LooPo: Automatic Loop Parallelization

Michael Clalden

Fakultat fur Informatik und Mathematik

UNIVERSITAT
’7;"(;‘ PASSAU

Dusseldorf, November 27" 2008

Model-Based Loop Transformations

= model-based approach:

= map source code to an execution model

= find the optimal parallel solution in this model
= advantages:

+ quality metric: a given objective function

+ search and transformation completely automatic
= disadvantages:

— analysis and target code can become complex
— optimality in the model need not imply efficient target code

Universitit Passau 2

The Polytope Model

= input program:

for i = 1 to n do
for j = 0 to i + m do
A(i, j) = A(i-1, J) + A(i, J-1)
od
A(i, i+m+l) = A(i-1, i+m) + A(i, i+m)
od

= target code:

parfor p = 1 tom + n do
for t = max(p-1, 2p-m-2) to n+p-2 do
A(2+t-p, p) = A(l+t-p, p) +
A(2+t-p, p-1)
od
if p >= m+1 then
A(p-m, 1l+p) = A(p-m, p) +
A(p-m-1, p)
fi
od

E

Universitiat Passau

Overview: Parallelization Steps

= scanning / parsing
= dependence analysis

= space-time transformation:

= schedule
= allocation (placement)

= adapting granularity of parallelism (tiling)
= target code generation

= (post-processing / scripts)

Universitit Passau 4

Scanner / Parser

= Input languages:
= loop nests in C-like syntax (C/C++, Java), Fortran
= specification language for dependences

= result:
= abstract syntax tree + polytope description

= analyzes:

= affine linear expressions in loop-bounds

— polytope description per statement
= affine linear expressions in array accesses:

— affine linear function per array access

Universitiat Passau 5

Dependences

= dependence:

= different operations access same memory cell
= first access: source

= second access: destination

= read / write access — four dependence types:

= write, read: true
= read, write: anti
= write, write: output
= (read, read: input)
= flow dependences: optimized true dependences

= uniform / non-uniform

Universitiat Passau 6

Dependence Analysis

= analysis on polytope model representation

= implemented methods:

= Banerjee (restricted)
= Feautrier (more general)

= control flow fuzzy (CfFADA), can handle alternations
= result:

= polytope description of dependences
(access pairs causing memory conflict)

Universitiat Passau 7

Space-Time Transformation

goals:

= maximize parallel iterations
= minimize sequential time steps
= additional restrictions for communication / tiling

= if possible: simple computation, reduced code complexity

schedule: maps operation to (virtual) execution time step
allocation: maps operation to (virtual) processor
result: affine linear space-time transformation function

multi-dimensional mappings per statement possible

Universitiat Passau

= hyperplane method by Lamport:

= idea: construct one loop that carries all dependences
= simple, but only uniform dependences

= Feautrier scheduler:
= minimize latency: t(dest) — t(src)
= can handle non-uniform dependences

= more complex, but better results
= Darte-Vivien scheduler:

= can handle non-uniform dependences

= faster compromise, but (in theory) limited results

Universitiat Passau 9

Allocators

= Feautrier allocator:

= try to place source and destination on same processor
= minimize communication cost, maximize parallelism

= latest write access determines array element placement
= Dion-Robert allocator:

= fast, practical
= allows data placement: array elements on fixed processors (HPF)

= FCO:

= restriction: "forward communication only” (FCO):

= positive direction vector of dependences in space dimensions
= avoids deadlocks in time tiling

Universitit Passau 10

techniques deliver high degree of parallelism

but: often too fine-grained

idea: aggregate operations into larger chunks (tiles)

communicate only between tiles

1 1
Processors g

time

Universitiat Passau

11

Space / Time Tiling

= aggregate virtual processors — space tiling
= additional step: map space tiles to processors
= aggregate virtual execution steps — time tiling:

= "atomic” execution within time tiles

= communication between time tiles

Universitiat Passau 12

Code Generation

= generate loops (— CL0o0G)
= include parallelization constructs

= targets:

= distributed memory: requires communication code!
= PC clusters
= Grid
= shared memory:
= multi-core processors (OpenMP)
= general-purpose computing on graphics processing units:

= shared and distributed memory aspects

Universitiat Passau 13

Distributed Memory

= Inter-processor communication

= for clusters: o
= map virtual processors / tiles on processor nodes

= use MPI send / receive or collective operations
for exchanging data

= for Grid:

= use HOC-SA middleware

= adapt a taskfarming component for
communication between task

= create task graph: tiles + inter-task dependences

= challenges: scalability, memory usage!

Universitiat Passau

Shared Memory

= generate (synchronous) loop nest

= using OpenMP

= annotate code: parallel for loops are marked
= example (SOR):

for (glTl=-1;glTl<=floord(3*M+N-5,100);glTl++) {
fpragma omp parallel for private(vT1l,vPl,vP2,tileTl,tilePl,otherl,other2,K,I)
for (rpl=max (max(ceild(100*glT1-N-193,300),0),ceild(100*glT1-2*M-N+5,100)) ;
rpl<=min (min (floord (M, 100), floord(100*glT1+101,300)),
floord (100*glT1+99,100)) ;

rpl++) {
for (vTl=...;vTl<=...;VvT1l++) {
for (vPl=...;vPl<=...;vPl++) {

K = otherl; I = other2; A[I]=(A[1+I]+A[I-1])/2;

} Universitit Passau 15

Computing on GPUs

using graphic cards for HPC

interface for general-purpose computing:
= CUDA (Compute Unified Device Architecture)
generating loops using LooPo

memory aspects:

= shared global memory, slow
= local scratchpad memory, fast but small (16 KB)
= challenge: optimize usage of scratchpad memory

Universitiat Passau

16

Example: SOR

= successive over-relaxation (SOR):
= used in algorithms to speed up convergence

= typically used in Gauss-Seidel method

DO K=1,M
DO I=2,N-1
A(I)=(A(I-1)+A(I+1))/2.0
END DO

END DO

Universitiat Passau 17

only uniform dependences

Lamport scheduler possible

also possible: Feautrier, Darte-Vivien

different tiling choices: rectangular, parallelogram
speedup: up to 3.9 on 4 cores (97.4% efficiency)

target code: inner loop optimized to 8 assembler
iInstructions

Universitiat Passau 18

LU backward substitution

= second part of LU decomposition

DO k1=0, n-1
sum[(n-k1l-1)] = U[(n-kl1l-1)];
END DO
DO k=0, n-1
DO 1=0, k-1
sum[(n-k-1)]=sum|[(n-k-1)]-a[(n-k-1)][(n-1-1)]*U[(n-1-1)];
END DO
U[(n-k-1)]=sum[(n-k-1)]/a[(n-k-1)]1[(n-k-1)1;
END DO

Universitiat Passau 19

LU backward substitution

= non-uniform dependences

= allocator results:

= Feautrier: fully dimensional placement for all statements

= Dion-Robert: constant placement for statement #3

Universitiat Passau 20

Cholesky decomposition

= a symmetric positive-definite matrix is decomposed into:

= |ower triangular matrix and
= transpose of the lower triangular matrix

= used to solve systems of linear equations

do k=1,n
do j=1,k-1
a(k,k) = a(k, k) - a(k,Jj)*a(k,])
end do
a(k,k) = sgrt(a(k,k))
do i=k+1,n
do j=1,k-1
a(i,k) = a(i, k) - a(i,j)*a(k,J)
end do
a(i/k):a(i/k)/a(krk)
end do

end do
21

Universitiat Passau

Cholesky decomposition

= complicating factors:

= imperfectly nested loop nest
= non-uniform dependences (— no Lamport)

= use of function sqrt:
float FUNCTION sgrt (x)

FLOAT, INTENT (IN) :: x
END FUNCTION sqgrt

Universitiat Passau 22

Kernel19 Livermore

= Livermore fortran kernels
= kernel19: general linear recurrence equations

DO k= 1,n
B5[k]= SA[k] +STB5*SB[k]
STB5= B5[k] -STBS5
END DO
DO i= 1,n
B5[n-i+1]= SA[n-1i+1] +STB5*SB[n-i+1]
STB5= B5[n-1i+1] -STB5
END DO

Universitiat Passau 23

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23

