
Overview of Parallelization Techniques I

Christian Lengauer

Fakultät für Informatik und Mathematik

16. June 2008, Schloss Rheinfels, St.Goar, Germany

Text-Based Loop Transformations

Text-Based Loop Transformations:
fission, fusion, permutation, skewing, unrolling, unswitching

+ easy to apply
+ in simple cases often all you need
– do not support a search for the best solution
– favor some solutions over others that may be better

Model-Based Loop Transformations:
map source code to an execution model
find the optimal parallel solution in this model

+ quality metric: a given objective function
+ search and transformation completely automatic
– analysis and target code can become complex
– optimality in the model need not imply efficient target code

2/32

The Basic Polytope Model

for i = 1 to n do

for j = 0 to i + m do

A(i, j) = A(i−1, j) + A(i, j −1)

od

A(i, i+m+1) = A(i−1, i+m)+A(i, i+m)

od

parfor p = 1 to m + n do

for t = max(p−1, 2∗p−m−2) to n+p−2 do

A(2+t−p, p) = A(1+t−p, p) + A(2+t−p, p−1)

od

if p ≥ m+1 then

A(p−m, 1+p) = A(p−m, p) + A(p−m−1, p)

fi

od

j

i t

p

i

source operation dependence graph target operation dependence graph

3/32

Capabilities of the Basic Model

Fully automatic dependence analysis

Optimizing search of the best solution in the solution space,
w.r.t. a given objective function

Exemplary objective functions:
minimal number of parallel steps; minimal number of processors
minimal number of parallel steps; maximal throughput
minimal number of communications

Challenge: efficient target code

Standard example: square matrix product
source code:

for i = 0 to n � 1 do
for j = 0 to n � 1 do

for k = 0 to n � 1 do
C (i ; j) = C (i ; j) + A(i ; k) � B(k ; j)

od
od

od

4/32

Example: Square Matrix Product

index space,
dependences

i

j

k parallel
steps

square
processor
array

hexagonal
processor
array

5/32

Quadratic Solution

6/32

Hexagonal Solution

7/32

Restrictions and Uses of the Basic Model

Restrictions:
Loop bounds must be affine expressions in the outer loop indices and
structure parameters.
Array indices must be affine expressions in the loop indices.
Assigments may be to array variables or scalar variables.
Loop nests may be imperfect.
Calls of subprograms are considered atomic, i.e., are not subject to
parallelization.
Pointer structures are not considered (unless coded as arrays)
Target loop nests may be

synchronous (outer loops sequential),
asynchronous (outer loops parallel).

Uses:
Loop parallelization
Cache optimization

8/32

Extension 1: Conditional Statements in the Body

Consequence:

Dependences vary between branches.

9/32

Extension 1: Conditional Statements in the Body

Technique:
A precise reaching definition analysis that combines

the iterative solution of data flow equations,
discovers dependences between entire arrays,
can handle conditionals
integer linear programming,
discovers dependences between individual array elements

attaches conditions to dependences
builds the unconditional union of all conditional dependences

10/32

Extension 2: WHILE Loops in the Loop Nest

Consequences:

In WHILE dimensions, the number of loop steps is determined at run time.
The static index space is not a polytope but a polyhedron.
The dynamic index space in the unbounded direction is uneven (a “comb”).

11/32

Extension 2: Example (Convex Hull)

12/32

Extension 2: Example (Convex Hull)

13/32

Extension 2: Two Approaches

Conservative Approach:
The control dependence of the WHILE loop is respected.
One WHILE loop remains sequential, but may be distributed.
A nest of WHILE loops may also be parallel.
Challenge: detecting the end of a “tooth” of the “comb”;
solved for shared and distributed memory.

Speculative Approach:
The control dependence of the WHILE loop is ignored.
oNE WHILE loop may be parallel.
Additional memory space may be required.
A rollback of iterations may be necessary.
Challenges: implementing rollback; avoiding rollback;
minimizing memory consumption.

14/32

Extension 3: Index Set Splitting

Idea:
Partition the index space automatically to break a dependence pattern and
increase parallelism.

for i = 0 to 2 �n � 1 do
A(i ; 0) = : : : A(2�n�i�1; 0)

od

=⇒

for i = 0 to n � 1 do
A(i ; 0) = : : : A(2�n�i�1; 0)

od
for i = n to 2 � n � 1 do

A(i ; 0) = : : : A(2�n�i�1; 0)
od

Technique:
Separate the sinks in the graph from the rest.
Propagate splits backwards to the context

Challenge: termination in the presence of cycles (cut off)
Challenge: exponential growth in the number of sources (heuristics)

15/32

Extension 4: Tiling

Goal: Determine the optimal granularity of parallelism
When? (Before or after the parallelization.)
How? (Shape, form and size of the tiles.)
What? (Space and/or time.)

When: After the parallelization
It’s simpler and more widely applicable: only one perfect target loop nest.
It’s more powerful: flexible space-time mapping before inflexible tiling.

How: Space and time separately
The risk: heuristics wins only with certain allocations.
The gain: precise and independent adaptation to hardware parameters.

What:
Tiling space: adapts to resources (# processors).
Tiling time: adapts to performance (computation/communication ratio).

16/32

Extension 5: Expressions

Goal: Avoid duplicate computations

Technique: Loop-carried code placement (LCCP)

Identifies expressions that have the same value.
Determines the optimal time and place for the evaluation.
Determines the optimal place for the result.
Hoists x -dimensional expressions out of y-dimensional loop nests (y >x)

Example: Shallow Water Simulation

FORALL (j=1:n,i=1:m) H(i,j) =
& P(i,j) + 0.25 * (U(i+1,j)*U(i+1,j) + U(i,j)*U(i,j)
& + V(i,j+1)*V(i,j+1) + V(i,j)*V(i,j))

↓

FORALL (j=1:n,i=1:m+1) TMP1(i,j) = U(i,j)*U(i,j)
FORALL (j=1:n+1,i=1:m) TMP2(i,j) = V(i,j)*V(i,j)
FORALL (j=1:n,i=1:m) H(i,j) =
& P(i,j) + 0.25 * (TMP1(i+1,j) + TMP1(i,j)
& + TMP2(i,j+1) + TMP2(i,j)

17/32

Extension 6: Non-Affine Array Index Expressions

Goal: Be able to handle array expressions of the form A(p*i)

“Parameter” p:
Has a previously unknown but fixed value
Typical case: Extent of the polytope in some fixed dimension

Application: Select a row or column of a matrix as a vector

Technique:
Solve conflict equation system in Z.
Algorithm known for exactly one parameter.
Math: entire quasi-polynomials.

Challenge: Dependence analysis
Are the solutions inside or outside the iteration space?
(Solving the existence inequations...)
What is the direction of a dependence?
(Establishing an order...)

18/32

Extension 7: Non-Affine Loop Bounds

Goal: Be able to scan domains with curved bounds.
Curves must be described by polynomials.
Domains are semi-algebraic sets
(sets of solutions of inequation systems of polynomials in Z).

Applications:
Normal source code: Sieve of Eratosthenes (bound i*i<=n)
Loops with non-constant stride:

Example: for (j=0; j<=n; j+=i)
→ for (k=0; k*i<=n; k++)

in the loop body: j → k*i

Non-linear loop transformations:
Non-linear schedules can substantially improve the performance of
solving affine recurrence equations (i.e., of executing loop nests) over
linear schedules.

Challenges:
Avoid non-affinities in the dependence analysis;
postpone them to the code generation
Code simplification.

19/32

Extension 7: Example

x

y

0 1 4 7

1

9

0

4

for (x=1; x<=4; x++)

for (y=1; y<=9; y++)

T1(x,y);

for (x=5; x<=7; x++) {

for (y=1; y<=
�

4�p3x� 12

�

; y++)

T1(x,y);

for (y=
�

4+

p
3x� 12

�

; y<=9; y++)

T1(x,y);

}

20/32

Extension 7: Cases and Techniques

Non-Linear Parameters: e.g., p2*i, p*q*i, p*i
LP solution methods like Fourier-Motzkin and Simplex can be generalized
to handle several non-linear parameters.
Application: tiling and code generation.
Math: quantifier elimination in R.

Also Non-Linear Variables: e.g., p2*i2, p*i2, i*j
Math: Cylindrical algebraic decomposition.
Application: Code generation for scanning arbitrary semi-algebraic sets.

21/32

The Loop Parallelizer LooPo

Input:
Loop code without parallelism (FORTRAN, C, recurrence equations)
Specification of a data flow graph (skip next step)

Dependence Analysis: transition to the model
Method: Banerjee (restricted), Feautrier (complete), control flow fuzzy
array dependence analysis (CfFADA, can also handle alternations)
Optional: index set splitting, single-assignment conversion

Space-Time Mapping:
Schedule: Lamport (simple), Feautrier (complete), Darte-Vivien
(compromise)
Allocation: Feautrier (complete), Dion-Robert (more practical),
forward-communication only (prepares for tiling)

Code Generation:
Based on the French loop code generator CLooG
Generates loops and communication
Tiles

22/32

Parallel Program Skeletons

Idea:
Predefine frequently used patterns of parallel computation
Specify each pattern as a higher-order function
Provide implementations for a variety of parallel platforms
Possibly use metaprogramming to make skeletons adaptive

Examples:
Small scale: collective operations

data transfer: broadcast, scatter, gather, all-to-all
data transfer + computation: reduce, scan

Larger scale: algorithmic patterns
divide-and-conquer, branch-and-bound
dynamic programming, searching in suffix trees
algorithms on labelled graphs

Technique:
Functional source language: Template Haskell, MetaML, MetaOCaml
Imperative target language: C, C+MPI,...
Compilation step: no standard tools so far

23/32

Collective Operations

ts: start-up time tw: per-word transfer time m: blocksize

composition rule improvement if

Scan 1; Reduce 2 ! Reduce always

Scan; Reduce ! Reduce ts > m

Scan 1; Scan 2 ! Scan ts > 2m

Scan; Scan ! Scan ts > m(tw + 4)

Bcast; Scan ! Comcast always

Bcast; Scan 1; Scan 2 ! Comcast ts > m
2

Bcast; Scan; Scan ! Comcast ts > m(1
2
tw + 4)

Bcast; Reduce ! Local always

Bcast; Scan 1; Reduce 2 ! Local always

Bcast; Scan; Reduce ! Local tw + 1
m ts � 1

3

24/32

Divide-and-Conquer Hierarchy: Tasks

spacetime dcCdcBdcA

skeleton restriction application

dcA independent Quicksort,
subproblems maximum independent set

dcB fixed recursion depth n queens

dcC fixed division degree k Karatsuba integer product (k=3)

25/32

Divide-and-Conquer Hierarchy: Data

dcD/dcE dcF

dcD block recursion triangular matrix inversion (k=2),
Batcher sort (k=2)

dcE elementwise operations matrix-vektor product (k=4)

dcF communication between Karatsuba polynomial product (k=3),
corresponding elements bitonic merge (k=2), FFT (k=2),

Strassen matrix product (k=7)

26/32

Skeleton Implementation

Principle:
specification recX = iterative form itX
transition from Haskell to domain-specific language

dcA (base, divide, combine, input)

dynamic allocation of time and space
no load balancing

dcF (k, indeg, outdeg, basic, divide, combine, n, input)

static allocation of time and space via additional parameters
number of subproblems
division degree of input data
combination degree of output data
depth of recursion

dependence regular but not affine (no analysis necessary)
similar to the polytope model but no search for a schedule
symbolic size inference on skeleton parameters

27/32

Skeleton Metaprogramming

Metaprogramming:
Using a meta language to transform programs in an object language
Both languages can be the same (multi-stage programming)

Advice:
Use a functional metalanguage
Model the syntax for the object language by abstract data types
Exploit the type structure of the metalanguage for transformations

Adaptive Libraries:
Old approach:

Add switch parameters to the library functions to customize
Can’t handle “new” cases without reprogramming
Caller can provide inconsistent information

New approach:
Perform an analysis on type and shape of the arguments
Provides consistency and flexibility
Can reduce abstraction penalty due to a lack of domain-specific
knowledge considerably

28/32

Conclusions

How do the methods perform?
Automation required high (affine) regularity.
Constant number of breaks in regularity can be handled.
Non-affinity requires sophisticated mathematics.
Code generation very difficult in general; heuristics help.

Is it for ArtistDesign?
Loop parallelization probably only in special cases.
Skeletons have high potential – simple or sophisticated.
There is experience with tool prototypes.
Build dedicated tools.

29/32

References
Basic Polytope Model
Christian Lengauer. Loop parallelization in the polytope model. In Eike Best, editor, CONCUR’93,
LNCS 715, pages 398–416. Springer-Verlag, 1993.
Paul Feautrier. Automatic parallelization in the polytope model. In Guy-René Perrin and Alain
Darte, editors, The Data Parallel Programming Model, LNCS 1132, pages 79–103.
Springer-Verlag, 1996.

Extension 1: Conditionals
Jean-François Collard and Martin Griebl. A precise fixpoint reaching definition analysis for arrays.
In Larry Carter and Jean Ferrante, editors, Languages and Compilers for Parallel Computing
(LCPC’99), LNCS 1863, pages 286–302. Springer-Verlag, 1999.

Extension 2: WHILE Loops
Jean-François Collard. Automatic parallelization of while-loops using speculative execution. Int. J.
Parallel Programming, 23(2):191–219, 1995.
Martin Griebl. The Mechanical Parallelization of Loop Nests Containing while Loops. PhD thesis,
University of Passau, 1996. Also available as technical report MIP-9701.

Extension 3: Index Set Splitting
Martin Griebl, Paul Feautrier, and Christian Lengauer. Index set splitting. Int. J. Parallel
Programming, 28(6):607–631, 2000.

30/32

References
Extension 4: Tiling
Martin Griebl, Peter Faber, and Christian Lengauer. Space-time mapping and tiling: A helpful
combination. Concurrency and Computation: Practice and Experience, 16(3):221–246, March
2004.
U. Bondhugula, A. Hartono, J. Ramanujam, and P. Sadayappan. PLUTO: A practical and fully
automatic polyhedral program optimization system. Proc. ACM SIGPLAN 2008 Conf. on
Programming Language Design and Implementation (PLDI 2008), ACM Press, 2008.

Extension 5: Expressions
Peter Faber. Code Optimization in the Polyhedron Model – Improving the Efficiency of Parallel
Loop Nests. PhD thesis, University of Passau, 2008.

Extension 6: Non-Affine Index Array Expressions
Stefan Schuster. On algorithmic and heuristic approaches to integral problems in the polyhedron
model with non-linear parameters. Diplomarbeit, Fakultät für Mathematik und Informatik,
Universität Passau, 2007.

Extension 7: Non-Affine Loop Bounds
Armin Größlinger, Martin Griebl, and Christian Lengauer. Quantifier elimination in automatic loop
parallelization. Journal of Symbolic Computation, 41(11):1206–1221, November 2006.
Armin Größlinger. Scanning index sets with polynomial bounds using cylindrical algebraic
decomposition. Technical report MIP-0803, Fakultät für Informatik und Mathematik, Universität
Passau.

31/32

References

Small-Scale Skeletons: Collective Operations
Sergei Gorlatch. Send-receive considered harmful: Myths andc realities of message passing.
ACM TOPLAS, 26(1):47–56, 2004.

Large-Scale Skeletons: Divide-and-Conquer
Christoph Armin Herrmann. The Skeleton-Based Parallelization of Divide-and-Conquer
Recursions. PhD thesis, University of Passau, 2000. ISBN 3-89722-556-5.

Metaprogrammed Skeletons
Christoph Armin Herrmann and Christian Lengauer. Using metaprogramming to parallelize
functional specifications. Parallel Processing Letters, 12(2):93–210, June 2002.

32/32

	Text-Based Loop Transformations
	The Basic Polytope Model
	Capabilities of the Basic Model
	Example: Square Matrix Product
	Quadratic Solution
	Hexagonal Solution
	Restrictions and Uses of the Basic Model
	Extension 1: Conditional Statements in the Body
	Extension 1: Conditional Statements in the Body
	Extension 2: WHILE Loops in the Loop Nest
	Extension 2: Example (Convex Hull)
	Extension 2: Example (Convex Hull)
	Extension 2: Two Approaches
	Extension 3: Index Set Splitting
	Extension 4: Tiling
	Extension 5: Expressions
	Extension 6: Non-Affine Array Index Expressions
	Extension 7: Non-Affine Loop Bounds
	Extension 7: Example
	Extension 7: Cases and Techniques
	The Loop Parallelizer LooPo
	Parallel Program Skeletons
	Collective Operations
	Divide-and-Conquer Hierarchy: Tasks
	Divide-and-Conquer Hierarchy: Data
	Skeleton Implementation
	Skeleton Metaprogramming
	Conclusions
	References
	References
	References

