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Text-Based Loop Transformations

Text-Based Loop Transformations:
fission, fusion, permutation, skewing, unrolling, unswitching

+ easy to apply
+ in simple cases often all you need
– do not support a search for the best solution
– favor some solutions over others that may be better

Model-Based Loop Transformations:
map source code to an execution model
find the optimal parallel solution in this model

+ quality metric: a given objective function
+ search and transformation completely automatic
– analysis and target code can become complex
– optimality in the model need not imply efficient target code
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The Basic Polytope Model

for i = 1 to n do

for j = 0 to i + m do

A(i, j) = A(i−1, j) + A(i, j −1)

od

A(i, i+m+1) = A(i−1, i+m)+A(i, i+m)

od

parfor p = 1 to m + n do

for t = max(p−1, 2∗p−m−2) to n+p−2 do

A(2+t−p, p) = A(1+t−p, p) + A(2+t−p, p−1)

od

if p ≥ m+1 then

A(p−m, 1+p) = A(p−m, p) + A(p−m−1, p)

fi

od

j

i t

p

i

source operation dependence graph target operation dependence graph

3/32



Capabilities of the Basic Model

Fully automatic dependence analysis

Optimizing search of the best solution in the solution space,
w.r.t. a given objective function

Exemplary objective functions:
minimal number of parallel steps; minimal number of processors
minimal number of parallel steps; maximal throughput
minimal number of communications

Challenge: efficient target code

Standard example: square matrix product
source code:

for i = 0 to n � 1 do
for j = 0 to n � 1 do

for k = 0 to n � 1 do
C (i ; j ) = C (i ; j ) + A(i ; k) � B(k ; j )

od
od

od

4/32



Example: Square Matrix Product
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Quadratic Solution
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Hexagonal Solution
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Restrictions and Uses of the Basic Model

Restrictions:
Loop bounds must be affine expressions in the outer loop indices and
structure parameters.
Array indices must be affine expressions in the loop indices.
Assigments may be to array variables or scalar variables.
Loop nests may be imperfect.
Calls of subprograms are considered atomic, i.e., are not subject to
parallelization.
Pointer structures are not considered (unless coded as arrays)
Target loop nests may be

synchronous (outer loops sequential),
asynchronous (outer loops parallel).

Uses:
Loop parallelization
Cache optimization
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Extension 1: Conditional Statements in the Body

Consequence:

Dependences vary between branches.
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Extension 1: Conditional Statements in the Body

Technique:
A precise reaching definition analysis that combines

the iterative solution of data flow equations,
discovers dependences between entire arrays,
can handle conditionals
integer linear programming,
discovers dependences between individual array elements

attaches conditions to dependences
builds the unconditional union of all conditional dependences
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Extension 2: WHILE Loops in the Loop Nest

Consequences:

In WHILE dimensions, the number of loop steps is determined at run time.
The static index space is not a polytope but a polyhedron.
The dynamic index space in the unbounded direction is uneven (a “comb”).
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Extension 2: Example (Convex Hull)
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Extension 2: Example (Convex Hull)
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Extension 2: Two Approaches

Conservative Approach:
The control dependence of the WHILE loop is respected.
One WHILE loop remains sequential, but may be distributed.
A nest of WHILE loops may also be parallel.
Challenge: detecting the end of a “tooth” of the “comb”;
solved for shared and distributed memory.

Speculative Approach:
The control dependence of the WHILE loop is ignored.
oNE WHILE loop may be parallel.
Additional memory space may be required.
A rollback of iterations may be necessary.
Challenges: implementing rollback; avoiding rollback;
minimizing memory consumption.
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Extension 3: Index Set Splitting

Idea:
Partition the index space automatically to break a dependence pattern and
increase parallelism.

for i = 0 to 2 �n � 1 do
A(i ; 0) = : : : A(2�n�i�1; 0)

od

=⇒

for i = 0 to n � 1 do
A(i ; 0) = : : : A(2�n�i�1; 0)

od
for i = n to 2 � n � 1 do

A(i ; 0) = : : : A(2�n�i�1; 0)
od

Technique:
Separate the sinks in the graph from the rest.
Propagate splits backwards to the context

Challenge: termination in the presence of cycles (cut off)
Challenge: exponential growth in the number of sources (heuristics)
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Extension 4: Tiling

Goal: Determine the optimal granularity of parallelism
When? (Before or after the parallelization.)
How? (Shape, form and size of the tiles.)
What? (Space and/or time.)

When: After the parallelization
It’s simpler and more widely applicable: only one perfect target loop nest.
It’s more powerful: flexible space-time mapping before inflexible tiling.

How: Space and time separately
The risk: heuristics wins only with certain allocations.
The gain: precise and independent adaptation to hardware parameters.

What:
Tiling space: adapts to resources (# processors).
Tiling time: adapts to performance (computation/communication ratio).
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Extension 5: Expressions

Goal: Avoid duplicate computations

Technique: Loop-carried code placement (LCCP)

Identifies expressions that have the same value.
Determines the optimal time and place for the evaluation.
Determines the optimal place for the result.
Hoists x -dimensional expressions out of y-dimensional loop nests (y >x )

Example: Shallow Water Simulation

FORALL (j=1:n,i=1:m) H(i,j) =
& P(i,j) + 0.25 * (U(i+1,j)*U(i+1,j) + U(i,j)*U(i,j)
& + V(i,j+1)*V(i,j+1) + V(i,j)*V(i,j))

↓

FORALL (j=1:n,i=1:m+1) TMP1(i,j) = U(i,j)*U(i,j)
FORALL (j=1:n+1,i=1:m) TMP2(i,j) = V(i,j)*V(i,j)
FORALL (j=1:n,i=1:m) H(i,j) =
& P(i,j) + 0.25 * (TMP1(i+1,j) + TMP1(i,j)
& + TMP2(i,j+1) + TMP2(i,j)
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Extension 6: Non-Affine Array Index Expressions

Goal: Be able to handle array expressions of the form A(p*i)

“Parameter” p:
Has a previously unknown but fixed value
Typical case: Extent of the polytope in some fixed dimension

Application: Select a row or column of a matrix as a vector

Technique:
Solve conflict equation system in Z.
Algorithm known for exactly one parameter.
Math: entire quasi-polynomials.

Challenge: Dependence analysis
Are the solutions inside or outside the iteration space?
(Solving the existence inequations...)
What is the direction of a dependence?
(Establishing an order...)
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Extension 7: Non-Affine Loop Bounds

Goal: Be able to scan domains with curved bounds.
Curves must be described by polynomials.
Domains are semi-algebraic sets
(sets of solutions of inequation systems of polynomials in Z).

Applications:
Normal source code: Sieve of Eratosthenes (bound i*i<=n)
Loops with non-constant stride:

Example: for (j=0; j<=n; j+=i)
→ for (k=0; k*i<=n; k++)

in the loop body: j → k*i

Non-linear loop transformations:
Non-linear schedules can substantially improve the performance of
solving affine recurrence equations (i.e., of executing loop nests) over
linear schedules.

Challenges:
Avoid non-affinities in the dependence analysis;
postpone them to the code generation
Code simplification.
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Extension 7: Example
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for (x=1; x<=4; x++)

for (y=1; y<=9; y++)

T1(x,y);

for (x=5; x<=7; x++) {

for (y=1; y<=
�

4�p3x� 12

�

; y++)

T1(x,y);

for (y=
�

4+

p
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�

; y<=9; y++)

T1(x,y);

}

20/32



Extension 7: Cases and Techniques

Non-Linear Parameters: e.g., p2*i, p*q*i, p*i
LP solution methods like Fourier-Motzkin and Simplex can be generalized
to handle several non-linear parameters.
Application: tiling and code generation.
Math: quantifier elimination in R.

Also Non-Linear Variables: e.g., p2*i2, p*i2, i*j
Math: Cylindrical algebraic decomposition.
Application: Code generation for scanning arbitrary semi-algebraic sets.
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The Loop Parallelizer LooPo

Input:
Loop code without parallelism (FORTRAN, C, recurrence equations)
Specification of a data flow graph (skip next step)

Dependence Analysis: transition to the model
Method: Banerjee (restricted), Feautrier (complete), control flow fuzzy
array dependence analysis (CfFADA, can also handle alternations)
Optional: index set splitting, single-assignment conversion

Space-Time Mapping:
Schedule: Lamport (simple), Feautrier (complete), Darte-Vivien
(compromise)
Allocation: Feautrier (complete), Dion-Robert (more practical),
forward-communication only (prepares for tiling)

Code Generation:
Based on the French loop code generator CLooG
Generates loops and communication
Tiles
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Parallel Program Skeletons

Idea:
Predefine frequently used patterns of parallel computation
Specify each pattern as a higher-order function
Provide implementations for a variety of parallel platforms
Possibly use metaprogramming to make skeletons adaptive

Examples:
Small scale: collective operations

data transfer: broadcast, scatter, gather, all-to-all
data transfer + computation: reduce, scan

Larger scale: algorithmic patterns
divide-and-conquer, branch-and-bound
dynamic programming, searching in suffix trees
algorithms on labelled graphs

Technique:
Functional source language: Template Haskell, MetaML, MetaOCaml
Imperative target language: C, C+MPI,...
Compilation step: no standard tools so far
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Collective Operations

ts: start-up time tw: per-word transfer time m: blocksize

composition rule improvement if

Scan 1; Reduce 2 ! Reduce always

Scan; Reduce ! Reduce ts > m

Scan 1; Scan 2 ! Scan ts > 2m

Scan; Scan ! Scan ts > m(tw + 4)

Bcast; Scan ! Comcast always

Bcast; Scan 1; Scan 2 ! Comcast ts > m
2

Bcast; Scan; Scan ! Comcast ts > m( 1
2
tw + 4)

Bcast; Reduce ! Local always

Bcast; Scan 1; Reduce 2 ! Local always

Bcast; Scan; Reduce ! Local tw + 1
m ts � 1

3
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Divide-and-Conquer Hierarchy: Tasks

spacetime dcCdcBdcA

skeleton restriction application

dcA independent Quicksort,
subproblems maximum independent set

dcB fixed recursion depth n queens

dcC fixed division degree k Karatsuba integer product (k=3)
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Divide-and-Conquer Hierarchy: Data

dcD/dcE dcF

dcD block recursion triangular matrix inversion (k=2),
Batcher sort (k=2)

dcE elementwise operations matrix-vektor product (k=4)

dcF communication between Karatsuba polynomial product (k=3),
corresponding elements bitonic merge (k=2), FFT (k=2),

Strassen matrix product (k=7)
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Skeleton Implementation

Principle:
specification recX = iterative form itX
transition from Haskell to domain-specific language

dcA (base, divide, combine, input)

dynamic allocation of time and space
no load balancing

dcF (k, indeg, outdeg, basic, divide, combine, n, input)

static allocation of time and space via additional parameters
number of subproblems
division degree of input data
combination degree of output data
depth of recursion

dependence regular but not affine (no analysis necessary)
similar to the polytope model but no search for a schedule
symbolic size inference on skeleton parameters
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Skeleton Metaprogramming

Metaprogramming:
Using a meta language to transform programs in an object language
Both languages can be the same (multi-stage programming)

Advice:
Use a functional metalanguage
Model the syntax for the object language by abstract data types
Exploit the type structure of the metalanguage for transformations

Adaptive Libraries:
Old approach:

Add switch parameters to the library functions to customize
Can’t handle “new” cases without reprogramming
Caller can provide inconsistent information

New approach:
Perform an analysis on type and shape of the arguments
Provides consistency and flexibility
Can reduce abstraction penalty due to a lack of domain-specific
knowledge considerably
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Conclusions

How do the methods perform?
Automation required high (affine) regularity.
Constant number of breaks in regularity can be handled.
Non-affinity requires sophisticated mathematics.
Code generation very difficult in general; heuristics help.

Is it for ArtistDesign?
Loop parallelization probably only in special cases.
Skeletons have high potential – simple or sophisticated.
There is experience with tool prototypes.
Build dedicated tools.
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