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Problems with Real Codes

¢ “Hand-optimised” for specific platform

e E.g. pointer based array traversals for efficient address calculation
¢ Unusual idioms to implement frequently used operations

e E.9. modulo operations in array index expressions for circular buffers
e Defeat auto-parallelisation!

e “Plain C” is best for parallelisation

¢ Need to recover canonical program representation



Program Recovery

Affine array index expressions are critical!

Pointer Conversion

int A[N],B[N],C]
int *ptr a = &A[
int *ptr_b = &BJ
int *ptr c = &CJ
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-1];

for (1 = 0; 1 < N; 1++)
{
*ptr a++ = *ptr b++ * *ptr c--;

}



Program Recovery

Affine array index expressions are critical!

Pointer Conversion

int A[N],B[N],C[N];

Affine Index

for (1 = 0; i < N; i++) Expressions

{
A[i] = B[i] * C[N-i-1];
}



Program Recovery

Affine array index expressions are critical!

Modulo Elimination

int A[N], B[M];

for (1 = 0; 1 < N; i++)
{

X = A[i] * B[i%M];
}



Program Recovery

Affine array index expressions are critical!

Modulo Elimination

int A[N], B[M];

for (i = 0; i < N/M; i++)

{ Affine Index

for (J = 0; jJ < M; j++) Expressions
{
X = A[1*M+3j] * B[J];

}



Rank Modifying Code and Data Transformations

e Unified Linear Algebra Framework for Code and Data Transformations
e Extensions to Unimodular Transformations

e Elements of transformation matrix are functions with div & mod
e Representation of additional transformations

e Array dimensionality transformations

e Strip-mining and linearisation of loops



Multi-DSP

[~ ~) [~ —
{ DSP core 0 J { DSP core X J
Bank 1 Bank 2 Bank 1 Bank 2
2 ~/ 2 =/
Bus

C N

Multiple (overlapping) address spaces SEiag)

- Internal 1 & 2, External, Multiprocessor Memory
Higher bandwidth and lower latency to internal memory \_ .

Globally accessible memory
- Remote memory accesses, but need to know ID of
remote processor and local offset
- DMA based bulk data transfers



Multi-DSP

[~ ~) [~ ~
(Internal 1,100) | DSP core O J DSP core X J
Bank 1 Bank 2 Bank 1 Bank 2
\Z ~/ 2 =/
Bus

C N

Multiple (overlapping) address spaces =i

- Internal 1 & 2, External, Multiprocessor Memory
Higher bandwidth and lower latency to internal memory \_ )

Globally accessible memory

- Remote memory accesses, but need to know ID of

remote processor and local offset
- DMA based bulk data transfers




Multi-DSP

[~ ~) [~ ~
(Internal 1,100) {I DSP core O J (Internal 2,100) { DSP core X J
Bank 1 Bank 2 Bank 1 Bank 2
\Z ~/ 2 =/
Bus

C N

Multiple (overlapping) address spaces =i

- Internal 1 & 2, External, Multiprocessor Memory
Higher bandwidth and lower latency to internal memory \_ )

Globally accessible memory
- Remote memory accesses, but need to know ID of
remote processor and local offset
- DMA based bulk data transfers



Multi-DS

-

~

(Internal 1,100) {
|

DSP core 0
I

(Internal 2,100)

>,
Mem. Mem.
Bank 1 Bank 2

\J

/)

Bus

Multiple (overlapping) address spaces

- Internal 1 & 2, External, Multiprocessor

(External,100)

Higher bandwidth and lower latency to internal memory

Globally accessible memory
- Remote memory accesses, but need to know ID of
remote processor and local offset

- DMA based bulk data transfers

- Y
DSP core X J
Bank 1 Bank 2
\Z ~/
O I
External
Memory
k J




Multi-

DS

-

~

(Internal 1,100) {
|

DSP core 0
I

(Internal 2,100)

>,
Mem. Mem.
Bank 1 Bank 2

\J

/)

Bus

Multiple (overlapping) address spaces
- Internal 1 & 2, External, Multiprocessor

Higher bandwidth and lower latency to internal memory

Globally accessible memory
- Remote memory accesses, but need to know ID of
remote processor and local offset

- DMA based bulk data transfers

(Multi X,100)

(External,100)

>

- Y
DSP core X J
Bank 1 Bank 2
\Z ~/
O I
External
Memory
k J




Transformations for Parallelisation

® Program Recovery

e Data partitioning, e.g. to minimise communication, owner computes

e Data delinearisation and loop strip-mining (1 outer iteration = 1 processor)
e Mapping

e Split data and distribute over processors, drop auxiliary outer loop

¢ Introduce address desciptors for multiple memory spaces and replace
array accesses with lookups (costly!)



Transformations for Parallelisation (continued)

¢ | ocal memory access optimisation
e Drop lookups for provably local accesses

e DMA bulk data transfers

e Hoist remote accesses out of compute loops, introduce local buffers and
auxiliary load loops, convert load loops into DMA transfers

e Single transformation framework, avoid recomputation of critical information

e \/ery efficient for compute-intensive DSP kernels



Coarse Grain Parallelism & Task Graph

¢ | oop parallelisation minimises latency

—xtraction

e Good for scientific applications, but throughput often more important

for embedded systems, e.g. multimedia applications

e Embedded applications have often additional constraints on latency

and efficiency

e Recent survey shows only 12.5% of execution time of EEMBC and
MediaBench benchmarks is spent in statically detectable DOALL loops

e Exploit streaming nature of embedded applications and (semi-)static

algorithm behaviour with distinct phases!



Coarse Grain Parallelism & Task Graph Extraction

e Debugging

e Run program in debugger, observe what happens.

e NEVER seen any proof of correctness! Caveat: Safety-critical apps.
e Automatic Parallelisation

e NEVER run program, analyse conservatively what might happen.

e ALWAYS proof data/control independence!

e Right approach??



Coarse Grain Parallelism & Task Graph Extraction
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Coarse Grain Parallelism & Task Graph Extraction
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Coarse Grain Parallelism & Task Graph Extraction

Profiling Infrastructure
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oarse Grain Parallelism & Task Graph
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Coarse Grain Parallelism & Task Graph
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Coarse Grain Parallelism & Task Graph
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Coarse Grain Parallelism & Task Graph Extraction

MiBench Susan



Coarse Grain Parallelism & Task Graph Extraction
Non-affine &
monotonic data accesses.
Parallelisation &
Prefetching!

MiBench Susan



Coarse Grain

Parallelism & Task Graph

Static sequence of
phases A,B,C for all data
inputs. Relative durations
vary!

Non-affine &
monotonic data accesses.
Parallelisation &
Prefetching!

MiBench Susan



Coarse Grain Parallelism & Task Graph Extraction

e Exploit semi-static behaviour for different data sets

e No random behaviour on macroscopic scale, but patterns e.g. A(BC|D)*F
e Application “Scenarios”

e Different modes of execution, e.g. progressive vs interlaced encoding

¢ Trace different phases back to earliest decision point, usually header
Information or parameters

¢ [nformation about behaviour far into the future available, but we don’t use it!



Conclusion

e Beyond loop level parallelisation and static analysis!!!
e Detailed qualitative and quantitative data
e Combine static and profiling based parallelisation

e Interactive, “Pattern matching”, iterative, statistical (evidence for
hypothesis?) approaches. How to deal with “uncertainty”?

e Combine task graph extraction with loop parallelisation

e Balancing of tasks, improve certain critical kernels



