
Predictable Timing on MPSoCPredictable Timing on MPSoC
A Time-Triggered View

Peter PUSCHNER

1st Workshop on Mapping Applications to MPSoCs Schloss Rheinfels Germany June 20081 Workshop on Mapping Applications to MPSoCs Schloss Rheinfels, Germany June 2008

Focus
goal: build safety-critical hard real-time systems
• that are distributed
• that have strict timing requirements• that have strict timing requirements
• adequate engineering process simple concepts

– support of constructionsupport of construction
– easy argumentation about properties (timing!)

2

Hierarchical Design
We need a hierarchical design to keep complexity

manageable
• decomposition: spatial temporaldecomposition: spatial, temporal
• subsystems need to be (de)composable:

weak interactions among subsystems

3

What we need ...

• simple, regular shape
dimensions are easy to assess, describe

• composability: it has the same dimensions under all
circumstances (stand alone, when integrated, ...)

• failures are easy to detectfailures are easy to detect

4

TTA System

Host
Host

FTU A

Host
Host

FTU B

Host
Host

FTU C

Host
Host

FTU D

CNI Host

TTP
TTP

Host

TTP
TTP

Host

TTP
TTP

Host

TTP
TTP

CNI

A 1 x … … …B 1 y C 1 z D 1 a A 1 b A 2 x A 1 x B 1 y

periodic message schedule

5

A.1.x B.1.y C.1.z D.1.a A.1.b A.2.x A.1.x B.1.y

TTA Support for Composability

• Synchronized real-time reference clock
• Fixed bus schedule, planned before runtime
• Node interfaces are fixed before runtime

composability that facilitates a hierarchical
d i d l tidesign and evaluation
principle applicable to MPSoC:
offline planning of access to shared resourcesoffline planning of access to shared resources

6

A Time-triggered HRT Subsystem
Application Computer

H
R

T
 S

of a C

Ti T i d

Symbols

Safety-
S

ubsyste
C

om
ponen

Time-Triggered
State Message Port

Control Signal Port

Safety
Critical

Connector
Unit

m

nt Memory Element
for a Single State
Message

Synchronized Clock

Time-Triggered CommunicationTime-Triggered Communication

Services of the TTA

7

Concerns at Component Level ...

• Task timing
– predictability
– stability
– composability – internal, external (no interference)

• Operating system
• Schedulability, scheduling

8

OS Software and Scheduling

Principle: take control decisions offline!!

• Task model: simple tasks, single-path code
• Operating system structure & scheduling

Si l th d h ibl– Single-path code wherever possible
– Static, table-driven scheduling:

Offline decisions for I/O, comm., task switching andOffline decisions for I/O, comm., task switching and
preemption

– Use clock interrupt to synchronize with RT clock

9

Static Table-Driven Schedule
OS: dispatching c switchOS: clock int handler Appl tasks

T1 T2’ T3 T2’’ T4 T5 ...

OS: dispatching, c. switch OS: clock int. handler

OS t k it h

Appl. tasks

Clock Interrupt scheduled preemption

OS: task switch

• Programmable clock interrupt
• Interrupt: start of defined task chains
• Statically scheduled preemptions
• Statically scheduled I/O and message access

10

Single-Path Transformation
T f i t d t d d t b h i tTransform input-data dependent branches into

sequential predicated code, rest remains unchanged
Technique based on if conversionTechnique based on if-conversion

if condco d

res := expr1 res := expr2

P := cond
(P) res := expr1
(not P) res := expr2(not P) res : expr2

Predicated execution

11

Single-Path Transformation Rules
Recursive transformation function based on syntax tree:

SP[[p]]σδ

p … code construct to be transformed into single path

σ inherited precondition from previously transformed codeσ … inherited precondition from previously transformed code
constructs. The initial value of the inherited precondition is ‘T’
(logical true).

δ ... counter, used to generate variable names needed for the
transformation. The initial value of δ is zero.

12

Single-Path Transformation Rules (1)

simple statement: S

SP[[S]]σδ

Sif σ = T :

if σ = F : // no action

// unconditional

if σ = F :

(σ) Sotherwise:

// no action

// guarded

13

Single-Path Transformation Rules (2)

sequence: S = S1; S2

SP[[S1; S2]]σδ

guardδ := σ;
SP[[S1]]〈guardδ〉〈δ+1〉 ;
SP[[S2]]〈guardδ〉〈δ+1〉

14

Single-Path Transformation Rules (3)
alternative: S = if cond then S1 else S2 endif

SP[[if cond then S1 else S2 endif]]σδ

guardδ := cond;
SP[[S1]]〈σ ∧ guardδ〉〈δ+1〉;
SP[[S2]]〈 d 〉〈δ+1〉

if ID(cond):

SP[[S2]]〈σ ∧ ¬guardδ〉〈δ+1〉

otherwise: if cond then SP[[S1]]σδ[[]]
else SP[[S2]]σδ

endif

15

Single-Path Transformation Rules (4)

loop: S = while cond max N times do S1 endwhile

SP[[while cond max N times do S1 endwhile]]σδ[[]]

d F // l b d di bl flif ID(d) endδ := F; // loop-body-disable flag
for countδ := 1 to N do // “hardwired loop”
SP[[if cond then end := T endif]]σ〈δ+1〉 ;

if ID(cond):

SP[[if ¬cond then endδ := T endif]]σ〈δ+1〉 ;
SP[[if ¬endδ then S1 endif]]σ〈δ+1〉

endfor

16

Composability of Timing
Composability (Sifakis): properties are conservedComposability (Sifakis): properties are conserved

across integration

T1: A T2: A B

t1(A) t2(A)

t1(A) = t2(A)

No guaranteed time composability in the presence of
cachescaches

Example: A, B in a loop; A fits into cache, but not AB;
cache conflicts between instructions in A and B

17

cache conflicts between instructions in A and B

Composability of Timing (2)

Use prefetching (scratch pad memory) instead of
caches to avoid side effects

Control flow of single-path code is determined at
compile time
Exact pre-planning of prefetching (no speculation)
? Prefetch instructions in code
? Programmable prefetch controller

Composability + performanceComposability performance

18

Conclusion
M h i f t bl di t bl MPS C ti iMechanisms for stable, predictable MPSoC timing:
• Pre-scheduled access to shared resources

(i t t h d)(interconnects, shared memory)
• table-driven scheduling on cores
• use of single-path code
• explicitly controlled scratch-pad memories forexplicitly controlled scratch pad memories for

speedup

19

