location is null except for locations l4 and l6
where WL(l4) = 1 and WL(l6) = 1. Let ρ be a run from l2 to l7 such that y
and z are clock values in l2. Recall that in location l2, the clock values x, y, z
satisfy 0 = x < y < z ≤ 1. We can verify that the cost of ρ is equal to y + z (a
cost y in location l4 and a cost z in location l6). This verification is postponed
in Lemma 6 in the Appendix. Therefore we have

y + z > 1 ⇔ W (ρ) > 1. (3)

(3) Complete widget for increment.
The complete widget for increment is composed of the widgets given in Figures 7,
8 and Figure 13 in the Appendix, as it is schematically given in Figure 9. The
counter that we want to increment has value n. First the control enters the first
part of the widget for incrementation with x = 0, y = 1

2n+1 , z = 1− 1
2n+1 . As we

have seen before, Player 1 has to choose the amount of time t that it waits in l1
before taking the transition to l2. The only way to reach l2 with y + z = 1 is to
simulate faithfully the increment of the counter (see (2)). Then in location l2,
Player 1 proposes to Player 2 to move the control to the widget that encodes the
next instruction of the machine M . Player has three choices: either accept the
move of Player 1, either move the control to the widget W> (Case (i) above), or
move the control to the widget W< (Case (ii) in the Appendix).

So, looking at Figure 9, the situation is as follows. Suppose that Player 1
faithfully simulates the increment instruction, i.e. y + z = 1 (see (2)). Either
Player 2 lets the game evolving to the next instruction of M , and the cost
remains null. Or it decides to use one of the two widgets W>, W<, and the game
reaches a target location with a cost equal to 1 (see (3) and (5) in the Appendix).
So whatever the Player 2’s decision, the cost is bounded by 1. Suppose now that

Compute the
value of y at l2

Widget W>

l2 l3 l4

l5l6l7

0 0 1

010

x = 0 y ≤ 1 ∧ z ≤ 1 x ≤ 1

z ≤ 1x ≤ 1 ∧ y ≤ 1

u

z = 1 ; z := 0

y = 1
y := 0

x = 1
x := 0

z = 1
z := 0

y = 1 ; y := 0

x = 1
x := 0

Fig. 8. Widget W
>.

For clarity, we distinguish the case where (i) y + z > 1 from the case where (ii)
y + z < 1. We only treat with Case (i). The widget W> is given in Figure 8.
Case (ii) with its widget W< is detailed in the Appendix. Notice that the first
location of this widget is equal to the last one of the widget of Figure 7, and that
the first transition is uncontrolled. Location l7 is a target location, i.e. l7 ∈ LF .
The idea is as follows: we use the cost W (ρ) of the run ρ from l2 to l7 to compute
the value y + z. The cost of each location is null except for locations l4 and l6
where WL(l4) = 1 and WL(l6) = 1. Let ρ be a run from l2 to l7 such that y
and z are clock values in l2. Recall that in location l2, the clock values x, y, z
satisfy 0 = x < y < z ≤ 1. We can verify that the cost of ρ is equal to y + z (a
cost y in location l4 and a cost z in location l6). This verification is postponed
in Lemma 6 in the Appendix. Therefore we have

y + z > 1 ⇔ W (ρ) > 1. (3)

(3) Complete widget for increment.
The complete widget for increment is composed of the widgets given in Figures 7,
8 and Figure 13 in the Appendix, as it is schematically given in Figure 9. The
counter that we want to increment has value n. First the control enters the first
part of the widget for incrementation with x = 0, y = 1

2n+1 , z = 1− 1
2n+1 . As we

have seen before, Player 1 has to choose the amount of time t that it waits in l1
before taking the transition to l2. The only way to reach l2 with y + z = 1 is to
simulate faithfully the increment of the counter (see (2)). Then in location l2,
Player 1 proposes to Player 2 to move the control to the widget that encodes the
next instruction of the machine M . Player has three choices: either accept the
move of Player 1, either move the control to the widget W> (Case (i) above), or
move the control to the widget W< (Case (ii) in the Appendix).

So, looking at Figure 9, the situation is as follows. Suppose that Player 1
faithfully simulates the increment instruction, i.e. y + z = 1 (see (2)). Either
Player 2 lets the game evolving to the next instruction of M , and the cost
remains null. Or it decides to use one of the two widgets W>, W<, and the game
reaches a target location with a cost equal to 1 (see (3) and (5) in the Appendix).
So whatever the Player 2’s decision, the cost is bounded by 1. Suppose now that

l2 l3 l4

l5l6l7

0 0 1

010

x = 0 y ≤ 1 ∧ z ≤ 1 x ≤ 1

z ≤ 1x ≤ 1 ∧ y ≤ 1

u

z = 1 ; z := 0

y = 1
y := 0

x = 1
x := 0

z = 1
z := 0

y = 1 ; y := 0

x = 1
x := 0

Fig. 8. Widget W
>.

For clarity, we distinguish the case where (i) y + z > 1 from the case where (ii)
y + z < 1. We only treat with Case (i). The widget W> is given in Figure 8.
Case (ii) with its widget W< is detailed in the Appendix. Notice that the first
location of this widget is equal to the last one of the widget of Figure 7, and that
the first transition is uncontrolled. Location l7 is a target location, i.e. l7 ∈ LF .
The idea is as follows: we use the cost W (ρ) of the run ρ from l2 to l7 to compute
the value y + z. The cost of each location is null except for locations l4 and l6
where WL(l4) = 1 and WL(l6) = 1. Let ρ be a run from l2 to l7 such that y
and z are clock values in l2. Recall that in location l2, the clock values x, y, z
satisfy 0 = x < y < z ≤ 1. We can verify that the cost of ρ is equal to y + z (a
cost y in location l4 and a cost z in location l6). This verification is postponed
in Lemma 6 in the Appendix. Therefore we have

y + z > 1 ⇔ W (ρ) > 1. (3)

(3) Complete widget for increment.
The complete widget for increment is composed of the widgets given in Figures 7,
8 and Figure 13 in the Appendix, as it is schematically given in Figure 9. The
counter that we want to increment has value n. First the control enters the first
part of the widget for incrementation with x = 0, y = 1

2n+1 , z = 1− 1
2n+1 . As we

have seen before, Player 1 has to choose the amount of time t that it waits in l1
before taking the transition to l2. The only way to reach l2 with y + z = 1 is to
simulate faithfully the increment of the counter (see (2)). Then in location l2,
Player 1 proposes to Player 2 to move the control to the widget that encodes the
next instruction of the machine M . Player has three choices: either accept the
move of Player 1, either move the control to the widget W> (Case (i) above), or
move the control to the widget W< (Case (ii) in the Appendix).

So, looking at Figure 9, the situation is as follows. Suppose that Player 1
faithfully simulates the increment instruction, i.e. y + z = 1 (see (2)). Either
Player 2 lets the game evolving to the next instruction of M , and the cost
remains null. Or it decides to use one of the two widgets W>, W<, and the game
reaches a target location with a cost equal to 1 (see (3) and (5) in the Appendix).
So whatever the Player 2’s decision, the cost is bounded by 1. Suppose now that

Compute the
value of y at l2

Compute the
value of z at l2

Widget W>

Appendix

Proof. of Theorem 1, Case (ii) of the widget for increment.
The widget W< is given in Figure 13. As for widget W> the first location of this
widget is equal to location l2 of Figure 7, and the first transition is uncontrolled.
Location l′6 is a target location. The idea is similar to Case (i) : left unchanged,
and the cost of the run ρ′ from l2 to l′6 is equal to (1− y) + (1− z) (a cost 1− y
in location l′3 and a cost 1 − z in location l′5). As y + z < 1 is equivalent to
(1 − y) + (1 − z) > 1, it follows that

y + z < 1 ⇔ W (ρ′) > 1. (5)

l2 l′3 l′4

l′5l′6

0 1 0

10

x = 0 y ≤ 1 ∧ z ≤ 1 x ≤ 1

z ≤ 1

z = 1 ; z := 0

u
y = 1
y := 0

x = 1 ; x := 0
z = 1
z := 0

Fig. 13. Widget W
<.

#$

Lemma 6. We consider Figure 8. Let (0, y, z) be clock values satisfying 0 =
x < y < z ≤ 1. Let ρ be the run from location l2 to location l7, such that the
clock values in l2 are equal to (0, y, z). Then, Cost(ρ) = y + z.

Proof. We consider the decomposition of ρ into the runs ρ1 and ρ2 with respect
to time ρ enters l5. In Figure 14, we can observe two facts about ρ1 :

– The clock values when entering l5 are equal to (0, y, z). Indeed, along ρ1,
whenever a clock value reaches value 1, it is reset to 0 according to the
widget W1.

– The cost W (ρ1) is equal to y. Indeed the bold interval depicted in Figure 14
has been shifted to the right extremity of [0, 1] before entering l4.

The proof that W (ρ2) = z is similar, showing that W (ρ) = y + z. #$

Proof. of Proposition 1.
We first prove the only if implication. The winning strategy λ will be defined on
the states13 of Pre∗(Goal) =

⋃

k≥0 Prek(Goal) by induction on k. The case k = 0
is immediate by definition of Goal.

13 on the states (l, ν) such that (l, ν, w) ∈ Pre
∗(Goal), for some w ∈ R+.

Appendix

Proof. of Theorem 1, Case (ii) of the widget for increment.
The widget W< is given in Figure 13. As for widget W> the first location of this
widget is equal to location l2 of Figure 7, and the first transition is uncontrolled.
Location l′6 is a target location. The idea is similar to Case (i) : left unchanged,
and the cost of the run ρ′ from l2 to l′6 is equal to (1− y) + (1− z) (a cost 1− y
in location l′3 and a cost 1 − z in location l′5). As y + z < 1 is equivalent to
(1 − y) + (1 − z) > 1, it follows that

y + z < 1 ⇔ W (ρ′) > 1. (5)

l2 l′3 l′4

l′5l′6

0 1 0

10

x = 0 y ≤ 1 ∧ z ≤ 1 x ≤ 1

z ≤ 1

z = 1 ; z := 0

u
y = 1
y := 0

x = 1 ; x := 0
z = 1
z := 0

Fig. 13. Widget W
<.

#$

Lemma 6. We consider Figure 8. Let (0, y, z) be clock values satisfying 0 =
x < y < z ≤ 1. Let ρ be the run from location l2 to location l7, such that the
clock values in l2 are equal to (0, y, z). Then, Cost(ρ) = y + z.

Proof. We consider the decomposition of ρ into the runs ρ1 and ρ2 with respect
to time ρ enters l5. In Figure 14, we can observe two facts about ρ1 :

– The clock values when entering l5 are equal to (0, y, z). Indeed, along ρ1,
whenever a clock value reaches value 1, it is reset to 0 according to the
widget W1.

– The cost W (ρ1) is equal to y. Indeed the bold interval depicted in Figure 14
has been shifted to the right extremity of [0, 1] before entering l4.

The proof that W (ρ2) = z is similar, showing that W (ρ) = y + z. #$

Proof. of Proposition 1.
We first prove the only if implication. The winning strategy λ will be defined on
the states13 of Pre∗(Goal) =

⋃

k≥0 Prek(Goal) by induction on k. The case k = 0
is immediate by definition of Goal.

13 on the states (l, ν) such that (l, ν, w) ∈ Pre
∗(Goal), for some w ∈ R+.

Widget W<

Increment summary

Player I reset x to simulate the increment of C
If it does not do it faithfully, Player II force the game either to widget W>
or W< and the game end with weight w>1, otherwise, the game proceeds
to the next instruction.

l0 l1 l2
next

instruction

widget W
> widget W

<

x = 0 z ≤ 1 x = 0

y := 0 x := 0

u u

Fig. 9. Widget W4 for increment.

Player 1 does not simulate the increment instruction, i.e. y + z != 1, then Player
2 can take a decision such that the game reaches a target location with a cost
strictly greater than 1. Indeed, if y + z > 1, it decides to use the widget W> (see
(3)), otherwise it uses the widget W< (see (5) in the Appendix).

Widget W5 for decrement - As for the increment instruction, the widget for
decrement is in several parts. We only present the first part in details, where
Player 1 has to faithfully simulate the decrement. The other parts where Player
2 observes the possible simulation errors of Player 1 are identical to Cases (i)
and (ii) of the increment widget.

Let us assume that we enter location l0 of the widget of Figure 10 with x = 0,
y = 1

2n+1 and z = 1 − 1
2n+1 . We also assume that n > 1 (see footnote 3).

l0 l1 l2 l3 l4

x = 0 z ≤ 1 y ≤ 1 x ≤ 1 ∧ y ≤ 1 x = 0

z = 1
x := 0 z := 0

y = 1 ; y := 0

x = 1
x := 0

Fig. 10. First part of the widget for decrement.

When the control leaves location l1, the clock values are respectively equal
to x = 0, z = 1, and y = 1

2n+1 + 1
2n+1 . Then Player 1 has to choose the amount of

time t that it waits in location l2 before taking the transition to l3. To faithfully
simulate the decrement, Player 1 should choose t = 1

2n . In location l4, we are now
in the same situation as in location l2 of the increment widget (see Figure 9):
t = 1

2n ⇔ y + z = 1. So, we just have to plug in l4 the two widgets W>, W<

and a transition to the next instruction of the machine M . The situation is the
same as for the increment. Indeed if Player 1 faithfully simulates the decrement
instruction, then the cost is bounded by 1 whatever the Player 2’s decision. If
Player 1 does not simulate it, then Player 2 can take a decision such that the
game reaches a target location with a cost strictly greater than 1.

It should now be clear to the reader why we can reduce the halting of a two-
counter machine to the existence of a winning strategy for Player 1 to reach a
target location with a cost bounded by 1. Let M be a two-counter machine and
A the weighted timed automaton constructed from the widgets as above. The
target locations of A are either the location associated with the stop instruction
of M , or the target locations of the widgets depicted in Figures 8 and 13. Let

Summary of the construction

• We construct from the widgets a game where :

• if the 2CM is halting then Player 1 simulates faithfully the computation,
then

• either Player II let Player 1 play and the game end in an goal state with
weight w=0

• or Player II stops the game after an increment or a decrement and the
game ends in a goal state with weight w=1

• if the 2CM is not halting then Player 1 does not have a winning strategy:

• either Player I simulates the 2CM faithfully, in that case, the game
never reach a goal state

• or Player 1 makes an error and Player II stops the game using W> or
W< and the game reach a goal state with weight w>1

What is on the menu ?

• Premilinaries and motivations

• Two-player games - Fixed point algorithms

• Games on Weighted Timed Automata

• Symbolic semi-algorithm

• Undecidability

• Decidable subcases

• Conclusion - Bibliography

Decidables subcases

• Time optimal reachability: the
strategy that minimizes time to target (all
costs on locations are equal to 1) is
computable (see [AM99,BHPR07]);

• One clock and costs 0 and d is decidable
(see [BBR05] for details);

• One clock and any costs, ε-optimality is
decidable [BLMR06] ;

Termination for one clock,
costs 0 and d

2. For ν, ν′ ≤ C, fract(ν) = 0 iff fract(ν′) = 0; fract(w) = 0 iff fract(w′) = 0;
3. For ν, ν′ ≤ C, fract(ν) + fract(w) ∼ 1 iff fract(ν′) + fract(w′) ∼ 1, with

∼∈ {<, =, >}.

An example of equivalence relation ∼ is given in Figure 11. We extend the
relation ∼ to QE by defining (l, ν, w) ∼ (l′, ν′, w′) if and only if l = l′ and
(ν, w) ∼ (ν′, w′). Let P be the partition of QE obtained with this relation.

x

w

Fig. 11. The relation ∼ with C = 4.

x

w

Fig. 12. The partition P2

The partition P is stable under π, that is, given R ∈ P , π(R) is a union
of equivalence classes of P . The reader could convince himself as follows. Let
R ∈ P . Clearly, the sets cPre(R) and uPre(R) are union of equivalences classes
of P . Now due to Lemma 2, it remains to check that given R, S ∈ P , the set
tPre(R, S) is a union of equivalence classes taking in account that WL(l) ∈ {0, 1}.
We summarize this result in the next lemma.

Lemma 4. P is stable under π.

By this lemma, the next corollary is straightforward since Goal is a union of
equivalence classes of P and by Lemmas 1 and 3.

Corollary 1. The set Pre∗(Goal) is a union of equivalence classes of P. Given
a state q of A, the optimum cost OptCost(q) is a non-negative integer11.

Even if the proposed partition P is infinite, we are able to prove that the
computation of Pre∗(Goal) terminates. We first define the set Up(P) of upward
closed sets w.r.t. P : Up(P) = {R | R = ∪Ri, Ri ∈ P and R is upward closed}.

Lemma 5. The partially ordered set 〈Up(P),⊇〉 is Artinian12.

Corollary 2. Pre∗(Goal) can be effectively computed.

The proof of these lemma and corollary are given in the Appendix. Looking
at Comments 4, we get the next corollary.

11 It is possible to find an example of weighted timed automaton with two clocks and
an optimum cost which is rational.

12 Every decreasing chain is finite.

• There exists an infinite game-
bisimulation quotient P

• Let P1 and P2 be two regions,

P1 < P2
iff

P2↓x=P2↓x and
Min(P1↓w)<Min(P2↓w)

• < is wqo : this ensures the
termination

Decidables subcases

• Time optimal reachability: the
strategy that minimizes time to target (all
costs on locations are equal to 1) is
computable (see [AM99,BHPR07]);

• One clock and costs 0 and d is decidable
(see [BBR05] for details);

• One clock and any costs, ε-optimality is
decidable [BLMR06] ;

Conclusions
• Games on WTA are natural models for open embedded systems with resource constraints

• Positive results:

• Optimal Reachability Game is decidable under the hypthesis of “strong non-zenoness of costs” [Bouyer et al, 2004]

• Bounded case (play for k times) is decidable [Alur et al, 2004]

• Optimal time reachability problem is decidable [Asarin et al, 1999, Brihaye et al, 2007]

• One clock two costs [BBR05], One clock any costs [BLM07]

• Negative results:

• The general problem is undecidable [BBR05, BLMR06]

• Open problem:

• can we approximate optimal cost ?

• can we develop a useful theory with discounting ?

