Overview of Parallelization Techniques I

Christian Lengauer

Fakultät für Informatik und Mathematik

16. June 2008, Schloss Rheinfels, St.Goar, Germany

Text-Based Loop Transformations

- Text-Based Loop Transformations:
 - fission, fusion, permutation, skewing, unrolling, unswitching
 - + easy to apply
 - + in simple cases often all you need
 - do not support a search for the best solution
 - favor some solutions over others that may be better
- Model-Based Loop Transformations:
 - map source code to an execution model
 - find the optimal parallel solution in this model
 - + quality metric: a given objective function
 - + search and transformation completely automatic
 - analysis and target code can become complex
 - optimality in the model need not imply efficient target code

The Basic Polytope Model

source operation dependence graph

target operation dependence graph

Capabilities of the Basic Model

- Fully automatic dependence analysis
- Optimizing search of the best solution in the solution space, w.r.t. a given objective function
- Exemplary objective functions:
 - minimal number of parallel steps; minimal number of processors
 - minimal number of parallel steps; maximal throughput
 - minimal number of communications
- Challenge: efficient target code
- Standard example: square matrix product
 - source code:

for
$$i = 0$$
 to $n - 1$ do
for $j = 0$ to $n - 1$ do
for $k = 0$ to $n - 1$ do
 $C(i, j) = C(i, j) + A(i, k) * B(k, j)$
od
od
od

Example: Square Matrix Product

Quadratic Solution

Hexagonal Solution

Restrictions and Uses of the Basic Model

- Restrictions:
 - Loop bounds must be affine expressions in the outer loop indices and structure parameters.
 - Array indices must be affine expressions in the loop indices.
 - Assignments may be to array variables or scalar variables.
 - Loop nests may be imperfect.
 - Calls of subprograms are considered atomic, i.e., are not subject to parallelization.
 - Pointer structures are not considered (unless coded as arrays)
 - Target loop nests may be
 - synchronous (outer loops sequential),
 - asynchronous (outer loops parallel).
- Uses:
 - Loop parallelization
 - Cache optimization

Extension 1: Conditional Statements in the Body

- Consequence:
 - Dependences vary between branches.

```
real A[0:2*N+1]
for i = 0 to N
for j = 0 to N
A[i+j+1] := ..
if (P) then
A[i+j] := ...
end if
7 ... := A[i+j]
end for
end for
```


Extension 1: Conditional Statements in the Body

• Technique:

- A precise reaching definition analysis that combines
 - the iterative solution of data flow equations, discovers dependences between entire arrays, can handle conditionals
 - integer linear programming, discovers dependences between individual array elements
- attaches conditions to dependences
- builds the unconditional union of all conditional dependences

Extension 2: WHILE Loops in the Loop Nest

- Consequences:
 - In WHILE dimensions, the number of loop steps is determined at run time.
 - The static index space is not a polytope but a polyhedron.
 - The dynamic index space in the unbounded direction is uneven (a "comb").

Extension 2: Example (Convex Hull)

n	node	nrsuc	suc	rt
0	A	0		A
1	B	1	C	B, C, A, E, D
2		2	A, E	C, A, E, D
3	D	0		D
4	E	1	D	E, D

Extension 2: Example (Convex Hull)

$$\begin{array}{lll} S_1: & \text{for } n := 0 \text{ while } node[n] \neq \bot \text{ do} \\ S_2: & rt[n,0] := n \\ S_3: & nxt[n] := 1 \\ S_4: & \text{for } d := 0 \text{ while } rt[n,d] \neq \bot \text{ do} \\ S_5: & \text{if } \neg tag[n,rt[n,d]] \text{ then} \\ S_6: & tag[n,rt[n,d]] := tt \\ S_7: & \text{for } s := 0 \text{ to } nrsuc[rt[n,d]] - 1 \text{ do} \\ S_8: & rt[n,nxt[n]+s] := suc[rt[n,d],s] \\ & \text{enddo} \\ S_9: & nxt[n] := nxt[n] + nrsuc[rt[n,d]] \\ & \text{endif} \\ & \text{enddo} \\ & \text{enddo} \end{array}$$

Extension 2: Two Approaches

- Conservative Approach:
 - The control dependence of the WHILE loop is respected.
 - One WHILE loop remains sequential, but may be distributed.
 - A nest of WHILE loops may also be parallel.
 - Challenge: detecting the end of a "tooth" of the "comb"; solved for shared and distributed memory.

Speculative Approach:

- The control dependence of the WHILE loop is ignored.
- oNE WHILE loop may be parallel.
- Additional memory space may be required.
- A rollback of iterations may be necessary.
- Challenges: implementing rollback; avoiding rollback; minimizing memory consumption.

Extension 3: Index Set Splitting

- Idea:
 - Partition the index space automatically to break a dependence pattern and increase parallelism.

for
$$i = \mathbf{0}$$
 to $\mathbf{2} * n - \mathbf{1}$ do

$$A(i, \mathbf{0}) = \dots A(\mathbf{2} * n - i - \mathbf{1}, \mathbf{0}) \implies \qquad \text{for } i = \mathbf{0} \text{ to } n - \mathbf{1} \text{ do}$$

$$A(i, \mathbf{0}) = \dots A(\mathbf{2} * n - i - \mathbf{1}, \mathbf{0})$$
od
od

$$A(i, \mathbf{0}) = \dots A(\mathbf{2} * n - i - \mathbf{1}, \mathbf{0})$$
od

$$A(i, \mathbf{0}) = \dots A(\mathbf{2} * n - i - \mathbf{1}, \mathbf{0})$$
od
od

- Technique:
 - Separate the sinks in the graph from the rest.
 - Propagate splits backwards to the context
 - Challenge: termination in the presence of cycles (cut off)
 - Challenge: exponential growth in the number of sources (heuristics)

Extension 4: Tiling

- Goal: Determine the optimal granularity of parallelism
 - When? (Before or after the parallelization.)
 - How? (Shape, form and size of the tiles.)
 - What? (Space and/or time.)
- When: After the parallelization

- It's simpler and more widely applicable: only one perfect target loop nest.
- It's more powerful: flexible space-time mapping before inflexible tiling.
- How: Space and time separately
 - The risk: heuristics wins only with certain allocations.
 - The gain: precise and independent adaptation to hardware parameters.
- What:
 - Tiling space: adapts to resources (# processors).
 - Tiling time: adapts to performance (computation/communication ratio).

Extension 5: Expressions

- Goal: Avoid duplicate computations
- Technique: Loop-carried code placement (LCCP)
 - Identifies expressions that have the same value.
 - Determines the optimal time and place for the evaluation.
 - Determines the optimal place for the result.
 - Hoists x-dimensional expressions out of y-dimensional loop nests (y > x)
- Example: Shallow Water Simulation

```
FORALL (j=1:n,i=1:m) H(i,j) =
& P(i,j) + 0.25 * (U(i+1,j)*U(i+1,j) + U(i,j)*U(i,j)
& + V(i,j+1)*V(i,j+1) + V(i,j)*V(i,j))

FORALL (j=1:n,i=1:m+1) TMP1(i,j) = U(i,j)*U(i,j)
FORALL (j=1:n+1,i=1:m) TMP2(i,j) = V(i,j)*V(i,j)
FORALL (j=1:n,i=1:m) H(i,j) =
& P(i,j) + 0.25 * (TMP1(i+1,j) + TMP1(i,j)
& + TMP2(i,j+1) + TMP2(i,j)
```

Extension 6: Non-Affine Array Index Expressions

- Goal: Be able to handle array expressions of the form A(p*i)
- "Parameter" p:
 - Has a previously unknown but fixed value
 - Typical case: Extent of the polytope in some fixed dimension
- Application: Select a row or column of a matrix as a vector
- Technique:
 - Solve conflict equation system in \mathbb{Z} .
 - Algorithm known for exactly one parameter.
 - Math: entire quasi-polynomials.
- Challenge: Dependence analysis
 - Are the solutions inside or outside the iteration space? (Solving the existence inequations...)
 - What is the direction of a dependence? (Establishing an order...)

Extension 7: Non-Affine Loop Bounds

- Goal: Be able to scan domains with curved bounds.
 - Curves must be described by polynomials.
 - Domains are semi-algebraic sets (sets of solutions of inequation systems of polynomials in Z).
- Applications:
 - Normal source code: Sieve of Eratosthenes (bound i*i<=n)</p>
 - Loops with non-constant stride:
 - Example: for (j=0; j<=n; j+=i)
 </pre>

 \rightarrow for (k=0; k*i<=n; k++)

in the loop body: j \rightarrow k*i

- Non-linear loop transformations:
 - Non-linear schedules can substantially improve the performance of solving affine recurrence equations (i.e., of executing loop nests) over linear schedules.
- Challenges:
 - Avoid non-affinities in the dependence analysis; postpone them to the code generation
 - Code simplification.

Extension 7: Example

for (x=1; x<=4; x++)
for (y=1; y<=9; y++)
T1(x,y);
for (x=5; x<=7; x++) {
 for (y=1; y<= $\lfloor 4-\sqrt{3x-12} \rfloor$; y++)
 T1(x,y);
 for (y= $\lceil 4+\sqrt{3x-12} \rceil$; y<=9; y++)
 T1(x,y);
}</pre>

Extension 7: Cases and Techniques

- Non-Linear Parameters: e.g., p²*i, p*q*i, p*i
 - LP solution methods like Fourier-Motzkin and Simplex can be generalized to handle several non-linear parameters.
 - Application: tiling and code generation.
 - Math: quantifier elimination in \mathbb{R} .
- Also Non-Linear Variables: e.g., p²*i², p*i², i*j
 - Math: Cylindrical algebraic decomposition.
 - Application: Code generation for scanning arbitrary semi-algebraic sets.

The Loop Parallelizer LooPo

Input:

- Loop code without parallelism (FORTRAN, C, recurrence equations)
- Specification of a data flow graph (skip next step)
- Dependence Analysis: transition to the model
 - Method: Banerjee (restricted), Feautrier (complete), control flow fuzzy array dependence analysis (CfFADA, can also handle alternations)
 - Optional: index set splitting, single-assignment conversion
- Space-Time Mapping:
 - Schedule: Lamport (simple), Feautrier (complete), Darte-Vivien (compromise)
 - Allocation: Feautrier (complete), Dion-Robert (more practical), forward-communication only (prepares for tiling)

Code Generation:

- Based on the French loop code generator CLooG
- Generates loops and communication
- Tiles

Parallel Program Skeletons

Idea:

- Predefine frequently used patterns of parallel computation
- Specify each pattern as a higher-order function
- Provide implementations for a variety of parallel platforms
- Possibly use metaprogramming to make skeletons adaptive

• Examples:

- Small scale: collective operations
 - data transfer: broadcast, scatter, gather, all-to-all
 - data transfer + computation: reduce, scan
- Larger scale: algorithmic patterns
 - divide-and-conquer, branch-and-bound
 - dynamic programming, searching in suffix trees
 - algorithms on labelled graphs
- Technique:
 - Functional source language: Template Haskell, MetaML, MetaOCaml
 - Imperative target language: C, C+MPI,...
 - Compilation step: no standard tools so far

Collective Operations

<i>t</i> _s : start-up time	t _w : per-word transfer time	<i>m</i> : blocksize
---------------------------------------	---	----------------------

composition rule	improvement if
Scan_1; Reduce_2 \rightarrow Reduce	always
Scan; Reduce \rightarrow Reduce	$t_{s} > m$
Scan_1; Scan_2 \rightarrow Scan	$t_{s} > 2m$
Scan; Scan \rightarrow Scan	$t_{s} > m(t_{w} + 4)$
Bcast; Scan \rightarrow Comcast	always
Bcast; Scan_1; Scan_2 \rightarrow Comcast	$t_{\rm S} > \frac{m}{2}$
Bcast; Scan; Scan \rightarrow Comcast	$t_{s} > m(\frac{1}{2}t_{w} + 4)$
Bcast; Reduce \rightarrow Local	always
Bcast; Scan_1; Reduce_2 \rightarrow Local	always
Bcast; Scan; Reduce \rightarrow Local	$t_w + \frac{1}{m}t_s \geq \frac{1}{3}$

Divide-and-Conquer Hierarchy: Tasks

skeleton	restriction	application
dcA	independent subproblems	Quicksort, maximum independent set
dcB	fixed recursion depth	<i>n</i> queens
dcC	fixed division degree k	Karatsuba integer product ($k=3$)

Divide-and-Conquer Hierarchy: Data

dcD	block recursion	triangular matrix inversion ($k=2$), Batcher sort ($k=2$)
dcE	elementwise operations	matrix-vektor product (k=4)
dcF	communication between corresponding elements	Karatsuba polynomial product ($k=3$), bitonic merge ($k=2$), FFT ($k=2$), Strassen matrix product ($k=7$)

Skeleton Implementation

- Principle:
 - specification recX = iterative form itX
 - transition from Haskell to domain-specific language
- dcA (base, divide, combine, input)
 - dynamic allocation of time and space
 - no load balancing
- dcF (k, indeg, outdeg, basic, divide, combine, n, input)
 - static allocation of time and space via additional parameters
 - number of subproblems
 - division degree of input data
 - combination degree of output data
 - depth of recursion
 - dependence regular but not affine (no analysis necessary)
 - similar to the polytope model but no search for a schedule
 - symbolic size inference on skeleton parameters

Skeleton Metaprogramming

- Metaprogramming:
 - Using a meta language to transform programs in an object language
 - Both languages can be the same (multi-stage programming)
- Advice:
 - Use a functional metalanguage
 - Model the syntax for the object language by abstract data types
 - Exploit the type structure of the metalanguage for transformations

Adaptive Libraries:

- Old approach:
 - Add switch parameters to the library functions to customize
 - Can't handle "new" cases without reprogramming
 - Caller can provide inconsistent information
- New approach:
 - Perform an analysis on type and shape of the arguments
 - Provides consistency and flexibility
 - Can reduce abstraction penalty due to a lack of domain-specific knowledge considerably

Conclusions

- How do the methods perform?
 - Automation required high (affine) regularity.
 - Constant number of breaks in regularity can be handled.
 - Non-affinity requires sophisticated mathematics.
 - Code generation very difficult in general; heuristics help.
- Is it for ArtistDesign?
 - Loop parallelization probably only in special cases.
 - Skeletons have high potential simple or sophisticated.
 - There is experience with tool prototypes.
 - Build dedicated tools.

References

Basic Polytope Model

Christian Lengauer. Loop parallelization in the polytope model. In Eike Best, editor, *CONCUR'93*, LNCS 715, pages 398–416. Springer-Verlag, 1993.

Paul Feautrier. Automatic parallelization in the polytope model. In Guy-René Perrin and Alain Darte, editors, *The Data Parallel Programming Model*, LNCS 1132, pages 79–103. Springer-Verlag, 1996.

Extension 1: Conditionals

Jean-François Collard and Martin Griebl. A precise fixpoint reaching definition analysis for arrays. In Larry Carter and Jean Ferrante, editors, *Languages and Compilers for Parallel Computing (LCPC'99)*, LNCS 1863, pages 286–302. Springer-Verlag, 1999.

Extension 2: WHILE Loops

Jean-François Collard. Automatic parallelization of while-loops using speculative execution. *Int. J. Parallel Programming*, 23(2):191–219, 1995.

Martin Griebl. *The Mechanical Parallelization of Loop Nests Containing* while *Loops*. PhD thesis, University of Passau, 1996. Also available as technical report MIP-9701.

Extension 3: Index Set Splitting

Martin Griebl, Paul Feautrier, and Christian Lengauer. Index set splitting. *Int. J. Parallel Programming*, 28(6):607–631, 2000.

References

Extension 4: Tiling

Martin Griebl, Peter Faber, and Christian Lengauer. Space-time mapping and tiling: A helpful combination. *Concurrency and Computation: Practice and Experience*, 16(3):221–246, March 2004.

U. Bondhugula, A. Hartono, J. Ramanujam, and P. Sadayappan. PLUTO: A practical and fully automatic polyhedral program optimization system. *Proc. ACM SIGPLAN 2008 Conf. on Programming Language Design and Implementation (PLDI 2008)*, ACM Press, 2008.

Extension 5: Expressions

Peter Faber. Code Optimization in the Polyhedron Model – Improving the Efficiency of Parallel Loop Nests. PhD thesis, University of Passau, 2008.

Extension 6: Non-Affine Index Array Expressions

Stefan Schuster. On algorithmic and heuristic approaches to integral problems in the polyhedron model with non-linear parameters. Diplomarbeit, Fakultät für Mathematik und Informatik, Universität Passau, 2007.

Extension 7: Non-Affine Loop Bounds

Armin Größlinger, Martin Griebl, and Christian Lengauer. Quantifier elimination in automatic loop parallelization. *Journal of Symbolic Computation*, 41(11):1206–1221, November 2006. Armin Größlinger. Scanning index sets with polynomial bounds using cylindrical algebraic decomposition. Technical report MIP-0803, Fakultät für Informatik und Mathematik, Universität Passau.

References

Small-Scale Skeletons: Collective Operations

Sergei Gorlatch. Send-receive considered harmful: Myths and realities of message passing. *ACM TOPLAS*, 26(1):47–56, 2004.

Large-Scale Skeletons: Divide-and-Conquer

Christoph Armin Herrmann. *The Skeleton-Based Parallelization of Divide-and-Conquer Recursions*. PhD thesis, University of Passau, 2000. ISBN 3-89722-556-5.

Metaprogrammed Skeletons

Christoph Armin Herrmann and Christian Lengauer. Using metaprogramming to parallelize functional specifications. *Parallel Processing Letters*, 12(2):93–210, June 2002.