Automatic Parallelisation |l

Bjorn Franke
Institute for Computing Systems Architecture

School of Informatics
University of Edinburgh

1st Workshop on Mapping of Applications to MPSoCs
St. Goar, Germany, June 2008

Outline

e Real Codes and Program Recovery

e Rank Modifying Code and Data Transformations

e Multi-DSP and Multiple Address Spaces

e Coarse Grain Parallelism and Task Graph Extraction

e Conclusion

Problems with Real Codes

¢ “Hand-optimised” for specific platform

e E.g. pointer based array traversals for efficient address calculation
¢ Unusual idioms to implement frequently used operations

e E.9. modulo operations in array index expressions for circular buffers
e Defeat auto-parallelisation!

e “Plain C” is best for parallelisation

¢ Need to recover canonical program representation

Program Recovery

Affine array index expressions are critical!

Pointer Conversion

int A[N],B[N],C]
int *ptr a = &A[
int *ptr_b = &BJ
int *ptr c = &CJ

°
17

°
17

=2 o o =

-1];

for (1 = 0; 1 < N; 1++)
{
*ptr a++ = *ptr b++ * *ptr c--;

}

Program Recovery

Affine array index expressions are critical!

Pointer Conversion

int A[N],B[N],C[N];

Affine Index

for (1 = 0; i < N; i++) Expressions

{
A[i] = B[i] * C[N-i-1];
}

Program Recovery

Affine array index expressions are critical!

Modulo Elimination

int A[N], B[M];

for (1 = 0; 1 < N; i++)
{

X = A[i] * B[i%M];
}

Program Recovery

Affine array index expressions are critical!

Modulo Elimination

int A[N], B[M];

for (i = 0; i < N/M; i++)

{ Affine Index

for (J = 0; jJ < M; j++) Expressions
{
X = A[1*M+3j] * B[J];

}

Rank Modifying Code and Data Transformations

e Unified Linear Algebra Framework for Code and Data Transformations
e Extensions to Unimodular Transformations

e Elements of transformation matrix are functions with div & mod
e Representation of additional transformations

e Array dimensionality transformations

e Strip-mining and linearisation of loops

Multi-DSP

[~ ~) [~ —
{ DSP core 0 J { DSP core X J
Bank 1 Bank 2 Bank 1 Bank 2
2 ~/ 2 =/
Bus

C N

Multiple (overlapping) address spaces SEiag)

- Internal 1 & 2, External, Multiprocessor Memory
Higher bandwidth and lower latency to internal memory _ .

Globally accessible memory
- Remote memory accesses, but need to know ID of
remote processor and local offset
- DMA based bulk data transfers

Multi-DSP

[~ ~) [~ ~
(Internal 1,100) | DSP core O J DSP core X J
Bank 1 Bank 2 Bank 1 Bank 2
\Z ~/ 2 =/
Bus

C N

Multiple (overlapping) address spaces =i

- Internal 1 & 2, External, Multiprocessor Memory
Higher bandwidth and lower latency to internal memory _)

Globally accessible memory

- Remote memory accesses, but need to know ID of

remote processor and local offset
- DMA based bulk data transfers

Multi-DSP

[~ ~) [~ ~
(Internal 1,100) {I DSP core O J (Internal 2,100) { DSP core X J
Bank 1 Bank 2 Bank 1 Bank 2
\Z ~/ 2 =/
Bus

C N

Multiple (overlapping) address spaces =i

- Internal 1 & 2, External, Multiprocessor Memory
Higher bandwidth and lower latency to internal memory _)

Globally accessible memory
- Remote memory accesses, but need to know ID of
remote processor and local offset
- DMA based bulk data transfers

Multi-DS

-

~

(Internal 1,100) {
|

DSP core 0
I

(Internal 2,100)

>,
Mem. Mem.
Bank 1 Bank 2

\J

/)

Bus

Multiple (overlapping) address spaces

- Internal 1 & 2, External, Multiprocessor

(External,100)

Higher bandwidth and lower latency to internal memory

Globally accessible memory
- Remote memory accesses, but need to know ID of
remote processor and local offset

- DMA based bulk data transfers

- Y
DSP core X J
Bank 1 Bank 2
\Z ~/
O I
External
Memory
k J

Multi-

DS

-

~

(Internal 1,100) {
|

DSP core 0
I

(Internal 2,100)

>,
Mem. Mem.
Bank 1 Bank 2

\J

/)

Bus

Multiple (overlapping) address spaces
- Internal 1 & 2, External, Multiprocessor

Higher bandwidth and lower latency to internal memory

Globally accessible memory
- Remote memory accesses, but need to know ID of
remote processor and local offset

- DMA based bulk data transfers

(Multi X,100)

(External,100)

>

- Y
DSP core X J
Bank 1 Bank 2
\Z ~/
O I
External
Memory
k J

Transformations for Parallelisation

® Program Recovery

e Data partitioning, e.g. to minimise communication, owner computes

e Data delinearisation and loop strip-mining (1 outer iteration = 1 processor)
e Mapping

e Split data and distribute over processors, drop auxiliary outer loop

¢ Introduce address desciptors for multiple memory spaces and replace
array accesses with lookups (costly!)

Transformations for Parallelisation (continued)

¢ | ocal memory access optimisation
e Drop lookups for provably local accesses

e DMA bulk data transfers

e Hoist remote accesses out of compute loops, introduce local buffers and
auxiliary load loops, convert load loops into DMA transfers

e Single transformation framework, avoid recomputation of critical information

e \/ery efficient for compute-intensive DSP kernels

Coarse Grain Parallelism & Task Graph

¢ | oop parallelisation minimises latency

—xtraction

e Good for scientific applications, but throughput often more important

for embedded systems, e.g. multimedia applications

e Embedded applications have often additional constraints on latency

and efficiency

e Recent survey shows only 12.5% of execution time of EEMBC and
MediaBench benchmarks is spent in statically detectable DOALL loops

e Exploit streaming nature of embedded applications and (semi-)static

algorithm behaviour with distinct phases!

Coarse Grain Parallelism & Task Graph Extraction

e Debugging

e Run program in debugger, observe what happens.

e NEVER seen any proof of correctness! Caveat: Safety-critical apps.
e Automatic Parallelisation

e NEVER run program, analyse conservatively what might happen.

e ALWAYS proof data/control independence!

e Right approach??

Coarse Grain Parallelism & Task Graph Extraction

horizontal
gradient

input smoothing apply output
data filter threshold data
vertical
gradient

UTDSP Edge Detector

Coarse Grain Parallelism & Task Graph Extraction

,n,,*:x:’ A initialization

] \ smoothing
Ne._ filter A

vertical horizontal
gradient A L gradient

\ J J \
\ / /4 \
‘ o

{7 /

L

e apply
&

I The MAPS Approach

e L

s

Wow oo e

Coarse Grain Parallelism & Task Graph Extraction

Profiling Infrastructure

—xtraction

oarse Grain Parallelism & Task Graph

iz ol
i /
-

inae e 1 '

inae e 11
-

Ll

0N

xtract

Coarse Grain Parallelism & Task Graph

oy gy
l-ll-ll-/qlhy-/ll-ll-ll-ll-

\Illlllll}-\

8§, T S ~
S T S~ LS
~ — Nd
s ——— At
i T . aa
EEEEEEEEEEEEEEEEEEEEEEEEN ‘ﬁl-ll-ll-ll-l lyl(l*ll-'ll-ll-ll -
-

ALY i TSP

1 < [<
1 1
' v &
Y Y

' Y

1 1

)
)
1
1
1

Il U

l-ll-ll-l‘l‘ﬁ

[}
1
)
\)]
)
)

.
T N
N

snsnsnnssnssnnnnnnnnnnnnnn s T asannnnnnnnnannnnnnnnnnnnnnnnns

L]
"'
~
~N
~

.................&m...........

e

5

-~
e rrmm=

/ \Illlll"'

l_r...........&................J-.._l..r.............. sEmsmEEEEEEEEEEEESR

~
~
~
Ny

)
)
)
1
|
1
!

Ny it

-

E NN NN S SN NN NN NN NN NN NN NN NN NN NN TSN NN NN NN NN NN E NN NN NN NN NN NN EEEEEEEEEEEEEEEN

EEEEEEEEEEEEEEEEEEEEEEEEE RN AN EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE

L

[
1
1
1
)
)

~

~

‘l’l-ll-ll-ll-ll-ll-ll-ll-ll-ll"

~

Homgssssssanunnnnnn
'-"'
~
N

~
l'

l-ll-ll-ll-ll-ll-l‘

r
e rrmm=

)
1
1
1
1
U

am?

put

€laynq ¢ z1anq

E
=y

T4a4nq

T

output (6)

vertical gradient(4) threshold (5)

horizontal gradient (3)

smoothing (2)

t(1)

&
ini

0N

xtract

Coarse Grain Parallelism & Task Graph

Algorithm structure
recovered by

“o0
£
c
O
)
<
p—
> ©
III (
wd
- 5
Q g
m PP i 5
(a1l llll °
3 S

r
i T R,

vertical gradient(4) threshold (5)

horizontal gradient (3)

S

o

=

£

)

o

o

£

7

............ . 20 1]
—— o ——) .m (t

= - - 83 c

. €49)nq T z194nq g T494Nq L

Coarse Grain Parallelism & Task Graph Extraction

MiBench Susan

Coarse Grain Parallelism & Task Graph Extraction
Non-affine &
monotonic data accesses.
Parallelisation &
Prefetching!

MiBench Susan

Coarse Grain

Parallelism & Task Graph

Static sequence of
phases A,B,C for all data
inputs. Relative durations
vary!

Non-affine &
monotonic data accesses.
Parallelisation &
Prefetching!

MiBench Susan

Coarse Grain Parallelism & Task Graph Extraction

e Exploit semi-static behaviour for different data sets

e No random behaviour on macroscopic scale, but patterns e.g. A(BC|D)*F
e Application “Scenarios”

e Different modes of execution, e.g. progressive vs interlaced encoding

¢ Trace different phases back to earliest decision point, usually header
Information or parameters

¢ [nformation about behaviour far into the future available, but we don’t use it!

Conclusion

e Beyond loop level parallelisation and static analysis!!!
e Detailed qualitative and quantitative data
e Combine static and profiling based parallelisation

e Interactive, “Pattern matching”, iterative, statistical (evidence for
hypothesis?) approaches. How to deal with “uncertainty”?

e Combine task graph extraction with loop parallelisation

e Balancing of tasks, improve certain critical kernels

