founded by Philips

Requirements for Application Software and Hardware
Imposed by Temporal Analysis Techniques

Marco Bekooij (NXP Semiconductors) and
Maarten Wiggers (University of Twente)

A
&

founded by

University of Twente

Enschede - The Netherlands PHILIPS

Outline

-

Context
— Introduced by Marco Bekooij
— Focus: computing settings that guarantee temporal behaviour

-

Application requirements
— Definition of classes of applications
— Guarantees on temporal behaviour only possible for a class of
applications

-

Architecture requirements
— Different classes of run-time arbiters
— Model independent of other jobs only possible for a class of schedulers

w

Experimental results

w

Conclusion

COMPANY CONFIDENTIAL

h -
P

Context

» Applications
— Jobs process streams of data
— Job is a task graph
— Multiple jobs executing concurrently

» Architecture
— Multi-processor
— Local memories and caches + SDRAM

» Real-time
— Firm real-time constraints (deadline miss causes significant drop in
quality)
— Worst case execution times of tasks potentially unsafe (e.g. caches)
— Data-dependent execution rates

COMPANY CONFIDENTIAL

h -
P

Focus

» Objective
— Compute settings, e.g. scheduler settings and buffer capacities, that
guarantee lower bound on throughput and upper bound on latency of a job

» Guarantees on temporal behaviour requires
— Functionally deterministic jobs
— Guarantees on deadlock-freedom

» Guarantees on temporal behaviour of a job requires
— Run-time schedulers that guarantee resource budgets

COMPANY CONFIDENTIAL

h -
P

Focus

» Objective
— Compute settings, e.g. scheduler settings and buffer capacities, that
guarantee lower bound on throughput and upper bound on latency of a job

» Guarantees on temporal behaviour requires
— Functionally deterministic jobs
— Guarantees on deadlock-freedom

» Guarantees on temporal behaviour of a job requires
— Run-time schedulers that guarantee resource budgets

guarantees = restrictions

COMPANY CONFIDENTIAL

h -
P

Deadlock-freedom

» Guarantees on throughput and latency requires
— guarantees on progress, i.e. guarantees on deadlock-freedom

» For Turing complete models, deadlock-freedom undecidable
— Otherwise halting problem decidable

» Execution in bounded memory is necessary for deadlock-freedom
— For some dataflow models “execution in bounded memory” is decidable
— These dataflow models are not Turing complete

COMPANY CONFIDENTIAL

h -
P

Consistency

» Consistency is necessary for execution in bounded memory

» Transfer quanta on edges determine relative execution rates

Synchronous Dataflow. Lee and Messcherschmitt. 1987
Consistency in Dataflow Graphs. Lee. 1991

COMPANY CONFIDENTIAL

h -
P

Consistency

» Consistency is necessary for execution in bounded memory

» Transfer quanta on edges determine relative execution rates

Number of data items
produced per execution

2

Number of data items
consumed per execution

COMPANY CONFIDENTIAL

h -
P

Consistency

» Transfer quanta on edges determine relative execution rates

2

» Multiple paths between two actors
— Requires check whether their exist execution rates with bounded memory

2 1

COMPANY CONFIDENTIAL

h -
P

Consistency

» Fixed transfer quanta cannot model data-dependent behaviour

» Specification of intervals is insufficient

11,2}

1.2}

COMPANY CONFIDENTIAL

h -
P

Consistency

» Specification of intervals is insufficient

COMPANY CONFIDENTIAL

o
P

Consistency

» Fixed transfer quanta cannot model data-dependent behaviour
» Specification of intervals is insufficient

» Therefore introduce transfer parameters to create coupling

s={1,2}

COMPANY CONFIDENTIAL

h -
P

Scheduling

» For this (Variable-Rate Dataflow) graph no periodic schedule exists

» Number of executions of A relative to B varies with value of s
— Value of s can depend on the stream of data being processed

s=4{1,2}

COMPANY CONFIDENTIAL

h -
P

Scheduling

» For this (Cyclo-Static Dataflow) graph a static-order schedule exists
» For instance AABBB

» Static-order scheduling is efficient
— No scheduling overhead
— No intra-processor synchronisation costs

COMPANY CONFIDENTIAL

h -
P

Classification

» Set of all applications (incl. Dynamic Dataflow)

b Set of all functionally deterministic applications (incl. BDF)

» Set of all provably deadlock-free applications (incl. VRDF)
b Set of applications with static-order schedule (incl. CSDF)
Dynamic Boolean Dataflow

Dataflow

Variable-Rate Cyclo-Static Dataflow

Dataflow

}ﬁ‘”‘:{ COMPANY CONFIDENTIAL
A

Message : application requirements

-

Different classes can be identified

-

Differentiation necessary to guarantee temporal behaviour
— Functional determinism
— Deadlock-freedom

w

Differentiation necessary for cost-efficient scheduling
— Static-order scheduling

-

Main research challenge to define models
— For which deadlock-freedom is decidable
— Data-dependent synchronisation behaviour = no static-order scheduling
— E.g. variable-rate dataflow (Wiggers, RTAS'08)

COMPANY CONFIDENTIAL

h -
P

Response times

» Enabling time : sufficient data and space is available in buffers

» Execution time of code-segment == time between enabling and
finish
— Execution in isolation
— Enabling time == start time
» Response time of code-segment == time between enabling and
finish
— Resource is shared
— Enabling time # start time

J e 2

< > < >
Execution time Response time

COMPANY CONFIDENTIAL

e,]
|

Run-time scheduling

» Response time depends on
— Execution time
— Interference from other tasks

» Interference can depend on
— Number of activations of other tasks
— Execution times of other tasks

» Leads to three types of schedulers
1. RT depends on activations & execution times
2. RT depends on execution times
3. RT independent

COMPANY CONFIDENTIAL

h -
P

Run-time scheduling (cont.)

Dependence on: activations & execution times
— Classic single-processor real-time schedulers
— E.g. static priority pre-emptive

Dependence on: execution times
— Latency-rate servers
— E.g. round-robin

Independent: interference bounded by construction
— Budget schedulers
— E.g. time-division multiplex

h -
P

COMPANY CONFIDENTIAL

Response time calculation

» Time-division multiplex (TDM) is a
budget scheduler

» Classical response time computation
— Independent of arrival times
— Assumes worst-case enabling time

‘4— Worst-case enabling time (TDM)

X COMPANY CONFIDENTIAL

Response time calculation

» Time-division multiplex (TDM) is a
budget scheduler

» Classical response time computation Tweet[]
— Independent of arrival times wcert = weet + (P - B)H > H

— Assumes worst-case enabling time

‘4— Worst-case enabling time (TDM)

COMPANY CONFIDENTIAL

Response time calculation

» Time-division multiplex (TDM) is a
budget scheduler

» Classical response time computation Tweet[]
— Independent of arrival times wcert = weet + (P - B)H > H

— Assumes worst-case enabling time

‘4— Worst-case enabling time (TDM)

. . l‘
» Upper bound on finish time £@0) = e(i)+ weett (P- B)wac}e E

— Independent of previous finish time

}d!{ COMPANY CONFIDENTIAL

Improved response time calculation

» Traditional model
— Does not capture multiple consecutive executions in one slice
— Correct from a latency point of view
— Too pessimistic from a throughput point of view

» If you know that enabling time is before previous finish time, then you
do not always need to assume the initial pre-emption

Latency-Rate servers. Stiliadis and Varma. 1998

COMPANY CONFIDENTIAL

h -
P

Improved response time calculation

» Traditional model
— Does not capture multiple consecutive executions in one slice
— Correct from a latency point of view
— Too pessimistic from a throughput point of view

» If you know that enabling time is before previous finish time, then you
do not always need to assume the initial pre-emption

f (i) = max(e(i)+ P- B, f(i- 1))+ p%f)

COMPANY CONFIDENTIAL

h -
P

Improved response time calculation

» Traditional model
— Does not capture multiple consecutive executions in one slice
— Correct from a latency point of view
— Too pessimistic from a throughput point of view

» If you know that enabling time is before previous finish time, then you
do not always need to assume the initial pre-emption

f (@)= maxfe(i)t P- B.f(i- 1))+t P%f)

Worst-case enabling time
+

initial pre-emption

COMPANY CONFIDENTIAL

h -
P

Improved response time calculation

» Traditional model
— Does not capture multiple consecutive executions in one slice
— Correct from a latency point of view
— Too pessimistic from a throughput point of view

» If you know that enabling time is before previous finish time, then you
do not always need to assume the initial pre-emption

f (@)= max(e(i)t P- B.f(i- 1))t P%f)

Worst-case enabling time
+

initial pre-emption Previous finish

COMPANY CONFIDENTIAL

h -
P

Improved response time calculation

» Traditional model
— Does not capture multiple consecutive executions in one slice
— Correct from a latency point of view

— Too pessimistic from a throughput point of view

» If you know that enabling time is before previous finish time, then you
do not always need to assume the initial pre-emption

Worst-case enabling time

h -
P

()= maxie(i)+ P- BIf(i- 1))+ P22

+
initial pre-emption

Previous finish

B

Execution on a
P/B times slower
processor

COMPANY CONFIDENTIAL

Experiment

» Aim: test accuracy of dataflow model

» Set-up
— Producer-consumer with variable production quantum
— 2 ARM processors that share one double ported memory
— Cycle-accurate systemC model (using SWARM)
— Execution time producer > time slice producer
— Execution time consumer << time slice consumer

s=|0,5]

COMPANY CONFIDENTIAL

h -
P

Experimental results

120
100
80
60

Mcycles

40
20

h -
P

swarm ——+—— v
- dataflow A+
+_____....+fr/
- ;ﬁ‘/
- /+_+,_,+
L j - e +
A//H*/
N 3
¥
| | | | |
0 5 10 15 20 25 30
executions
COMPANY CONFIDENTIAL

Message: architectural requirements

» Different classes of schedulers can be identified

» Conservative model independent of other jobs only possible for
budget schedulers

» Showed a tight conservative model for time-division multiplex
— Current (submitted) work shows extension to other budget schedulers

COMPANY CONFIDENTIAL

h -
P

Conclusion

» Objective

— Compute settings, e.g. scheduler settings and buffer capacities, that
guarantee lower bound on throughput and upper bound on latency of a

job

» Guarantees on temporal behaviour requires
— Functionally deterministic jobs
— Guarantees on deadlock-freedom

» Guarantees on temporal behaviour of a job requires
— Run-time schedulers that guarantee resource budgets

guarantees = restrictions

h -
P

COMPANY CONFIDENTIAL

Questions?

x COMPANY CONFIDENTIAL

