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Outline 

Context
– Introduced by Marco Bekooij
– Focus: computing settings that guarantee temporal behaviour

Application requirements
– Definition of classes of applications
– Guarantees on temporal behaviour only possible for a class of 

applications 

Architecture requirements
– Different classes of run-time arbiters
– Model independent of other jobs only possible for a class of schedulers

Experimental results

Conclusion
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Context 

Applications
– Jobs process streams of data
– Job is a task graph
– Multiple jobs executing concurrently

Architecture
– Multi-processor
– Local memories and caches + SDRAM

Real-time
– Firm real-time constraints (deadline miss causes significant drop in 

quality)
– Worst case execution times of tasks potentially unsafe (e.g. caches)
– Data-dependent execution rates
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Focus 

Objective 
– Compute settings, e.g. scheduler settings and buffer capacities, that 

guarantee lower bound on throughput and upper bound on latency of a job

Guarantees on temporal behaviour requires
– Functionally deterministic jobs
– Guarantees on deadlock-freedom

Guarantees on temporal behaviour of a job requires
– Run-time schedulers that guarantee resource budgets
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Focus 

Objective 
– Compute settings, e.g. scheduler settings and buffer capacities, that 

guarantee lower bound on throughput and upper bound on latency of a job

Guarantees on temporal behaviour requires
– Functionally deterministic jobs
– Guarantees on deadlock-freedom

Guarantees on temporal behaviour of a job requires
– Run-time schedulers that guarantee resource budgets

guarantees ⇒ restrictions
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Deadlock-freedom

Guarantees on throughput and latency requires 
– guarantees on progress, i.e. guarantees on deadlock-freedom

For Turing complete models, deadlock-freedom undecidable
– Otherwise halting problem decidable

Execution in bounded memory is necessary for deadlock-freedom
– For some dataflow models “execution in bounded memory” is decidable
– These dataflow models are not Turing complete
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Consistency

Consistency is necessary for execution in bounded memory

Transfer quanta on edges determine relative execution rates

Synchronous Dataflow. Lee and Messcherschmitt. 1987
Consistency in Dataflow Graphs. Lee. 1991
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Consistency

Consistency is necessary for execution in bounded memory

Transfer quanta on edges determine relative execution rates

Number of data items 
produced per execution

Number of data items
consumed per execution
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Consistency

Transfer quanta on edges determine relative execution rates

Multiple paths between two actors
– Requires check whether their exist execution rates with bounded memory
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Consistency

Fixed transfer quanta cannot model data-dependent behaviour

Specification of intervals is insufficient
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Consistency

Fixed transfer quanta cannot model data-dependent behaviour

Specification of intervals is insufficient

Therefore introduce transfer parameters to create coupling
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Scheduling

For this (Variable-Rate Dataflow) graph no periodic schedule exists

Number of executions of A relative to B varies with value of s
– Value of s can depend on the stream of data being processed
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Scheduling

For this (Cyclo-Static Dataflow) graph a static-order schedule exists

For instance AABBB

Static-order scheduling is efficient
– No scheduling overhead
– No intra-processor synchronisation costs
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Classification 

Set of all applications (incl. Dynamic Dataflow)

     Set of all functionally deterministic applications (incl. BDF)

         Set of all provably deadlock-free applications (incl. VRDF)

               Set of applications with static-order schedule (incl. CSDF)

Dynamic
Dataflow

Variable-Rate
Dataflow

Boolean Dataflow

Cyclo-Static Dataflow
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Message : application requirements

Different classes can be identified

Differentiation necessary to guarantee temporal behaviour
– Functional determinism
– Deadlock-freedom

Differentiation necessary for cost-efficient scheduling
– Static-order scheduling

Main research challenge to define models
– For which deadlock-freedom is decidable
– Data-dependent synchronisation behaviour ⇒ no static-order scheduling
– E.g. variable-rate dataflow (Wiggers, RTAS’08)
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Response times

Enabling time : sufficient data and space is available in buffers
Execution time of code-segment == time between enabling and 
finish 

– Execution in isolation
– Enabling time == start time

Response time of code-segment == time between enabling and 
finish 

– Resource is shared
– Enabling time ≠ start time
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Run-time scheduling

Response time depends on
– Execution time
– Interference from other tasks

Interference can depend on
– Number of activations of other tasks
– Execution times of other tasks

Leads to three types of schedulers
1. RT depends on activations & execution times
2. RT depends on execution times
3. RT independent
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Run-time scheduling (cont.)

► Dependence on: activations & execution times
– Classic single-processor real-time schedulers
– E.g. static priority pre-emptive

► Dependence on: execution times
– Latency-rate servers
– E.g. round-robin

► Independent: interference bounded by construction
– Budget schedulers
– E.g. time-division multiplex
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Response time calculation

Time-division multiplex (TDM) is a 
budget scheduler

Classical response time computation
– Independent of arrival times
– Assumes worst-case enabling time

Worst-case enabling time (TDM)
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Response time calculation

Time-division multiplex (TDM) is a 
budget scheduler

Classical response time computation
– Independent of arrival times
– Assumes worst-case enabling time 
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Response time calculation

Time-division multiplex (TDM) is a 
budget scheduler

Classical response time computation
– Independent of arrival times
– Assumes worst-case enabling time

Upper bound on finish time
– Independent of previous finish time
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Worst-case enabling time (TDM)
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Improved response time calculation

Traditional model
– Does not capture multiple consecutive executions in one slice
– Correct from a latency point of view
– Too pessimistic from a throughput point of view

If you know that enabling time is before previous finish time, then you 
do not always need to assume the initial pre-emption

Latency-Rate servers. Stiliadis and Varma. 1998
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Improved response time calculation

Traditional model
– Does not capture multiple consecutive executions in one slice
– Correct from a latency point of view
– Too pessimistic from a throughput point of view

If you know that enabling time is before previous finish time, then you 
do not always need to assume the initial pre-emption
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Worst-case enabling time
+

initial pre-emption Previous finish
Execution on a

P/B times slower
processor
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Experiment 

Aim: test accuracy of dataflow model

Set-up
– Producer-consumer with variable production quantum
– 2 ARM processors that share one double ported memory
– Cycle-accurate systemC model (using SWARM)
– Execution time producer > time slice producer
– Execution time consumer << time slice consumer



  
COMPANY CONFIDENTIAL

Experimental results
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Message: architectural requirements 

Different classes of schedulers can be identified

Conservative model independent of other jobs only possible for 
budget schedulers

Showed a tight conservative model for time-division multiplex
– Current (submitted) work shows extension to other budget schedulers
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Conclusion 

Objective 
– Compute settings, e.g. scheduler settings and buffer capacities, that 

guarantee lower bound on throughput and upper bound on latency of a 
job

Guarantees on temporal behaviour requires
– Functionally deterministic jobs
– Guarantees on deadlock-freedom

Guarantees on temporal behaviour of a job requires
– Run-time schedulers that guarantee resource budgets

guarantees ⇒ restrictions
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Questions?


