
Network of Excellence on
Embedded Systems Design

Welcome to the Course on
Real-Time Kernels for Microcontrollers:

Theory and Practice

Scuola Superiore Sant’Anna, Pisa
June 23-25, 2008

2

Course Program
Day 1: Monday, June 23

Morning: RT scheduling & resource management (G. Buttazzo)
RT kernels for embedded systems (P. Gai)

Afternoon: The FLEX development board (M. Marinoni)
Erika kernel and the OSEK standard (P. Gai)

Day 2: Tuesday, June 24

Morning: Developing RT appl. with Erika (P. Gai – M. Marinoni)

Afternoon: Laboratory practice (P. Gai – M. Marinoni)

Day 3: Wednesday, June 25

Morning: Embedded Systems and
Wireless Communication (P. Pagano – G. Franchino)

Afternoon: Laboratory practice (P. Pagano – G. Franchino)

3

Lecture Schedule
09:00 Morning Lecture - Part 1

11:00 Coffee Break

11:15 Morning Lecture - Part 2

13:00 Lunch Break

14:30 Afternoon Lecture - Part 1

16:15 Coffee Break

16:30 Afternoon Lecture - Part 2

18:00 End of Lectures

Real-Time Scheduling and
Resource Management

Scuola Superiore Sant’Anna

Giorgio Buttazzo
E-mail: buttazzo@sssup.it

6

Goal
Provide some background of RT theory for
implementing control applications:

Background and basic concepts

Modeling real-time activities

Real-Time Task Scheduling

Timing analysis

Handling shared resources

7

⇒ It is a computing system hidden in an object to
control its functions, enhance its performance,
manage the available resources and simplify the
interaction with the user.

Environment
actuators

sensors

user other units

Object

communication

micro-
processor

user interface

What’s an Embedded System?

What’s special in Embedded Systems?
Stringent constraints on space, weight, energy, cost
⇒ Scarce resources (processing power, memory)

⇒ Efficient resource usage at the OS level

Interaction with the environment
⇒ High responsiveness and timing constraints

⇒ Schedulability analysis and predictable behavior (RTOS)

Robustness (tolerance to parameter variations)
⇒ Overload management and system adaptation, to cope

with variable resource needs and high load variations.

9

… and many others
• mobile robot systems

• small embedded devices
⇒ cell phones
⇒ videogames
⇒ smart sensors
⇒ intelligent toys

Criticality

digital tv

Timing constraints

soft firm hard

QoS management High performance Safety critical

System Requirements

digital tv

Timing constraints

soft firm hard

QoS management High performance Safety critical

efficiency predictability

12

Importance of the RTOS
The Operating System is responsible for:

managing the available resources in an
efficient way (memory, devices, energy);

Enforcing timing constraints on computational
activities;

Providing a standard programming interface to
develop portable applications.

Providing suitable monitoring mechanisms to
trace the system evolution to support
debugging.

13

Software Vision

Environment

processor

actuators

sensorsA/D

D/A

Task Resource

14

Activation modes

Aperiodic tasks: (event driven)
tasks are activated upon the arrival of an event
(interrupt or explicit activation)

Periodic tasks: (time driven)
tasks are automatically activated by the kernel at
regular time intervals:

<read data>
<process data>

<write data>
<wait for next period>

buffer

buffer

<perform some action>
event

15

OS support for periodic tasks
task τi

wait_for_next_period();

while (condition) {

}

ready

running

idle

activeactive

idle idle

16

The IDLE state

Timer

end_cyclewake_up IDLE

dispatching

preemption

signal wait

RUNNINGREADY
terminateactivate

BLOCKED

17

SLEEP state

dispatching

preemption

signal wait

end_cycle

wake_up

RUNNING

IDLE

BLOCKED

READY

Timer

terminate
activate

create sleep
SLEEP

18

Periodic task model
τi (Φi , Ci , Ti , Di)

ri,k = Φi + (k−1) Ti

di,k = ri,k + Di

often
Φi = 0
Di = Ti

ri,k ri,k+1 t

Ti

Ci

ri,1 = Φi

relative
deadline

Di

period
absolute
deadline

di,k

19

Aperiodic task model

• Aperiodic: ri,k+1 > ri,k

• Sporadic: ri,k+1 ≥ ri,k + Ti

ri,k ri,k+1
t

τi
Ci

ri,1

Job 1 Job 2 Job 3

20

Periodic Task Scheduling
• We have n periodic tasks: {τ1 , τ2 … τn}

Goal
Execute all tasks within their deadlines
Verify feasibility before runtime

τi (Ci , Ti , Di)

Assumptions
• Tasks are execute in a single processor
• Tasks are independent (do not block or self-suspend)
• Tasks are synchronous (all start at the same time)
• Relative deadlines are equal to periods (Di = Ti)

21

Timeline Scheduling
(cyclic scheduling)

It has been used for 30 years in military
systems, navigation, and monitoring systems.

Examples
– Air traffic control

– Space Shuttle

– Boeing 777

22

Timeline Scheduling

• The time axis is divided in intervals of equal
length (time slots).

• Each task is statically allocated in a slot in
order to meet the desired request rate.

• The execution in each slot is activated by a
timer.

Method

23

Example

40 Hz

20 Hz

10 Hz

25 ms

50 ms

100 ms

f T
A

task

B

C

∆ = GCD (minor cycle)

T = lcm (major cycle)

T

0 25 50 75 100 125 150 175 200

∆

CA + CB ≤ ∆
CA + CC ≤ ∆

Guarantee:

24

Implementation

A
B

A
C

A
B

A

timer

timer

timer

timer

minor
cycle

major
cycle

25

Timeline scheduling

• Simple implementation (no real-time
operating system is required).

• Low run-time overhead.

• It allows jitter control.

Advantages

26

Timeline scheduling

• It is not robust during overloads.

• It is difficult to expand the schedule.

• It is not easy to handle aperiodic activities.

Disadvantages

27

Problems during overloads
What do we do during task overruns?

• Let the task continue
– we can have a domino effect on all the other

tasks (timeline break)

• Abort the task
– the system can remain in inconsistent states.

28

Expandibility
If one or more tasks need to be upgraded,
we may have to re-design the whole
schedule again.

Example: B is updated but CA + CB > ∆

0 25

∆

A B

29

Expandibility
• We have to split task B in two subtasks

(B1, B2) and re-build the schedule:

0 25 50 75 100

B1 B1B2 B2A A A AC
• • •

CA + CB1 ≤ ∆
CA + CB2 + CC ≤ ∆

Guarantee:

30

Expandibility
If the frequency of some task is changed,
the impact can be even more significant:

25 ms

50 ms

100 ms

25 ms

40 ms

100 ms

T T
A

task

B

C

before after

∆ = 25 ∆ = 5
T = 100 T = 200

minor cycle:
major cycle:

40 sync.
per cycle!

31

Example

T

0 25 50 75 100 125 150 175 200

∆

0 25 50 75 100 125 150 175 200

∆

T

32

Priority Scheduling

• Each task is assigned a priority based on its
timing constraints.

• We verify the feasibility of the schedule using
analytical techniques.

• Tasks are executed on a priority-based
kernel.

Method

33

Priority Assignments

• Rate Monotonic (RM):
pi ∝ 1/Ti (static)

• Earliest Deadline First (EDF):
pi ∝ 1/di (dynamic)

ri,k ri,k+1 t

Ti

Ci

ri,1 = 0

τi (Ci , Ti , Di)

di,k = ri,k + Di

Di = Ti

34

Rate Monotonic (RM)
• Each task is assigned a fixed priority

proportional to its rate.

0

500 10025 75
τA

τB

0
τC

40 80

100

35

How can we verify feasibility?
• Each task uses the processor for a fraction of

time:

i

i
i T

CU =

• Hence the total processor utilization is:

∑
=

=
n

i i

i
p T

CU
1

• Up is a misure of the processor load

36

A necessary condition

If Up > 1 the processor is overloaded hence
the task set cannot be schedulable.

However, there are cases in which Up < 1
but the task is not schedulable by RM.

37

An unfeasible RM schedule

0 9 18

6 120 183

3 6 12

9

15

15

deadline miss

τ1

τ2

944.0
9
4

6
3

=+=pU

38

Utilization upper bound

833.0
9
3

6
3

=+=pU

0 9 18

6 120 183

3 6 12

9

15

15
τ1

τ2

NOTE: If C1 or C2 is increased,
τ2 will miss its deadline!

39

A different upper bound

1
8
4

4
2

=+=pU

The upper bound Uub depends on the
specific task set.

0

4 120 8 16
τ1

τ2
4 128 16

40

The least upper bound

1

Γ

Uub

Ulub

. . .

41

A sufficient condition

If Up ≤ Ulub the task set is certainly
schedulable with the RM algorithm.

If Ulub < Up ≤ 1 we cannot say anything
about the feasibility of that task set.

NOTE

42

Basic results

()121

1

−≤∑
=

n
n

i i

i n
T
Cunder RM

In 1973, Liu & Layland proved that a set of n
periodic tasks can be feasibly scheduled

if

if and only ifunder EDF 1
1

≤∑
=

n

i i

i

T
C

Assumptions:
Independent tasks

Di = TiΦi = 0

43

RM bound for large n

()12 /1
lub −= nRM nU

for n →∞ Ulub → ln 2

44

Schedulability bound

0
10
20
30
40
50
60
70
80
90

100

1 2 3 4 5 6 7 8 9 10

69%

n

CPU%
RM EDF

45

A special case

1
8
4

4
2

=+=pU

If tasks have harmonic periods Ulub = 1.

0

4 120 8 16
τ1

τ2
4 128 16

46

Schedulability region

1
U1

U2
10.83

0.83

)12(/1

1

−≤∑
=

n
n

i
i nU

1
1

≤∑
=

n

i
iU

The U-space

RM

EDF

47

Schedulability region

1
U1

U2
10.83

0.83

The U-space

RM

EDF

τ1

τ2

Ci Ti

3

4

6

9

94.0
9
4

6
3

=+=pU

4/9

1/2

48

Schedule

0 9 18

6 120 183

3 6 12

9

15

15
τ1

τ2

EDF

RM

0 9 18

6 120 183

3 6 12

9

15

15

deadline miss

τ1

τ2

49

RM Optimality
RM is optimal among all fixed priority
algorithms:

If there exists a fixed priority assignment
which leads to a feasible schedule for Γ,
then the RM assignment is feasible for Γ.

If Γ is not schedulable by RM, then it
cannot be scheduled by any fixed priority
assignment.

50

EDF Optimality

EDF is optimal among all algorithms:

If there exists a feasible schedule for Γ,
then EDF will generate a feasible schedule.

If Γ is not schedulable by EDF, then it
cannot be scheduled by any algorithm.

51

Critical Instant
For any task τi, the longest response time occurs when it
arrives together with all higher priority tasks.

τ1

τ2

R2

τ1

τ2

R2

52

The Hyperbolic Bound

• In 2000, Bini et al. proved that a set of n
periodic tasks is schedulable with RM if:

2)1(
1

≤+∏
=

n

i
iU

53

Schedulability region

1
U1

U2
10.83

0.83

)12(/1

1

−≤∑
=

n
n

i
i nU

1
1

≤∑
=

n

i
iU

The U-space

RM

EDF

54

Schedulability region

1
U1

U2
10.83

0.83

)12(/1

1

−≤∑
=

n
n

i
i nU

1
1

≤∑
=

n

i
iU

The U-space

2)1(
1

≤+∏
=

n

i
iU

RM

EDF

55

Extension to tasks with D < T

ri,k di,k

Ci

t
τi

Di

Ti

ri,k+1

• Deadline Monotonic: pi ∝ 1/Di (static)

• Earliest Deadline First: pi ∝ 1/di (dynamic)

Scheduling algorithms

56

Deadline Monotonic

τ2

τ1

0 4 8 12 16 20 24 28

Problem with the Utilization Bound

116.1
6
3

3
2

1
>=+== ∑

=

n

i i

i
p D

CU

but the task set is schedulable.

57

How to guarantee feasibility?

ri,k di,k

Ci

t
τi

Di

Ti

ri,k+1

• Fixed priority: Response Time Analysis (RTA)

• EDF: Processor Demand Criterion (PDC)

58

Response Time Analysis
[Audsley ‘90]

• For each task τi compute the interference
due to higher priority tasks:

• compute its response time as
Ri = Ci + Ii

• verify if Ri ≤ Di

∑
<

=
ik DD

ki CI

59

Computing the interference

0 Ri

τi

τk

Interference of τk on τi
in the interval [0, Ri]: k

k

i
ik C

T
RI =

Interference of high
priority tasks on τi: k

k

i
i

k
i C

T
RI ∑

−

=

=
1

1

60

Computing the response time

k
k

i
i

k
ii C

T
RCR ∑

−

=

+=
1

1

Iterative solution:

k
k

s
i

i

k
i

s
i C

T
RCR

)1(1

1

−−

=
∑+=

ii CR =0

iterate until
)1(−> s

i
s
i RR

61

Processor Demand Criterion
[Baruah, Howell, Rosier 1990]

In any interval of time, the computation
demanded by the task set must be no greater
than the available time.

)(),(,0, 122121 ttttgtt −≤>∀

For checking the existence of feasibile schedule
and for EDF

62

Processor Demand

t1 t2

∑
≤

≥

=
2

1

),(21

td

tr
i

i

i

Cttg

The demand in [t1, t2] is the computation time of
those jobs started at or after t1 with deadline less
than or equal to t2:

63

Processor Demand
For synchronous task sets we can only analyze intervals [0,L]

L
Di Ti + Di 2Ti + Di 3Ti + Di

0 L

τi

g(0, L) ∑
=

+−
=

n

i
i

i

ii C
T

TDL
1

g(0, L)

64

Processor Demand Test

How can we bound the number of intervals in
which the test has to be performed?

Question

LC
T

TDLL
n

i
i

i

ii ≤
+−

>∀ ∑
=1

0

65

Example

τ2

τ1

0 2 6 124 8 10 14 16

0

2

4

6

8

g(0, L)

L

L

66

Bounding complexity
• Since g(0,L) is a step function, we can check

feasibility only at deadline points.

• If tasks are synchronous and Up < 1, we can
check feasiblity up to the hyperperiod H:

H = lcm(T1, … , Tn)

67

Bounding complexity
• Moreover we note that: g(0, L) ≤ G(0, L)

∑
=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −+
=

n

i
i

i

ii C
T

DTLLG
1

),0(

i

i
n

i
ii

n

i i

i

T
CDT

T
CL ∑∑

==

−+=
11

)(

∑
=

−+=
n

i
iii UDTLU

1
)(

68

Limiting L

g(0, L)

L

G(0, L)
∑
=

−+=
n

i
iii UDTLULG

1
)(),0(L

L*

for L > L*

g(0,L) ≤ G(0,L) < L

U

UDT
L

n

i
iii

−

−
=
∑
=

1

)(
1*

69

Processor Demand Test

D = {dk | dk ≤ min (H, L*)}

H = lcm(T1, … , Tn)

U

UDT
L

n

i
iii

−

−
=
∑
=

1

)(
1*

LC
T

TDLL
n

i
i

i

ii ≤
+−

>∀ ∑
=1

0U < 1 AND

A set of n periodic tasks with D ≤ T is schedulable by
EDF if and only if

70

Summarizing: RM vs. EDF

RM

EDF

Di = Ti Di ≤ Ti

ΣUi ≤ 1

LL: ΣUi ≤ n(21/n –1)

HB: Π(Ui+1) ≤ 2

LLgL ≤>∀),0(,0

O(n)

∀i Ri ≤ Di

pseudo-polynomial

k
k

i
i

k
ii C

T
RCR ∑

−

=

+=
1

1

pseudo-polynomialpolynomial:

Suff.: polynomial O(n)

RTA
Exact pseudo-polynomial

Response Time Analysis

Processor Demand Analysis

Inter-task communication
mechanisms

• Shared memory

• Message passing ports

• Asynchonous buffers

Handling shared
resources

Problems caused by
mutual exclusion

73

Critical sections
τ2τ1

globlal
memory buffer

write readx = 3;
y = 5;

a = x+1;
b = y+2;
c = x+y;

int x;
int y;

wait(s)

signal(s)

wait(s)

signal(s)

74

Blocking on a semaphore

CS

τ1 τ2

CS

p1 > p2

τ1

τ2

∆

It seems that the maximum blocking
time for τ1 is equal to the length of the
critical section of τ2, but …

75

priority ∆

Priority Inversion

Occurs when a high priority task is blocked by
a lower-priority task a for an unbounded

interval of time.

76

Resource Access Protocols

Under fixed priorities
• Non Preemptive Protocol (NPP)
• Highest Locker Priority (HLP)
• Priority Inheritance Protocol (PIP)
• Priority Ceiling Protocol (PCP)

Under EDF
• Stack Resource Policy (SRP)

77

Non Preemptive Protocol
• Preemption is forbidden in critical sections.

• Implementation: when a task enters a CS, its
priority is increased at the maximum value.

PROBLEMS: high priority tasks that do
not use CS may also block

ADVANTAGES: simplicity

78

Conflict on critical section

τ1

priority B

τ2

τ3

79

Schedule with NPP

priority

τ1

τ2

τ3

PCS = max{P1, … Pn}

80

Problem with NPP

priority

τ1

τ2

τ3

τ1 cannot preemt, although it could

useless
blocking

81

Highest Locker Priority

A task in a CS gets the highest priority
among the tasks that use it.

FEATURES:

• Simple implementation.

• A task is blocked when attempting to preempt,
not when entering the CS.

82

Schedule with HLP
priority

τ1

τ2

τ3

τ2 is blocked, but τ1 can preempt within a CS

PCS = max {Pk | τk uses CS}

83

Problem with HLP

CS

test

τ1

CS

τ2

τ1

τ2

p1
p2

τ1 blocks just in case ...

84

Priority Inheritance Protocol
[Sha, Rajkumar, Lehoczky, 90]

• A task in a CS increases its priority only if it
blocks other tasks.

• A task in a CS inherits the highest priority
among those tasks it blocks.

PCS = max {Pk | τk blocked on CS}

85

Schedule with PIP
priority

τ1

τ2

τ3

p1

p3

direct blocking

push-through blocking

86

Types of blocking
• Direct blocking

A task blocks on a locked semaphore

• Push-through blocking
A task blocks because a lower priority
task inherited a higher priority.

BLOCKING:
a delay caused by a lower priority task

87

Identifying blocking resources
• A task τi can be blocked by those

semaphores used by lower priority tasks and
• directly shared with τi (direct blocking) or

• shared with tasks having priority higher than τi
(push-through blocking).

Theorem: τi can be blocked at most once
by each of such semaphores

Theorem: τi can be blocked at most once
by each lower priority task

88

Bounding blocking times
• If n is the number of tasks with priority less

than τi

• and m is the number of semaphores on
which τi can be blocked, then

Theorem: τi can be blocked at most for
the duration of min(n,m) critical
sections

89

Example
priority

B Cτ1

τ2

τ3

A

C

DB

A

D

• τ1 can be blocked once by τ2 (on A2 or C2) and
once by τ3 (on B3 or D3)

• τ2 can be blocked once by τ3 (on B3 or D3)

• τ3 cannot be blocked

90

Schedule with PIP
priority

τ1

τ2

τ3

τ4

P2

P1

91

Remarks on PIP

ADVANTAGES
• It is transparent to the programmer.

• It bounds priority inversion.

PROBLEMS
• It does not avoid deadlocks and

chained blocking.

92

Chained blocking with PIP

Theorem: τi can be blocked at most once
by each lower priority task

priority B1

τ1

τ2

τ3

B2 B3

τ4

93

Priority Ceiling Protocol

• Can be viewed as PIP + access test.

• A task can enter a CS only if it is free and there
is no risk of chained blocking.

To prevent chained blocking, a task may stop at
the entrance of a free CS (ceiling blocking).

94

Resource Ceilings

C(sk) = max {Pj : τj uses sk}

• Each semaphore sk is assigned a ceiling:

Pi > max {C(sk) : sk locked by tasks ≠ τi}

• A task τi can enter a CS only if

95

Schedule with PCP
s1 C(s1) = P1

s2 C(s2) = P1priority

τ1

τ2

τ3
t1

t1: τ2 is blocked by the PCP, since P2 < C(s1)

96

PCP properties
Theorem 1

Under PCP, each task can block at most once.

Theorem 2

PCP prevents chained blocking.

Theorem 3

PCP prevents deadlocks.

97

Remarks on PCP

ADVANTAGES
• Blocking is reduced to only one CS

• It prevents deadlocks

PROBLEMS
• It is not transparent to the programmer:

semaphores need ceilings

98

Typical Deadlock
τ1 τ2

τ1

τ2

blocked

blocked

P1 > P2

A

B

B

A

99

Deadlock avoidance with PCP
τ1 τ2

τ1

τ2

P1 > P2

A

B

B

A

CA = P1

CB = P1

ceiling blocking

100

Guarantee with resource
constraints

• We select a scheduling algorithm and a
resource access protocol.

• We compute the maximum blocking times
(Bi) for each task.

• We perform the guarantee test including the
blocking terms.

101

Guarantee with RM (D = T)

preemption
by HP tasks

τi

blocking by
LP tasks

()121
1

1

−≤
+

+∀ ∑
−

=

/i

i

ii
i

k k

k i
T

BC
T
Ci

By LL test:

102

Guarantee with RM (D ≤ T)

preemption
by HP tasks

τi

blocking by
LP tasks

k
k

i
i

k
iii C

T
RBCR ∑

−

=

++=
1

1

∀i Ri ≤ DiBy RTA test:

103

Resource Sharing under EDF
The protocols analyzed so far have been
originally developed for fixed priority scheduling
schemes. However:

• NPP can also be used under EDF

• PIP has been extended under EDF by Spuri (1997).

• PCP has been extended under EDF by Chen-Lin
(1990)

• In 1990, Baker proposed a new protocol that works
both under fixed and dynamic priorities.

104

Stack Resource Policy [Baker 1990]

• It works both with fixed and dynamic
priority

• It limits blocking to 1 critical section

• It prevents deadlock

• It supports multi-unit resources

• It allows stack sharing

• It is easy to implement

105

Stack Resource Policy [Baker 90]

• For each resource Rk:
⇒ Maximum units: Nk

⇒ Available units: nk

Nk

nk

Rk

• For each task τi the system keeps:

⇒ its resource requirements:

⇒ a priority pi:

⇒ a static preemption level:

ii Tp 1∝ ii dp 1∝

ii D1∝π

RM EDF

µi(Rk)

106

Resource ceiling

System ceiling { })(max kkks nC=Π

Stack Resource Policy [Baker 90]

)(:max)(kjkjjkk RnnC µπ <=

SRP Rule

A job cannot preempt until
pi is the highest and πi > Πs

107

Computing Resource Ceilings
NR

3

2

RA

RB

A(3)

B(1)A(1)

B(2)

τ1

τ2

τ3

τ1

τ2

τ3

Di πi

3

2

1

10

15

20

µA µB

3

1

0

0

1

2

108

Computing Resource Ceilings
NR

3

2

RA

RB

CR(3)

0

-

RA

RB

CR(2) CR(1) CR(0)

3

0

3

1

3

2

τ1

τ2

τ3

Di πi

3

2

1

10

15

20

µA µB

3

1

0

0

1

2

109

Schedule with SRP

τ1

τ2

τ3

Πs
π3

π2

π1

NR CR(3) CR(2) CR(1) CR(0)
0
-

RA

RB

3
0

3
1

3
2

3
2

B

B B

A

A

A task blocks when attempting to preempt

A(3)

B(1)A(1)

B(2)

τ1
τ2
τ3

110

Schedule with PCP

τ1

τ2

τ3

p3

P3

P2

P1

B

B

A

A

sA C(sA) = P1

sB C(sB) = P2

B B

P2

A task is blocked when accessing a resource

A(3)

B(1)A(1)

B(2)

τ1
τ2
τ3

111

Lemma

SRP Properties

If πi > CR(nk) then there exist enough units of R

1. to satisfy the requirements of τi

2. to satisfy the requirements of all tasks that
can make preemption on τi

112

SRP Properties
Theorem 1

Under SRP, each task can block at most once.

τ1

τ2

τ3

B

B B

A

A

Consider the following scenario where τ1 blocks twice:

This is not possible, because τ2 could not preempt τ3

because, at time t*, π2 < Πs

t*

113

SRP Properties

If πi > Πs then τi will never block once started.

Theorem 2

Since Πs = max{CR(nk)}, then there are enough
resources to satisfy the requirements of τi and those
of all tasks that can preempt τi .

Proof

Question
If a task can never block once started, can we get
rid of the wait / signal primitives?

114

SRP Properties

SRP prevents deadlocks.

Theorem 3

From Theorem 2, if a task can never block once
started, then no deadlock can occur.

Proof

115

Deadlock avoidance with SRP
τ1 τ2

τ1

τ2

π1 > π2

A

B

B

A

116

1
1

1

≤
+

+∀ ∑
−

= i

ii
i

k k

k

T
BC

T
Ci

Schedulability Analysis
under EDF

When Di = Ti

Bi can be computed as under PCP and refers to the
length of longest critical section that can block τi.

117

EDF Guarantee: PD test (Di ≤ Ti)

τ1

τi

...

τk

τn

Tasks are ordered by decreasing preemption level

118

Schedulability Analysis
under EDF

When Di ≤ Ti

LC
T

DTLB
n

k
k

k

kk
i ≤

−+
+ ∑

=1

A task set is schedulable if U < 1 and ∀L ∈ D

∀i

where D = {dk | dk ≤ min (H, L*)}

H = lcm(T1, … , Tn) U

UDT
L

n

i
iii

−

−
=
∑
=

1

)(
1*

119

Stack Sharing
Each task normally uses a private stack for

• saving context (register values)
• managing functions
• storing local variables

stack

stack pointer
PUSH

POP

120

Stack Sharing

stack

τ1

τ2
SP2

SP1

Why stack cannot be normally shared?

Suppose tasks share a resource: A

blocked
big problems

121

Stack Sharing
Why stack can be shared under SRP?

stack

τ1

τ2
SP2

SP1

SP2

122

Saving Stack Size
To really save stack size, we should use a
small number of preemption levels.

100 tasks

10 Kb stack per task
stack size = 1 Mb

10 preemption levels

10 tasks per group
stack size = 100 Kb

stack saving = 90 %

123

NOTE on SRP
SRP for fixed priorities and single-unit resources
is equivalent to Higher Locker Priority.

It is also referred to as Immediate Priority Ceiling

τ1

τ2

τ3

Πs
π3

π2

π1

B

B B

A

A

124

Non-preemtive scheduling
It is a special case of preemptive scheduling where
all tasks share a single resource for their entire
duration.

τ1

τ2

τ3 R

R

R

The max blocking time for task τi is given by the
largest Ck among the lowest priority tasks:

Bi = max{Ck : Pk < Pi}

125

Advantages of NP scheduling
• Reduces runtime overhead

Less context switches

No semaphores are needed for critical sections

• Reduces stack size, since no more than one task
can be in execution.

• Preserves program locality, improving the
effectiveness of

Cache memory

Pipeline mechanisms

Prefetch queues

126

• As a consequence, task execution times are
Smaller

More predictable

preemptive

non-preemptive

Cmin C

Advantages of NP scheduling

127

τ1

τ2
0

100 205 15 25

217 14

30

28 35

35

RM

τ1

τ2
0

100 205 15 25

217 14

30

28 35

35

NP-RM
deadline miss

97.0
7
4

5
2

≅+=U

Advantages of NP scheduling
In fixed priority systems can improve schedulabiilty:

128

τ1

τ2 ∞
T2

T1

C1 = ε

C2 = T1

U =
ε

T1
+

∞

C2 0

Disadvantages of NP scheduling
• In general, NP scheduling reduces schedulability.

• The utilization bound under non preemptive
scheduling drops to zero:

129

Non preemptive scheduling anomalies

τ1

τ2

τ3

τ1

τ2

τ3

deadline missdouble speed

130

Trade-off solutions
Preemption thresholds
Each task has two priorities:

• Nominal priority (ready priority): used to enqueue
the task in the ready queue

• Threshold priority: used for task execution

threshold
nominal

nominal priority ≤ threshold priority

131

Preemption thresholds

• Nominal pr. = threshold: ⇒ fully preemptive

• Threshold = Pmax ⇒ fully non preemptive

P2

P1

P3

thresholds

θ1 = P1

θ2 = P2

θ3 = P2

In general:

132

Trade-off solutions
Tunable Preemptive Systems

• Compute the longest non-preemptive section that allows
a feasible schedule.

• Allow preemption only in certain points in the code.

pp1

pp2

pp3

pp1 pp2 pp3

Task code

preemption points

