

Headquarters

Group figures

- Danfoss is a family-owned, global company (no public shares, but approx. 3% employee shares)
- Net sales 2007: EUR 2,900 mill
- Employees: 22.323 worldwide (January 2008)
- Production of 250,000 items per day

	Europe No Ame	rth Latin erica America	Africa	Asia	Pacific	Total
Manufacturing sites	50 1	2 2	1	5	30	70
Sales companies	83	0 5	1	13	2	114
Agents and distribute	ors					~115

Advanced Engineering RA-D

2008 RA-D Priorities

Organisation

RA-D activites

- Technology development
- Consulting
- Exploit internal and external synergies

NO

RA-D focus areas, related projects & stake holders

Focus areas

- Compression technologies
- Intelligent components / controls
- Heat exchangers

Stake holders

AC,DE

RA, JV

NO

RA-D's structured process for transforming pre-competitive Danfolds knowledge into profit knowledge into profit

RA gets out of the process...

- the relevant technologies at the right time
- to know what is the cutting edge in the industry
- the opportunity to recruit the best candidates

We a mainly a component manufacturer, but we also make subsystems

- Our controllers are application specific, but general purpose within the application. Hence we know the generic type, but not the specific type of components.
- The installer is typically an independent refrigeration installer that employ all brands of controllers.
- The installation costs is likely to exceed the cost of the controller.
- We are mass producing the components in a competitive market.

Market challenges

To gain market advantages we need to focus on the lifetime cost of the components

- Commissioning costs are in the same order as the control system
- Faulty configurations are very expensive (food quality as well as energy consumption) and questions the quality of our refrigeration control systems

Hence,

• We need to reduce the configuration/installation time and reduce the number of faulty installations to gain competitiveness.

Failure rate

- a supermarket display case

- a supermarket display case

The controller

- wiring of the controller

- a controller handles 1-4 evaporators.

– a supermarket display case

A simple application example – a supermarket display case

Problems

- A sensor is not connected -solved

- A temperature and pressure sensor are switched -solved

- Two temperature sensors are switched

- on the same evaporator -unsolved

- on different evaporators -unsolved

- A wrongly placed temperature sensor -unsolved

Theoretical challenges

- Generic (and robust) solution is desired
 → Depends highly on the type of model abstraction
- Applications exhibit nonlinear behaviour
- Hybrid dynamics (different actuators, when active, change the dynamic behaviour of the system -).

------ Additional challenges ------

- Software complexity (have not looked at yet):
 - Different modes of Operation ←→ faults' diagnosability (and vice versa)
 - New code representing new functionality is added (how does it affect the existing functionality and vice versa).
- Plug & play requirements:
 - Software/Hardware architecture that can deal with it.
 - Controller design and analysis

Conclusions

Objectives

To develop concepts for automatic configuration validation of systems during commissioning and service.

Vision

To enable a dramatic reduction in commissioning cost related to configuration validation of sensors and actuators in refrigeration systems.

Added value:

Increased installer confidence in controller ability to achieve first time setup success

Increased supermarket management confidence in the ability of Danfoss controllers to reduce extended commissioning time

Decreased life-time cost due to more efficient service and commissioning process

Summary

- Components for control (mass production) in large networks are different than dedicated control applications
- Efficient use is of paramount importance. Automated configuration validation is one approach that addresses this issue.
- Sensors are getting cheaper, but we need to address the commissioning efficiency to gain competitiveness.