Embedded Systems in Healthcare

Pierre America Healthcare Systems Architecture Philips Research, Eindhoven, the Netherlands November 12, 2008

About the Speaker

- Working for Philips Research since 1982
- Projects for Philips Healthcare (formerly Philips Medical Systems) since 1996
 - X-ray
 - Magnetic Resonance Imaging
 - Electrophysiology
- Areas of research:
 - Software and system architecting
 - Domain modeling
 - Product families
 - Scenario-based architecting
 - Evolvability

Systems in Healthcare

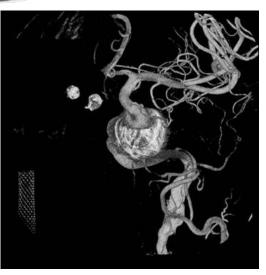
- IT systems
 - Electronic Medical Records (across care providers)
 - Hospital Information Systems
 - Department Information Systems (e.g., cardiology, radiology, ...)
 - Picture Archiving and Communication Systems
 - Clinical Decision Support Systems

— ...

- Embedded systems
 - Diagnostic systems
 - Imaging systems
 - Monitoring systems
 - Interventional systems

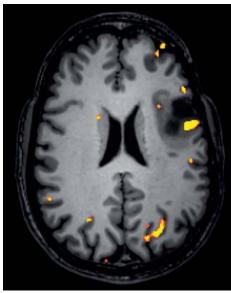

Philips Portfolio

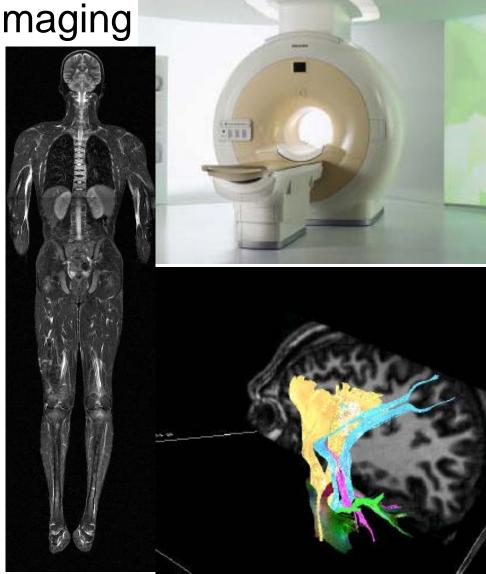
- •General X-ray
- •Cardio/Vascular X-ray
- •Ultrasound
- •Computed Tomography
- Magnetic Resonance Imaging
- •Nuclear Medicine
- Positron Emission Tomography
- •Healthcare Informatics
- Radiation Therapy Planning
- •Cardiac and Monitoring Systems
- •Home Healthcare



Cardiovascular X-Ray

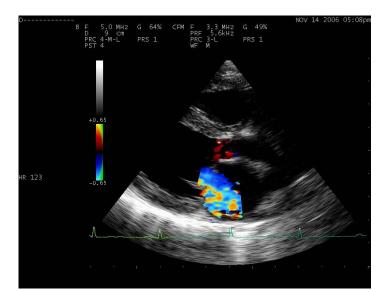
- Makes images of blood vessels, by subtracting images with and without contrast fluid
- High frame rates needed for cardiology
- Often used in catheter interventions
- Multiple projections needed
 - Biplane saves contrast fluid





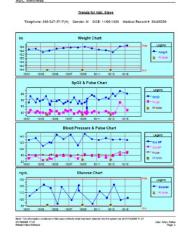
Magnetic Resonance Imaging

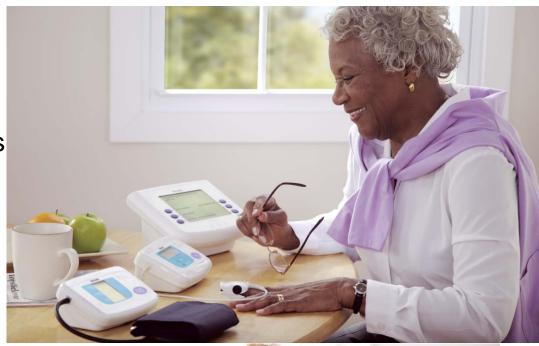
- Measures various parameters: chemical context, density, flow, diffusion, temperature, ...
- Useful for soft tissue imaging, e.g., nervous system
- Supports *functional* imaging
- No ionizing radiation



Ultrasound

- Most cost-efficient imaging technology
- Wide array of applications
 - Cardiology & Cardiac Surgery
 - Vascular Medicine
 - Obstetrics/Gynecology
 - Radiology





Remote Patient Monitoring

- Measuring devices at patient's home (or even mobile)
- Network connection to service center
- Web-based clinical software to monitor a large number of patients efficiently

Technology Characteristics

• Example: MRI

Programming Languages	C, C++/STL, C#, Visual Basic, ASP, JavaScript, Perl, Batch, and other proprietary languages
Persistent Storage	RDBMS, flat files, indexed and sequential Files, XML
Inter-process communication	Socket, COM, shared memory, shared files
Source Code Size	~8 MLOC in ~30 000 files
Timing accuracy	Scanning hardware: nanoseconds Real-time software: 1 millisecond User interaction: 0.1 – 1 second

Generic Requirements

- Safety
 - Protection from physical hazards: radiation, voltage, heat/cold, moving parts
 - Sterizability and resistance to various fluids
 - Avoidance of clinical errors
- Ease of use
 - Easy to learn (not only for experienced radiological operators)
 - Efficient in routine use
 - Optimal support for clinical workflow
- Image and signal quality
 - The best images or signals you can get
 - Easy to control
 - Reproducible
- Connection to clinical infrastructure (HIS, PACS, CDSS, EMR ...)

Trends

- Cost reduction
- Feature race
 - Resolution (2D, 3D, 4D)
 - Speed
 - Number of channels, slices, ...
- Multimodality
- Imaging aspects: anatomical → functional → molecular
- Mixing of control and content: Imaging and monitoring systems are more aware of what they see

Challenge: Performance

- Especially relevant for imaging systems
- Data rates are increasing tremendously
- Processing algorithms are getting more sophisticated
 - Removing artifacts (noise, scattering, absorption, movement, ...)
 - Image analysis
- Ease of use requirements lead to more advanced user interfaces
- CPU clock speeds are hardly increasing

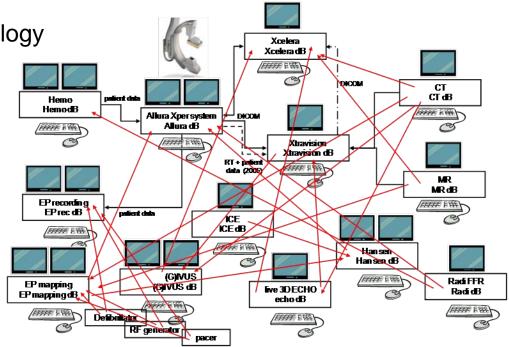
Challenge: Performance

Response:

- Better performance modeling and optimization
 - High-level models based on measurements
- Parallel computing
 - Graphical cards (SIMD)
 - Multi-core computers
 - Clusters
 - Grid computing

Challenge: Medical Informatics goes Embedded

- The medical world has gathered an enormous mass of knowledge.
- The knowledge is available via a very heterogeneous set of sources:
 - Classifications (SNOMED, ICD, ...)
 - Scientific articles/abstracts (PubMed, ...)
 - Clinical guidelines (NGC, ...)
 - Genomics and proteomics databases (EMBL-EBI, ...)
 - Image databases (typically local only, via DICOM)
 - Pathology databases (typically local only)
 - Clinical trials (open to participant organizations)
- Medical equipment is more and more expected to
 - take this knowledge into account
 - make it accessible to its users.


Challenge: Medical Informatics goes Embedded

Responses:

- Medical Informatics
 - Service-Oriented Architectures
 - Data access wrapping/conversion services
 - Ontology modeling and matching
 - Anonymization and pseudonymization services
- Additional for embedded systems:
 - Runtime updating/upgrading

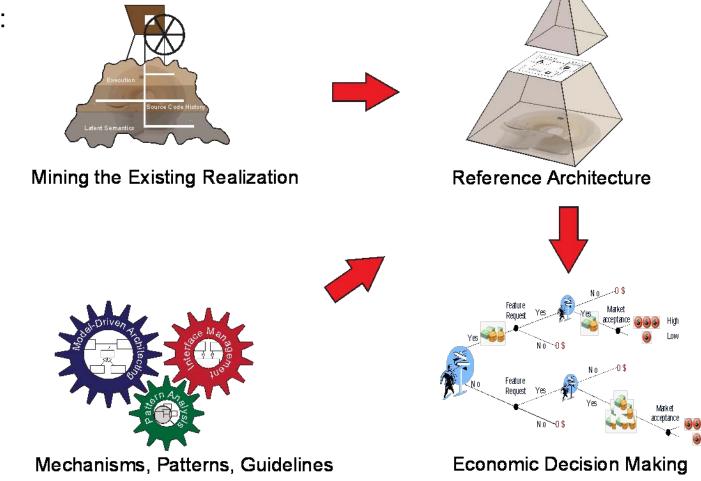
Challenge: Systems of Systems

- Medical systems (almost always) operate in a context of other systems.
- Users expect one integrated system, but currently have to deal with heterogeneous subsystems
 - Catheterization lab
 - Cathlab for electrophysiology
 - Operating room

Challenge: Systems of Systems

Responses:

- Integration techniques
 - Physical
 - Data
 - Presentation and control
 - Workflow
- Multilevel, heterogeneous modeling
- Analysis and design techniques for robustness


Challenge: Evolvability

- Complexity of systems is high and increasing
 - Inherent complexity
 - Heterogeneity
 - Historical growth
 - Complex multidisciplinary development organization
- Many sources of changing requirements
 - Customer context (clinical applications and workflow, neighboring systems, legislation, reimbursement, ...)
 - Technology: generic (operating systems, ...) or domain-specific (new MRI gradient amplifiers, solid-state X-ray detectors, ...)
 - Business (business model, competition, organization, ...)
- Development budgets are not increasing

How to adapt to these changing requirements with limited, predictable effort, within limited time, and while maintaining critical quality attributes?

Challenge: Evolvability

Responses:

