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 Providing support for multimedia applications on MPSoC platforms 
remains a significant research challenge.

Resource Management 

on Multi Processor System-on-Chip Platforms

 New tools for efficient mapping of applications onto hardware platforms



The Optimization Challenge

 The problem of allocating and scheduling task graphs on processors in a 
distributed real-time system is NP-hard.
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Target HW Architecture: STI Cell BE

A multi-core system architecture.
 It addresses:

 Server applications:
 Next generation IBM Blade Servers.

 High-performance embedded applications:
 Gaming (Sony PS3).
 Aerospace and defence.
 Medical imaging.

 Heterogeneous system architecture:
 One 64-bit Power Processor Element (PPE)
 8 Synergistic Processing Elements (SPEs)
 Element Interconnect Bus:
 DMA-based

 Limited Local Storage
 256KB for Instructions and data

 Explicit Resource management
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Target Application: Task Graph (TG)

N
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 A TG is a couple <T,A>, where:
 T is the set of nodes modelling generic 

tasks (e.g. elementary operations, 
subprograms, ...);

 A the set of arcs modelling precedence 
constraints (e.g. due to data 
communication);

 WCET for Comp. & Comm. Modelling.

 Statically scheduled Task Graph 
Applications:
 Explicit parallelism;
 Message Passing Communication;
 Single-token Communication.
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Task memory requirements

The communication task might run:
• On the same SPE → negligible communication cost
• On a remote SPE → costly read or write procedure
• On Shared Memory → costly message exchange procedure

• Communication queues in LS → more efficient message passing
• Memory size limit!

Program Data & Internal State can be allocated:
• On the local LS;
• On the remote Shared Memory.

Each task has three kinds 
of memory requirements:

•Program Data;
•Internal State;
•Communication queues.

#1#2
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Program Data & Internal State can be allocated:
• On the local LS;
• On the remote Shared Memory.
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• On a remote SPE → costly read or write procedure
• On Shared Memory → costly message exchange procedure

• Communication queues in LS → more efficient message passing
• Memory size limit!



Task & Application Models

 Task is split into 3 phases:
 Reading input queues
 Task Execution
 Writing output queues

 Tasks communicate through queues
 FIFO Buffering
 Semaphore synchronization

 No task preemption

Reading
Phase

Exec.
Phase

Writing
Phase



Related Work

Main approaches:

 Incomplete:
 Low computational cost;
 No guarantees about the quality of the final solution;

 Complete:
 Mainly based on Integer Linear Programming;
 High computational cost;
 Suitable for small problems instances;

 Problem decomposition:
 Good way to tackle problem complexity;
 Divide up the problem into sub-problems & leverage their structures;
 Mainly heuristic approach.



Our approach

Our Focus: 
 Statically Scheduled Task Graph Applications

Our Objective:
 Complete approach to allocation and scheduling;
 High computational efficiency w.r.t. commercial solvers;
 High accuracy of generated solutions;

Our Methodology:
 Problem decomposition;
 Allocation Sub-problem:

 Integer Programming.
 Scheduling Sub-problem:

 Constraint Programming.



Logic Based Benders Decomposition

Obj. Function

Allocation
LB for cost

Allocation:
INTEGER PROGRAMMING

Scheduling:
CONSTRAINT PROGRAMMING

No good: unfeasible SP
Optimality cut: SP solution 
is optimal UNLESS a better 
one exists with a different 
allocation

Resource constraints

Timing constraint

Subproblem (SP)

Master problem (MP)

Obj. Function

Iterations stop when MP becomes unfeasible!

All+Sch
UB for cost
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Multi-stage Benders Decomposition

 When the SCHED problem is solved, one or more cuts (A) are generated 
to forbid the current memory device allocation and the process is restarted 
from the MEM stage;
 if the scheduling problem is feasible, an upper bound on the value of the next 

solution is also posted. 
 When the MEM & SCHED sub-problem ends, more cuts (B) are generated 

to forbid the current task-to-SPE assignment. 

 When the SPE stage becomes infeasible the process is over converging to 
the optimal solution for the problem overall.

SPE Alloc

MEM Alloc

SCHED
A

Goal: minimize makespan



SPE Allocation
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Given a graph with n tasks, m arcs and a platform with p processing Elements

Each task can be assigned to a single PE;

The makespan objective function depends only on scheduling decision variables. 

We adopt an heuristic objective function:
to spread tasks as much as possible on different SPEs, which often provides good 

makespan values pretty quickly.
It forces the objective variable z to be

greater than the total number of tasks allocated on any PE.

Needed to express the objective function



Schedulability test

 SPE allocation choices are by themselves very relevant:
 a bad SPE assignment is sufficient to make the scheduling problem unfeasible.

 if the given allocation with minimal task durations is already infeasible for the 
scheduling component, then it is useless to complete it with the memory 
assignment that cannot lead to any feasible solution overall.

SPE Alloc

MEM Alloc

SCHED

SCHED Test



Memory device allocation
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Memory device allocation
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local memory of the SPE it is assigned to

Wr = 1 if the communication buffer is on SPE pe(h) (that of the producer),
Rr = 1 if the buffer is on SPE pe(k) (that of the consumer).



Memory device allocation
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Memory device allocation
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mem(i) is the amount of memory required to store internal data of task i;  
comm(r) is the size of the communication buffer associated to arc r. 

The base_usage(j) expression is the amount of memory needed to 
store all data permanently allocated on the local device of processor j.

Memory device allocation



Scheduling subproblem
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Each communication buffer must be written before it can be read.



Scheduling subproblem
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Each communication buffer must be written before it can be read.

• One activity for each:
• execution phase (exec)
• buffer reading/writing operation (rd,wr).

• Task are not preemptive;



Exact vs. Heuristic Scheduler

Heuristic: 
 RR resource allocation + List scheduling

Up to 40% makespan difference
 15% in average



TD vs pure-CP

 Set of instances 
where task durations 
are dependant by 
allocation decisions

 Set of instances 
where task durations 
are not dependant 
by allocation 
decisions



TD vs BD

• Up to the 20 − 21 group, TD is much more efficient than BD. 
• Starting from group 22−23, the high number of timed out instances biases the average 
execution time. 
• TD is doing considerably better until group 24 − 25. 

• After that, most instances are not solved within the time limit by any of the approaches
• TD has a lower execution time, despite it generally performs more iterations than BD:

• TD works by solving many easy sub-problems
• BD performs fewer and slower iterations.



CellflowCellflow

Cellflow

CELL ProcessorCELL Processor

Run Time SupportRun Time Support

ResourcesResources
OptimizerOptimizer

Comm.Comm.
APIAPI

Synch.Synch.
APIAPI

MappingMapping
APIAPI

GUIGUI

Appl.Appl.
TemplateTemplate

 A software development toolkit to 
help programmers in software 
implementation

 Starting from a high level task and 
data flow graph, software developers 
can easily and quickly build their 
application infrastructure.

 Programmers can intuitively translate 
high level representation into C-code 
using our facilities and libraries

 The main goals are:
 guarantees on high performance and

constraint satisfaction;
 predictable application execution after 

the optimization step.



Application Development Flow
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Validation of optimizer solutions

 Throughput comparison between the predicted by the optimizer 
and the real one;

 MAX error lower than 10%;
 AVG error equal to 4.8%, with standard deviation of 2.41;

Optimizer

Optimal 
Allocation 
& Schedule

Platform 
validation



Ongoing & Future Work
 Extensions

 Scheduling parallel DMA activity
 Full dataflow (FIFO buffers) support

 Interaction with high level tools:
 Parallelization tools
 Data distribution tools

 Dynamic resource management
 Hybrid approaches (offline + online)
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