

Automatic Parallelisation II

Björn Franke Institute for Computing Systems Architecture School of Informatics University of Edinburgh

1st Workshop on Mapping of Applications to MPSoCs St. Goar, Germany, June 2008

Outline

- Real Codes and Program Recovery
- Rank Modifying Code and Data Transformations
- Multi-DSP and Multiple Address Spaces
- Coarse Grain Parallelism and Task Graph Extraction
- Conclusion

Problems with Real Codes

- "Hand-optimised" for specific platform
 - E.g. pointer based array traversals for efficient address calculation
- Unusual idioms to implement frequently used operations
 - E.g. modulo operations in array index expressions for circular buffers
- Defeat auto-parallelisation!
 - "Plain C" is best for parallelisation
 - Need to recover canonical program representation

Affine array index expressions are critical!

Pointer Conversion

```
int A[N],B[N],C[N];
int *ptr_a = &A[0];
int *ptr_b = &B[0];
int *ptr_c = &C[N-1];

for (i = 0; i < N; i++)
{
    *ptr_a++ = *ptr_b++ * *ptr_c--;
}</pre>
```

Affine array index expressions are critical!

Pointer Conversion

```
int A[N],B[N],C[N];
```

```
for (i = 0; i < N; i++)
{
    A[i] = B[i] * C[N-i-1];
}</pre>
```

Affine array index expressions are critical!

Modulo Elimination

```
int A[N], B[M];
for (i = 0; i < N; i++)
{
    X = A[i] * B[i%M];
}</pre>
```

Affine array index expressions are critical!

Modulo Elimination

Rank Modifying Code and Data Transformations

- Unified Linear Algebra Framework for Code and Data Transformations
- Extensions to Unimodular Transformations
 - Elements of transformation matrix are functions with div & mod
- Representation of additional transformations
 - Array dimensionality transformations
 - Strip-mining and linearisation of loops

- Globally accessible memory
 - Remote memory accesses, but need to know ID of remote processor and local offset
 - DMA based bulk data transfers

- Globally accessible memory
 - Remote memory accesses, but need to know ID of remote processor and local offset
 - DMA based bulk data transfers

- Globally accessible memory
 - Remote memory accesses, but need to know ID of remote processor and local offset
 - DMA based bulk data transfers

- Globally accessible memory
 - Remote memory accesses, but need to know ID of remote processor and local offset
 - DMA based bulk data transfers

- Globally accessible memory
 - Remote memory accesses, but need to know ID of remote processor and local offset
 - DMA based bulk data transfers

Transformations for Parallelisation

- Program Recovery
- Data partitioning, e.g. to minimise communication, owner computes
 - Data delinearisation and loop strip-mining (1 outer iteration = 1 processor)
- Mapping
 - Split data and distribute over processors, drop auxiliary outer loop
 - Introduce address desciptors for multiple memory spaces and replace array accesses with lookups (costly!)

Transformations for Parallelisation (continued)

- Local memory access optimisation
 - Drop lookups for provably local accesses
- DMA bulk data transfers
 - Hoist remote accesses out of compute loops, introduce local buffers and auxiliary load loops, convert load loops into DMA transfers
- Single transformation framework, avoid recomputation of critical information
- Very efficient for compute-intensive DSP kernels

- Loop parallelisation minimises latency
 - Good for scientific applications, but throughput often more important for embedded systems, e.g. multimedia applications
 - Embedded applications have often additional constraints on latency and efficiency
 - Recent survey shows only 12.5% of execution time of EEMBC and MediaBench benchmarks is spent in statically detectable DOALL loops
- Exploit streaming nature of embedded applications and (semi-)static algorithm behaviour with distinct phases!

- Debugging
 - Run program in debugger, observe what happens.
 - NEVER seen any proof of correctness! Caveat: Safety-critical apps.
- Automatic Parallelisation
 - NEVER run program, analyse conservatively what might happen.
 - ALWAYS proof data/control independence!
- Right approach?

UTDSP Edge Detector

Profiling Infrastructure

MiBench Susan

MiBench Susan

- Exploit semi-static behaviour for different data sets
 - No random behaviour on macroscopic scale, but patterns e.g. A(BC|D)*F
- Application "Scenarios"
 - Different modes of execution, e.g. progressive vs interlaced encoding
 - Trace different phases back to earliest decision point, usually header information or parameters
- Information about behaviour far into the future available, but we don't use it!

Conclusion

- Beyond loop level parallelisation and static analysis!!!
 - Detailed qualitative and quantitative data
 - Combine static and profiling based parallelisation
 - Interactive, "Pattern matching", iterative, statistical (evidence for hypothesis?) approaches. How to deal with "uncertainty"?
- Combine task graph extraction with loop parallelisation
 - Balancing of tasks, improve certain critical kernels