
1

Future architectures of
MPSoC Platforms

John Goodacre
Senior Program Manager
ARM Processor Division

1st Workshop on
Mapping of Applications to MPSoCs

June 16th 2008

2

The Language (I use) for “MPSoC”
 Multiprocessor

 A computing platform utilizing more than one processor unit
 MPSoC: A multiprocessor delivered within a single system on

chip
 Each processing unit is associated with a single domain of software

 -> Asymmetric software design paradigm
 Typically utilizing heterogeneous processors

 Multicore processor
 A processing node that can support a single domain of software

across multiple processing units
 -> Symmetric software design paradigm

 Typically homogeneous processors (but not necessarily)
 Always an unified instruction set architecture

3

Today’s Mobile Multiprocessors

Includes full integration and multiple processors

http://www.marvell.com/products/cellular/application/PXA320_PB_R4.pdf
http://www.cdmatech.com/products/snapdragon.jsp
http://www.samsung.com/global/business/semiconductor/
http://www.st.com/stonline/

4

Example ASSP multicore multiprocessor
 Utilizing the ARM11

MPCore multicore
processor to extend
the host processor
node (application
software domain) to
execute across
multiple
homogeneous cores

5

Why bring multicore to the host node?
Single CPU

Dual CPU (same MHz, same voltage)

Alternatively, up to 50% energy saving
potential with voltage and frequency
scaling

Single CPU @ 260MHz,
Testchip consuming ~160mW

For a given workload requirement

Same workload level leaves
headroom on CPUs

Unused processors are ‘turned off’

Multiprocessing offers more performance at lower MHz

6

Equally valuable for other SW domains

ARM’s Mali 3D processing engines also brings multicore
technology for scalable performance and

improved energy efficiency

7

Summary of ARM MPSoC Today
 Various multiprocessor SoC solutions are in the

market today
 Heterogeneous, each processor having an

application specific purpose
 Homogeneous, each processor scaling some

defined function

 Just arriving in market are ARM11 MPCore
based multicore devices
 Automotive “general purpose” infotainment
 Scalable Network device control plane processors
 Application specific functions within camera,

printers partitioned across each processor

 The next-gen Cortex-A9 multicore was
announced October 2007 and is bringing new
MPSoC structures to SoC design
 End market products 2009-2010

8

MPSoC Integration Challenges
 The complexity (hence size, power and speed) of system

interconnects required to support large MPSoC
 Designs moving toward subsystems utilizing multiple localized

interconnects with shared backbone connectivity.
 Technologies such as NoC appearing in products

 Management of memory between the growing number of masters

 ARM MPCore technology provides a localized (coherent)
interconnect within the multicore macroblock (the SCU)
 Pre-validated, with same SoC verification complexity of a single core

 The growth of both specific subsystems, and the total number
of subsystem (hence cost) along with SW legacy are key

9

Cortex-A9 MPCore Processor Structure

L2 Cache Controller (PL310)

Cache-2-Cache
Transfers

Snoop
Filtering

Generalized
Interrupt Control
and Distribution

Snoop Control Unit (SCU)

Timers

Advanced Bus Interface Unit

Optional 2nd I/F w ith Address FilteringPrimary AMBA 3 64bit Interface

Accelerator
Coherence

Port

FPU/NEON

Cortex-A9 CPU

Instruction
Cache

Data
Cache

PTM
I/F FPU/NEON

Cortex-A9 CPU

Instruction
Cache

Data
Cache

PTM
I/F FPU/NEON

Cortex-A9 CPU

Instruction
Cache

Data
Cache

PTM
I/F FPU/NEON

Cortex-A9 CPU

Instruction
Cache

Data
Cache

PTM
I/F

ARM CoreSight Multcore Debug and Trace Architecture

10

Enhanced Accelerator SoC Integration

Cortex-A9 MPCore (1-4 CPUs)

MPCore Technology / SCU

Memory

CPU

D$ I$

 ARM MPCore: Accelerator Coherence Port (ACP)
 Simplified software and reduces cache flush overheads
 Accelerators gain access to CPU cache hierarchy, increasing system performance

and reducing overall power
 Uses AMBA® 3 AXI™ technology for compatibility with standard un-cached peripherals

and accelerators

CPU

D$ I$

CPU

D$ I$

A
C

P
Events

L2 Cache
shared, with per-master lockdown to
limit high-throughput master flooding

AcceleratorAMBA AXI

1
3

5

2 6
7

4

1 CPU leaves data in the cache
Next-cycle notify to accelerator
to check and process data
Accelerator issues read - Data
may return from L1, L2, or from
main memory
Accelerator issues write of
result, L1 coherence ensured
and may be configured to
allocated into L2 cache
Accelerator raises event to CPU
to check for result data
CPU issues read, may hit in L2

2

3

4

5

6

7

11

Example next-gen multicore MPSoC

MPCore Snoop Control Unit

Cortex-A9 CPU

Instruction
Cache

Data
Cache

Cortex-A9 CPU

Instruction
Cache

Data
Cache

Cortex-A9 CPU

Instruction
Cache

Data
Cache

Cortex-A9 CPU

Instruction
Cache

Data
Cache

IPSEC Header
Processor

Crypto/Authentication Coherent IO

DDR
Controller

DMA DMA

Coherent Access
AMBA AXI Interconnect

Shared L2 Cache

Memory-speed
AMBA AXI Interconnect

Scratch Memory Other Processors Faster IO

High-speed
AMBA AXI Interconnect

Slower IO

(expect to see such structures in devices by 2009-2012)

12

Observation on current approach to SW
 Most designs have major

legacy / code reuse
demands
 Especially in open

platforms
 …but thankfully mostly

use a pre-emptive
multitasking OS today

 Deeply embedded and fix
function devices are more
open to change
 …and due to the

typical priority based
scheduling used, must
change to partition
code over multiple
processors

 Current MPSoC typically using
explicit communication schemes
between otherwise independent
processor specific domains of
software
 With most developers thinking this is

the only way to program for MP !!

13

Current SW Techniques
 Multiprocessors

 Each processor programmed using a myriad of different single thread
paradigms with programmer statically assigning tasks to processors

 Typically interrupt communication mailbox via scratch or off-chip RAM
 Occasionally core supports direct FIFO messaging path

 Increasing complexity associated with programming a growing
number of processors while still maintaining effective silicon utilization

 Multicores
 A number of designs are directly migrating existing SW framework

from previous generation multiprocessing solution
 But enabling coherence for enhanced L1 level communication

 Various multicore aware OS/RTOS providing various levels of AMP
vs. SMP scheduling, (AMP/Bounded/Blended/SMP/etc)

14

Vision for the future
 New tools to help with the manual partitioning and

communication of tasks in heterogeneous multiprocessors
 Eg. More of the same, but a little easier

 Consolidation of various independent multiprocessor software
domains onto fewer multicores (but keeping their isolation)
 Easier and cheaper to build than many-processor multiprocessors
 Potential for virtualization to support more virtual processors than

physically supported by the multicore

 Gradual adoption of coherent multicores for a limited number of
software domains that utilize dynamic migration of tasks
 Driven by open platform requirements and the need to conserve

power
 Programming limited to implicit concurrency and task-level pThreads,

15

Mapping of Applications to MPSoC
 Please, help address one of my biggest MPSoC challenges…

 We need clarity! clarity of definition, clarity over the problem space,
and clarity of any proposed solution

 I doubt there is a single solution to “Mapping of applications to
MPSoC”

Multiprocessing has its problems,
Multicore has its problems,

MPSoC using both have another set of problems,

The biggest problem is almost always software investment legacy

Followed by the problem of designers being unable to classify their
problems and listing all the problems anyone has ever said of

multi-anything a show stopper

