
Decomposition based Methods

for Allocation and Scheduling 

Problems arising in System Design Problems arising in System Design 

Luca Benini

*Michele Lombardi

Michela Milano

Martino Ruggiero

DEIS, University of Bologna



Talk topic & outline

Talk topic

• Context: CAD tools for applications running on MPSoCs...

• ...solution techniques for a core optimization problem

(resource allocation & scheduling)

• Practical example: a CAD tool for the Cell BE platform

Talk topic

• Context: CAD tools for applications running on MPSoCs...

• ...solution techniques for a core optimization problem

(resource allocation & scheduling)

• Practical example: a CAD tool for the Cell BE platform

Outline

• Context & Problem description

• Solution ingredients

• Solution methods

• Multi Stage Logic based Benders’ Decomposition

• Constraint Programming

• A hybrid solver

Outline

• Context & Problem description

• Solution ingredients

• Solution methods

• Multi Stage Logic based Benders’ Decomposition

• Constraint Programming

• A hybrid solver



1. Context & problem1. Context & problem



Context

Embedded System:

an information processing device embedded into another 

product

• Often dedicated to a specific application

• Often operate real time tasks

• Parallelism to contain energy consumption

• Often dedicated to a specific application

• Often operate real time tasks

• Parallelism to contain energy consumption

Multicore platforms



Design flow

It’s tricky to exploit parallelism!It’s tricky to exploit parallelism!
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General purpose Power Processing

Element (PPE)

General purpose Power Processing

Element (PPE)

On Chip memory (DRAM)On Chip memory (DRAM)

8 Synergistic Processing Elements (SPE)8 Synergistic Processing Elements (SPE)

Cell BE processor

Cell Broadband Engine: High performance multicore μPCell Broadband Engine: High performance multicore μP

• GP Processors

• Primed by PPE

• Small memory

• GP Processors

• Primed by PPE

• Small memory

8 Synergistic Processing Elements (SPE)8 Synergistic Processing Elements (SPE)

Exploiting the full power of Cell is very trickyExploiting the full power of Cell is very tricky
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A task graphA task graph The CELL platformThe CELL platform

Problem specification

@TASK_GRAPH 0 {

PERIOD 1000000

TASK t0_0 TYPE 0

TASK t0_1 TYPE 1

TASK t0_2 TYPE 2

ARC a0_0 FROM t0_0 TO t0_1 TYPE 

@PLATFORM {

# clock bus_bandwidth

1 1000

#id capacity

0 100000

1 100000

2 100000

3 100000

4 100000

2 0 1240 1351 4807

}

0

ARC a0_1 FROM t0_0 TO t0_2 TYPE 

1

}

@TRANS 0 {

#type comm rd_ls rd_lr rd_rr wr_ls wr_lr 

wr_rr

0 8033 171 212 248 113 152 190

1 3468 135 163 218 105 153 195

}

@PE 0 {

#type version dur ext_dur comp_mem

0 0 1708 1827 1213

1 0 1837 1947 2143

2 0 1240 1351 4807

}

4 100000

5 100000

}
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Solution ingredients: MILP

• It’s a declarative programming paradigm

• Problem =

• It’s a declarative programming paradigm

• Problem =
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min z = cTx

s.t. Ax ≥ b

xi ≥ 0

xi integer ∀∀∀∀i ∈∈∈∈ I

Linear objective functionLinear objective function

xi integer i Ixi integer i I

Linear constraintsLinear constraints

Efficient algorithms are available

• Simplex, interior point

• Branch & bound, branch & cut

• ...
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Introduction to Constraint Programming

• It’s another declarative programming paradigm

• Mainly targets Constraint Satisfaction Problems (NP-hard)
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A sample problem: scheduling a TGA sample problem: scheduling a TG
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Modeling with CP

CSP = <X, D, C>CSP = <X, D, C>

Variables & domains:Variables & domains:

For each task: duri
Deadline: dl

For each task: duri
Deadline: dl

STARTi ∈∈∈∈ {0, ..., dl}STARTi ∈∈∈∈ {0, ..., dl}

t0

t1 t2

t3

P0

P1

STARTi ∈∈∈∈ {0, ..., dl}

ENDi Є {0, ..., dl}

STARTi ∈∈∈∈ {0, ..., dl}

ENDi Є {0, ..., dl}

Constraints:Constraints:

∀∀∀∀i ENDi = STARTi + duri

END0 ≤ START1, END1 ≤ START3

END2 ≤ START3

cumulative([START0, START2], [dur0, dur2], [1,1], 1)

cumulative([START1, START3], [dur1, dur3], [1,1], 1)

∀∀∀∀i ENDi = STARTi + duri

END0 ≤ START1, END1 ≤ START3

END2 ≤ START3

cumulative([START0, START2], [dur0, dur2], [1,1], 1)

cumulative([START1, START3], [dur1, dur3], [1,1], 1)

Global 

Constraints

Global 

Constraints

Global 

Constraints



Solving a CP problem

Constraints:Constraints:
∀∀∀∀i ENDi = STARTi + duri
END0 ≤ START1, END1 ≤ START3
END2 ≤ START3
cumulative([START0, START2]...)

cumulative([START1, START3]...)

∀∀∀∀i ENDi = STARTi + duri
END0 ≤ START1, END1 ≤ START3
END2 ≤ START3
cumulative([START0, START2]...)

cumulative([START1, START3]...)

Data:Data:
dur =1, dur =1, dur =2,dur =1, dur =1, dur =2,

START2=0START2=0

Depth First SearchDepth First Search

POST t2
START0=0

POST t2
START0=0

Domains:Domains:

START0 ∈∈∈∈ {0,1,2,3,4}

END0 ∈∈∈∈ {0,1,2,3,4}

START1 ∈∈∈∈ {0,1,2,3,4}

END1 ∈∈∈∈ {0,1,2,3,4}

START2 ∈∈∈∈ {0,1,2,3,4}

END2 ∈∈∈∈ {0,1,2,3,4}

START3 ∈∈∈∈ {0,1,2,3,4}

END3 ∈∈∈∈ {0,1,2,3,4}

START0 ∈∈∈∈ {0,1,2,3,4}

END0 ∈∈∈∈ {0,1,2,3,4}

START1 ∈∈∈∈ {0,1,2,3,4}

END1 ∈∈∈∈ {0,1,2,3,4}

START2 ∈∈∈∈ {0,1,2,3,4}

END2 ∈∈∈∈ {0,1,2,3,4}

START3 ∈∈∈∈ {0,1,2,3,4}

END3 ∈∈∈∈ {0,1,2,3,4}

dur0=1, dur1=1, dur2=2,

dur3 = 1, dl = 4

dur0=1, dur1=1, dur2=2,

dur3 = 1, dl = 4

PropagationPropagation

FilteringFiltering

WAKE UP t2
START1=1

WAKE UP t2
START1=1

START3=2START3=2

OK!OK!

Optimality via a sequence of 

feasibility problems

Optimality via a sequence of 

feasibility problems



3. Solution methods3. Solution methods



Problem features

• Large allocation decision space

• Makespan objective
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• Makespan objective

Problem features

• Large allocation decision space

• Makespan objective

LBDLBD

#1: Logic Based Benders’ Decomposition

Integer linear model

Tij = 1 if ti on SPEj

Integer linear model

Tij = 1 if ti on SPEj

Integer linear model

Tij = 1 if ti on SPEj

T(A) > 104 T(S)!
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Tij = 1 if ti on SPEj

Mij = 1 if comp. data on SPEj

Rrj = 1 buffer local to reader

Wrj = 1 buffer local to writer
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START, END vars
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Cuts for complex problems

Most basic cut: nogoodMost basic cut: nogood

strenghten via a refinment procedurestrenghten via a refinment procedure
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strenghten via a refinment procedurestrenghten via a refinment procedure

• Select a subset of decisions (set of vars)

• Relax consequences & solve the problem again

• If still infeasible => remove vars from cut

• Iterative methods: de Siqueira and Puget, Junker

• Requires to solve O(n*log(n)) relaxed NP-hard problems

• Select a subset of decisions (set of vars)

• Relax consequences & solve the problem again

• If still infeasible => remove vars from cut

• Iterative methods: de Siqueira and Puget, Junker

• Requires to solve O(n*log(n)) relaxed NP-hard problems

TOO WEAKTOO WEAK

TM = αααα TS ⇒⇒⇒⇒ SP can be safely solved αααα timesTM = αααα TS ⇒⇒⇒⇒ SP can be safely solved αααα times



#2: pure CP approach

As for the CONS?

• Best solutions are found late

• Bad makespan estimantion at 

higher levels
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• Best solutions are found late
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higher levels

Last impr. it./number of it.Last impr. it./number of it.
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• No decomposition

• Exploit propagation to compute

makespan bounds
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In particular
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CP Model

• SPE allocation:

Ti = j iff ti on SPEj

• MEM allocation:

Mi = 1 iff ti locally allocates comp. Data

• SPE allocation:

Ti = j iff ti on SPEj

• MEM allocation:

Mi = 1 iff ti locally allocates comp. DataMi = 1 iff ti locally allocates comp. Data

Rr = 1 iff buffer local to reader

Wr = 1 iff buffer local to writer

buffer allocation constraints

memory capacity constraints

• Scheduling:

START, END vars for each operation (rd, ex, wr)

cumulative constraints for SPEs

Mi = 1 iff ti locally allocates comp. Data

Rr = 1 iff buffer local to reader

Wr = 1 iff buffer local to writer

buffer allocation constraints

memory capacity constraints

• Scheduling:

START, END vars for each operation (rd, ex, wr)

cumulative constraints for SPEs



Choose task

To SPE0
*

To SPE1
*

queue

postpone
All task ordered?

CP Search strategy

Sort by

sched. time
dur = dur0

dur = dur1

.
.
.

nextnext

To SPE2
*

.
.
.

1

3

2

T1

T2

4

W2-3

R2-3 T3

W2-4
R2-4 T4

nextnext

SPE0SPE0
SPE1SPE1

SPE1SPE1SPE0SPE0

.
.
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CP Search Extras

Thrashing...

An early bad decision sunks the performance

• randomization

• Frequent restarts

Thrashing...

An early bad decision sunks the performance

• randomization

• Frequent restarts

To SPE0
*

CP cuts

• During CP search cuts are generated and refined

• A basic cut is an infeasible SPE & MEM allocation

CP cuts

• During CP search cuts are generated and refined

• A basic cut is an infeasible SPE & MEM allocation

To SPE0

To SPE1
*

To SPE2
*

dur = dur0

dur = dur1



Three groups of instances

1. Real (90) synth benchmark – memory impact negligible)

2. Real-like, communication intensive (100)

3. Real-like, computation intensive (100)

Three groups of instances

1. Real (90) synth benchmark – memory impact negligible)

2. Real-like, communication intensive (100)

3. Real-like, computation intensive (100) Very poor impact of 

memory allocation...
same graph structure, 

Experimental setup

Negligible communication artificial durations and 

requirements

One platform

1. CELL BE

2. 6 SPE available

One platform

1. CELL BE

2. 6 SPE available

Negligible communication 

durations

Graph generator

• Random to realistic struc.

• Attribute dependencies

• TGFF file format

Graph generator
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Graph generator
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• Attribute dependencies

• TGFF file format



Results for group 1

MS-LBD CP

tasks arcs > TL time > TL time

15 9-14 0 0.42 0 0.01

15 14-27 0 0.57 0 0.01

Memory allocation has no impact on durationsMemory allocation has no impact on durations

15 14-27 0 0.57 0 0.01

25 30-56 1 80.88 0 0.12

25 56-66 2 274.39 0 0.07

30 47-72 5 354.81 1 0.90

30 73-83 7 280.02 0 0.41



Results for group 2

Memory allocation has strong impact on durationsMemory allocation has strong impact on durations

MS-LBD CP

tasks arcs > TL time > TL time

10-11 6-14 0 4.01 4 4.68

12-13 8-15 0 6.32 5 0.06

14-15 12-19 0 5.54 5 180.1614-15 12-19 0 5.54 5 180.16

16-17 15-22 0 28.35 6 226.66

18-19 17-24 0 105.50 7 10.74

20-21 21-29 1 210.89 10 ---

22-23 21-30 2 388.00 9 250.00

24-25 24-35 3 268.57 9 85.00

26-27 27-39 4 375.00 8 160.49

28-29 32-43 5 528.00 6 432.25



Results for group 3

Buffer allocation has no impact on durationsBuffer allocation has no impact on durations

MS-LBD CP

tasks arcs > TL time > TL time

10-11 6-14 0 0.21 0 0.01

12-13 8-15 0 1.16 0 0.02

14-15 12-19 0 1.00 0 0.0314-15 12-19 0 1.00 0 0.03

16-17 15-22 0 10.89 0 1.53

18-19 17-24 0 48.92 0 0.07

20-21 21-29 1 116.10 1 2.70

22-23 21-30 1 69.16 0 64.05

24-25 24-35 3 269.57 0 78.46

26-27 27-39 7 88.67 3 66.50

28-29 32-43 8 310.00 4 425.50



#3: Hybrid solver

Some considerations

• MS-LBD solver is robust due to the use of strong cuts...

• ...but it cannot effectively exploit makespan bounds

• CP solver can exploit and compute makespan bounds...

• ...it seems more capable to quickly find good solutions...

Some considerations

• MS-LBD solver is robust due to the use of strong cuts...

• ...but it cannot effectively exploit makespan bounds

• CP solver can exploit and compute makespan bounds...

• ...it seems more capable to quickly find good solutions...• ...it seems more capable to quickly find good solutions...

• ...but it cannot deal with buffer allocation

• ...it seems more capable to quickly find good solutions...

• ...but it cannot deal with buffer allocation

We could build another hybrid solver!We could build another hybrid solver!



Structure of the new hybrid (LBD like)

CP solver
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s sol
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time limit:
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time limit:

10 sec
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optimal

MS-LBD
solver

time limit:

25 sec

time limit:

25 sec

• Both solvers can improve solution & prove optimality

• Cuts greatly help the CP solver

• Both solvers can improve solution & prove optimality

• Cuts greatly help the CP solver



Results for group 1

Memory allocation has no impact on durationsMemory allocation has no impact on durations

MS-LBD CP HYB

tasks arcs > TL time > TL time > TL time

15 9-14 0 0.42 0 0.01 0 0.01

15 14-27 0 0.57 0 0.01 0 0.01

25 30-56 1 80.88 0 0.12 0 0.13

25 56-66 2 274.39 0 0.07 0 0.08

30 47-72 5 354.81 1 0.90 0 34.46

30 73-83 7 280.02 0 0.41 0 0.42



Results for group 2

Memory allocation has strong impact on durationsMemory allocation has strong impact on durations

MS-LBD CP HYB

tasks arcs > TL time > TL time > TL time

10-11 6-14 0 4.01 4 4.68 0 8.03

12-13 8-15 0 6.32 5 0.06 0 6.38

14-15 12-19 0 5.54 5 180.16 0 6.7914-15 12-19 0 5.54 5 180.16 0 6.79

16-17 15-22 0 28.35 6 226.66 0 9.22

18-19 17-24 0 105.50 7 10.74 0 54.12

20-21 21-29 1 210.89 10 --- 3 52.08

22-23 21-30 2 388.00 9 250.00 5 63.79

24-25 24-35 3 268.57 9 85.00 3 42.71

26-27 27-39 4 375.00 8 160.49 3 168.64

28-29 32-43 5 528.00 6 432.25 5 56.98



Results for group 3

Buffer allocation has no impact on durationsBuffer allocation has no impact on durations

MS-LBD CP HYB

tasks arcs > TL time > TL time > TL time

10-11 6-14 0 0.21 0 0.01 0 0.01

12-13 8-15 0 1.16 0 0.02 0 0.02

14-15 12-19 0 1.00 0 0.03 0 0.0314-15 12-19 0 1.00 0 0.03 0 0.03

16-17 15-22 0 10.89 0 1.53 0 0.95

18-19 17-24 0 48.92 0 0.07 0 0.08

20-21 21-29 1 116.10 1 2.70 0 36.66

22-23 21-30 1 69.16 0 64.05 0 3.69

24-25 24-35 3 269.57 0 78.46 0 49.65

26-27 27-39 7 88.67 3 66.50 2 133.62

28-29 32-43 8 310.00 4 425.50 3 255.01



In conclusion...

1. A number of approaches to solve an important allocation &

scheduling problem arising in CAD tools for MPSoCs

2. Nice CP features: integration & side constraints easily added

3. Hybridization & decomposition can be used to combine the

strenghts and minimize the weaknesses of different solvers

In conclusion...

1. A number of approaches to solve an important allocation &

scheduling problem arising in CAD tools for MPSoCs

2. Nice CP features: integration & side constraints easily added

3. Hybridization & decomposition can be used to combine the

strenghts and minimize the weaknesses of different solvers

Conclusion & future works

strenghts and minimize the weaknesses of different solversstrenghts and minimize the weaknesses of different solvers

Some possible developments...

1. The CELL flowmodel has changed: adapt the best approaches

2. Yet improve the solver (in particular the CP one)

3. Different instances are best tackled with different solvers =>

machine learning

4. ...any suggestion?

Some possible developments...
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2. Yet improve the solver (in particular the CP one)

3. Different instances are best tackled with different solvers =>

machine learning

4. ...any suggestion?
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Questions?
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