
Evidence Srl - info@evidence.eu.com – 2008

Real-time kernels for embedded systems

Paolo Gai

Evidence Srl

http://www.evidence.eu.com



Evidence Srl - info@evidence.eu.com – 2008

summary

� embedded systems – typical features

� designed to be small

� scheduling algorithms for small embedded systems

� the OSEK/VDX standard

� I/O management



Evidence Srl - info@evidence.eu.com – 2008

part I

embedded systems

-

typical features



Evidence Srl - info@evidence.eu.com – 2008

software used in automotive systems

The software in powertrain systems

� boot and microcontroller related features

� real-time operating system 
� provides abstractions (for example: task, semaphores, …)

� an interaction model between hardware and application

� separates behavior from infrastructures

� debugging simplification

� I/O Libraries
� completes the OS with the support of the platform HW

� 10 times bigger than a minimal OS

� application
� implements only the behavior and not the infrastructures (libraries)

� independent from the underlying hardware

� the operating system is a key element in the architecture of 
complex embedded systems



Evidence Srl - info@evidence.eu.com – 2008

typical microcontroller features

let's try to highlight a typical scenario that applies to embedde 
platforms

� embedded microcontroller

� depending on the project, that microcontroller will be @ 8, 16, or 32 
bit

� typically comes with a rich set of interfaces

� timers (counters / CAPCOM / Watchdog / PWM)

� A/D and D/A

� communication interfaces (I2C, RS232, CAN, Infrared, ...)

� ~50 interrupts (the original PC interrupt controller had only 15!!!)

� memory

� SRAM / FLASH / ...

� other custom HW / power circuits



Evidence Srl - info@evidence.eu.com – 2008

Hitachi H8



Evidence Srl - info@evidence.eu.com – 2008

Motorola MPC565

� 1M byte of internal FLASH memory (divided into 
two blocks of 512K bytes)

� 36K bytes Static RAM

� Three time processor units (TPU3)

� A 22-timer channel modular I/O system (MIOS14)

� Three TouCAN modules

� Two enhanced queued analog system with analog 
multiplexors (AMUX) for 40 total analog channels. 
These modules are configured so each module can 
access all 40 of the analog inputs to the part.

� Two queued serial multi-channel modules, each of 
which contains a queued serial peripheral interface 
(QSPI) and two serial controller interfaces 
(SCI/UART)

� A J1850 (DLCMD2) communications module

� A NEXUS debug port (class 3) – IEEE-ISTO 5001-
1999

� JTAG and background debug mode (BDM)



Evidence Srl - info@evidence.eu.com – 2008

Microchip dsPIC

� Single core architecture / Familiar MCU look and feel / DSP performance

� Rich peripheral options / Advanced interrupt capability / Flexible Flash memory

� Self-programming capability / Low pin count options / Optimized for C



Evidence Srl - info@evidence.eu.com – 2008

RAM vs ROM usage

� consider a mass production market: ~ few M boards sold

� development cost impacts around 10%

� techniques for optimizing silicon space on chip

� you can spend a few men-months to reduce the footprint of the 
application

� memory in a typical SoC

� 512 Kb Flash, 16 Kb RAM

Sample die of a  speech-processing chip

sample SoC (speech process. chip for 

security apps) picture

• 68HC11 micro

• 12Kb ROM

• 512 bytes RAM in approx. the same 
space (24x cost!)



Evidence Srl - info@evidence.eu.com – 2008

wrap-up

typical scenario for an embedded system

� microcontroller (typically with reduced number instruction 
numbers

� lack of resources (especially RAM!!!)

� dedicated HW

� dedicated interaction patterns

� a microwave oven is -not- a general purpose computer

these assumptions leads to different programming styles, and 
to SW architectures different from general purpose 
computers



Evidence Srl - info@evidence.eu.com – 2008

Part II

designed to be small



Evidence Srl - info@evidence.eu.com – 2008

the problem...

� let's consider typical multiprogrammed environments

� Linux/FreeBSD have footprints in the order of Mbytes!!!

� the system we want to be able must fit on a typical 
system-on-chip memory footprint

� that is, around 10 Kb of code and around 1 Kb of RAM...

the objective now is to make a 
reduced system 

that can fit in small scale microcontrollers!!!



Evidence Srl - info@evidence.eu.com – 2008

POSIX does not (always) mean minimal

� a full-fledged POSIX footprints around 1 Mb

� use of profiles to support subset of the standard

� a profile is a subset of the full standard that lists a set of 
services typically used in a given environment

� POSIX real time profiles are specified by the ISO/IEEE 
standard 1003.13



Evidence Srl - info@evidence.eu.com – 2008

POSIX 1003.13 profiles

� PSE51 minimal realtime system profile

� no file system

� no memory protection

� monoprocess multithread kernel

� PSE52 realtime controller system profile

� PSE51 + file system + asynchronous I/O

� PSE53 dedicated realtime system profile

� PSE51 + process support and memory protection

� PSE54 multi-purpose realtime system profile

� PSE53 + file system + asynchronous I/O



Evidence Srl - info@evidence.eu.com – 2008

POSIX top-down approach

� POSIX defines a top-down approach towards embedded 
systems API design
� the interface was widely accepted when the profiles came out

� these profiles allow easy upgrades to more powerful systems

� possibility to reuse previous knowledges and code

� PSE51 systems around 50-150 Kbytes

� that size fits for many embedded devices, like single board PCs

� ShaRK is a PSE51 compliant system



Evidence Srl - info@evidence.eu.com – 2008

SoC needs bottom-up approaches!

� we would like to have footprint in the order of 1-10 Kb

� the idea is to have a bottom-up approach

� starting from scratch, design 

� a minimal system 

� that provides a minimal API

� that is able to efficiently describe embedded systems

� with stringent temporal requirements

� with limited resources

results:

� RTOS standards (OSEK-VDX, uITRON)

� 2 Kbytes typical footprint



Evidence Srl - info@evidence.eu.com – 2008

typical footprints

code
size

1kb

10kb

100kb

1000kb

OSEK/VDX

POSIX
PSE51/52

POSIX
PSE54

(Linux, FreeBSD)

VXworks
eCOS

Linux
real-time

threadX

tinyOS
ERIKA

SHaRK

µITRON



Evidence Srl - info@evidence.eu.com – 2008

step 1: the boot code

� starting point

� the microcontroller

� boot code design

� typically there will be a startup routine called at startup

� that routine will handle 

� binary image initialization (initialized data and BSS)

� initialization of the microcontroller services (segments/memory 
addresses/interrupt vectors)

� and will finally jump to an initialization C routine

� RTOS- independent interrupt handling

� interrupt handlers that allow an interrupt to fire and to return to the 
interrupted point, without any kind of rescheduling

� OSEK calls these handlers “ISR type 1”



Evidence Srl - info@evidence.eu.com – 2008

after step 1: a non concurrent system

� basic 1-task non-preemptive system

� good for really really small embedded devices

� footprint around a few hundred bytes

� e.g., PIC

� next step: add some kind of multiprogramming environment



Evidence Srl - info@evidence.eu.com – 2008

step 2: multiprogramming environment

� right choice of the multiprogramming environment 

� cuncurrent requirements influences RAM footprint

Questions:

� what kind of multiprogramming model is really needed for 
automotive applications?

� which is the best semantic that fits the requirements? 

� preemptive or non preemptive?

� off-line or on-line scheduling?

� support for blocking primitives?



Evidence Srl - info@evidence.eu.com – 2008

step 2: off-line, non real-time

� not all the systems requires full multiprogramming support

� off-line scheduled systems typically requires simpler 
scheduling strategies

� example: cyclic scheduling

� non real-time systems may not require complex scheduling 
algorithms

� http://www.tinyos.net

� component-based OS written in NesC

� used for networked wireless sensors

� provides interrupt management and FIFO scheduling in a few 
hundred bytes of code



Evidence Srl - info@evidence.eu.com – 2008

step 2: stack size

Stack sizes highly depend on the scheduling algorithm used

� non-preemptive scheduling requires only one context

� under certain conditions, stack can be shared

� priorities do not have to change during task execution

� Round Robin cannot share stack space

� blocking primitives should be avoided

� POSIX support blocking primitives

� otherwise, stack space scales linearly with the number of 
tasks



Evidence Srl - info@evidence.eu.com – 2008

step 3: ISR2

� some interrupts should be RTOS-aware

� for example, the application could use a timer to activate tasks

� need for handlers that are able to influence the RTOS 
scheduling

� OSEK calls these handlers “ISR type 2”

� need for interrupt nesting

� scheduling decisions taken only when the last interrupt ends

� ISR type 1 always have priority greater than ISR type 2



Evidence Srl - info@evidence.eu.com – 2008

step 4: careful selection of services

� to reduce the system footprint, system services must be 
carefully chosen

� no memory protection

� no dynamic memory allocation

� no filesystem

� no blocking primitives

� no software interrupts

� no console output

� ...including only what is really needed

� basic priority scheduling

� mutexes for resource sharing

� timers for periodic tasks



Evidence Srl - info@evidence.eu.com – 2008

standardized APIs

� there exists standards for minimal RTOS support
� automotive applications, OSEK-VDX

� japanese embedded consumers, uITRON

� and for I/O libraries

� automotive applications, HIS working group



Evidence Srl - info@evidence.eu.com – 2008

part III

scheduling algorithms

for

small embedded systems



Evidence Srl - info@evidence.eu.com – 2008

sharing the stack

� the goal of our design is to produce a system that can save 
as much RAM memory as possible

� RAM is used for

� storing application data

� storing thread stacks

� a good idea would be to try to reduce as much as possible 
stack usage, sharing the stack stack space among different 
threads.

Now the question is:

When does the stack can be shared
among different tasks?



Evidence Srl - info@evidence.eu.com – 2008

sharing the stack (2)

� in general, the stack can be shared every time we can 
guarantee that two tasks will not be interleaved

T1

T2

interleaved execution

T2

T3

not interleaved execution

T1

� stack sharing under fixed priority scheduling

� tasks have the same priority

� tasks do NOT block (no shared resources)



Evidence Srl - info@evidence.eu.com – 2008

an example

� suppose to have a system

� that schedules tasks using fixed priorities

� where each task do not block

� suppose to have 3 different scheduling priorities

� suppose that 

� priority 1 (lowest) has three tasks with stack usage 7, 8, 15

� priority 2 (medium) has two tasks with stack usage 10 and 3

� priority 3 (highest) has a task with stack usage 1

� the total stack usage will be

� max(7,8,15)+max(10,3)+max(1) = 26

� whereas the sum of all the stacks is 44



Evidence Srl - info@evidence.eu.com – 2008

using resources...

� the model where the different tasks do not interact is not 
realistic

� we would like to let the different tasks 

� share some resources

� still maintaining some timing properties (e.g., meet deadlines)

� and, if possible, minimize the stack space (RAM) needed

� the first problem that must be addressed is the Priority 
Inversion problem



Evidence Srl - info@evidence.eu.com – 2008

priority inversion

suppose to have 2 tasks that share a resource

� the High Priority task can be delayed because of some low 
priority task

T1

T2

T3

critical section

normal execution

SW

W S

Deadline miss!!!



Evidence Srl - info@evidence.eu.com – 2008

priority inheritance

� first Solution (Priority Inheritance/Original Priority Ceiling):

� the low priority task inherits the priority of T1
� note that the execution of T1 and T3 are interleaved!

T1

T2

T3

critical section

normal execution

S
W

W S

Push-Through
Blocking



Evidence Srl - info@evidence.eu.com – 2008

can we share the stack?

� sharing stack space means that two task instances can use 
the same stack memory area in different time instants

� in normal preemptive fixed priority schedulers, tasks cannot
share stack space

� because of blocking primitives

� recalling the PI example showed before, T1 and T3 cannot share the 
same stack space at the same time

T1

T2

T3 S
W

W S



Evidence Srl - info@evidence.eu.com – 2008

yes!

� stack can be shared also when mutual exclusion between 
shared resources have to be guaranteed

� the idea is that a task can start only when all the resources 
it needs are free

� this idea leads to two protocols

� Immediate Priority Ceiling (Fixed Priority-based)

� Stack Resource Policy (EDF-based)



Evidence Srl - info@evidence.eu.com – 2008

IPCP /SRP

� solution (Immediate Priority Ceiling, Stack Resource Policy)

� a task is allowed to execute when there are enough free 
resources

� T1 and T3 are NOT Interleaved!

T1

T2

T3

critical section

normal execution

SW

W S

Delayed execution



Evidence Srl - info@evidence.eu.com – 2008

IPCP/SRP (2)

� tasks can share a single user-level stack

T1

T2

T3

IPCP/SRP
stack usage

without
IPCP/SRP



Evidence Srl - info@evidence.eu.com – 2008

implementation tips

the tradictional thread model

� allows a task to block

� forces a task structure

� in general, all tasks can preempt each other

� also, tasks can block on semaphores

� a stack is needed for each task that can be preempted

� the overall requirement for stack space is the sum of all 
task requirements, plus interrupt frames

Task x()

{

int local;

initialization();

for (;;) {

do_instance();

end_instance();

}

}

how can two threads share the same stack space?



Evidence Srl - info@evidence.eu.com – 2008

kernel-supported stack sharing

� the kernel really manages only a single stack that is shared 
by ALL the tasks

� also interrupts use the same stack

� kernel must ensure that tasks never block

� it would produce interleaving between tasks, that is not supported 
since there is only one stack

T1T2

T1

T2

T3

User Stack

T3



Evidence Srl - info@evidence.eu.com – 2008

one shot model

� to share the stack the one shot task model is needed

� in OSEK/VDX, these two kinds of task models are 
extended and basic tasks

Task(x)

{

int local;

initialization();

for (;;) {

do_instance();

end_instance();

}

}

int local;

Task x()

{

do_instance();

}

System_initialization()

{

initialization();

...

}

Extended Tasks Basic Tasks (one shot!)



Evidence Srl - info@evidence.eu.com – 2008

is there a limit?

� we are able to let tasks share the same stack space

� but only between tasks of the same priority

� can we do better?

� the limit for stack reduction is to schedule all the tasks using
a non-preemptive algorithm

� only one stack is needed

� not all the systems can afford that

� the idea is to limit preemptability without impacting on the 
schedulability of the system using Preemption Thresholds



Evidence Srl - info@evidence.eu.com – 2008

preemption thresholds

(technique first introduced by Express Logic inside the ThreadX kernel; 
further studied by Saksena and Wang])

� derived from Fixed priority scheduling

� two priorities

� ready priority used for queuing ready tasks

� dispatch priority used for the preemption test

� ready priority <= dispatch priority

� the dispatch priority is also called threshold



Evidence Srl - info@evidence.eu.com – 2008

disabling preemption

� preemption thresholds are used to disable preemption 
between tasks

these tasks cannot preempt each other!

Task A

Task B

ready Priority (A)

dispatch Priority (B)

dispatch Priority (A)

ready Priority (B)

Higher 
priorities



Evidence Srl - info@evidence.eu.com – 2008

another interpretation of preemption thresholds

� consider a system that uses fixed priorities with immediate 
priority ceiling

� consider the task set

� let each two tasks that are mutually non-preemptive 
share a pseudo-resource

� the pseudo resource is automatically 

� locked when the task starts

� unlocked when the task ends

� ready priority task's priority

� dispatch priority max(ceiling of a pseudo-resource 
used by the task)

� preemption thresholds = traditional fixed priorities when 
ready priority = dispatch priority



Evidence Srl - info@evidence.eu.com – 2008

preemption thresholds and IPCP

� preemption thresholds under IPCP can be thought as a 
straightforward extension

� each task 

� is scheduled using IPCP

� is assigned some pseudo-resource that is automatically 
locked/unlocked

� ready priority priority of each task

� dispatch priority max(ceiling of a pseudo-resource 
used by the task)

� OSEK/VDX calls this feature “Groups of tasks”, and “Internal 
resources”



Evidence Srl - info@evidence.eu.com – 2008

why disabling preemption?

� preemption is usually used to enhance response time

� the objective is to disable the preemption maintaining the 
timing constraints of the system

� reducing the preemption let more tasks share the same 
stack

� it is important not to reduce the preemption too much

� a non-preemptive system is easily non schedulable

Why?



Evidence Srl - info@evidence.eu.com – 2008

enhancing schedulability

� premption thresholds have the nice property to 
enhance schedulability

� Example [Saksena, Wang,99] :

� three periodic tasks with relative deadlines

� the system is NOT schedulable with fixed priorities or non-
preemptive scheduling

� but is schedulable using preemption thresholds

� (T1,T2) and (T2,T3) are mutually non preemptive tasks

response time

Task Ci Ti Di ready priority preemptive non-preemptive

T1 20 70 50 3 20 55

T2 20 80 80 2 40 75

T3 35 200 100 1 115 75

Task ready priority dispatch priority response time

T1 3 3 40

T2 2 3 75

T3 1 2 95



Evidence Srl - info@evidence.eu.com – 2008

minimizing stack space

� preemption thresholds are used to reduce stack space

� the idea is to selectively reduce the preemption between 
tasks, to let tasks share their stack

� the approach is done in three steps

1) search for a schedulable solution

2) threshold computation

3) stack computation



Evidence Srl - info@evidence.eu.com – 2008

search for a schedulable solution

� the staring point is a set of tasks with requirements that 
comes out from the application domain

� periodicity, relative deadline, jitter

� this step should produce a feasible priority assignment
composed by ready and dispatch priority for each task

� EDF

� EDF + SRP assignment is 
typically a good choice

� fixed priorities

� traditional methods

� Rate Monotonic

� Deadline Monotonic

� others [Saksena, Wang, 99]

� greedy algorithms

� simulated annealing



Evidence Srl - info@evidence.eu.com – 2008

threshold computation

� the schedulable solution found at the previous step consists 
in a ready and a dispatch priority value for each task

� observation: raising a dispatch priority

� helps stack sharing 
(tasks easily become mutually non-preemptive)

� makes feasibility harder
(the system tends more to non-preemptive)

� the objective of this phase is to reduce unnecessary 
preemptability inserted by the values of the scheduling 
attributes

� algorithm proposed by [Saksena, Wang, 00]



Evidence Srl - info@evidence.eu.com – 2008

threshold computation (2)

� main idea: raise the dispatch priority as much as we can, 
maintaining schedulability

1. start from the highest priority task

2. raise its dispatch priority until 

� it is equal to the maximum priority

� the system is not schedulable

3. consider the next task

4. go to step 2



Evidence Srl - info@evidence.eu.com – 2008

stack computation

� once the dispatch priority values have been “maximized”, 
we obtain a system that have just the needed (minimum) 
preemptiveness

� then, we only have to compute which is the maximum stack
required by a given configuration

� there exist a polynomial algorithm that finds it

� the algorithm is essentially a directed acyclic graph longest 
path search along the preemption graph with stack sizes as 
weights.



Evidence Srl - info@evidence.eu.com – 2008

computing the maximum stack usage (2)

1. for each task t
i

2. worst[t
i
] = stack[t

i
];

3. for each task t
i
h2l

4. for each task t
j
that can preempt t

i
h2l

5. worst[t
i
] = max( worst[t

i
], stack[t

i
]+worst[t

j
]);

6. the_worst = max(for each t
i
, worst[t

i
]);

(Note: h2l means “from highest to lowest priority”)

[T. W. Carley, private e-mail]



Evidence Srl - info@evidence.eu.com – 2008

dispatch priority

an example

1

2

3

4

5

6

7

8

P
ri
o
ri

ti
e
s

Task τ8 τ7 τ6 τ5 τ4 τ3 τ2 τ1

ready priority



Evidence Srl - info@evidence.eu.com – 2008

1

2

3

4

5

6

7

8

P
ri
o
ri

ti
e
s

Task τ8 τ7 τ6 τ5 τ4 τ3 τ2 τ1

an example

Total
102

Stack 1 100 1 100 1 1 1 1

Worse 102 102 3 101 2 2 1 1



Evidence Srl - info@evidence.eu.com – 2008

part IV

the OSEK/VDX standard



Evidence Srl - info@evidence.eu.com – 2008

what is OSEK/VDX?

� is a standard for an open-ended architecture for distributed 
control units in vehicles

� the name:

� OSEK: Offene Systeme und deren Schnittstellen für die Elektronik im 
Kraft-fahrzeug (Open systems and the corresponding interfaces for 
automotive electronics)

� VDX: Vehicle Distributed eXecutive (another french proposal of API 
similar to OSEK)

� OSEK/VDX is the interface resulted from the merge of the two 
projects

� http://www.osek-vdx.org



Evidence Srl - info@evidence.eu.com – 2008

motivations

� high, recurring expenses in the development and variant 
management of non-application related aspects of control 
unit software. 

� incompatibility of control units made by different 
manufacturers due to different interfaces and protocols 



Evidence Srl - info@evidence.eu.com – 2008

objectives

� portability and reusability of the application software 

� specification of abstract interfaces for RTOS and network 
management

� specification independent from the HW/network details

� scalability between different requirements to adapt to 
particular application needs

� verification of functionality and implementation using a 
standardized certification process



Evidence Srl - info@evidence.eu.com – 2008

advantages

� clear savings in costs and development time. 

� enhanced quality of the software

� creation of a market of uniform competitors

� independence from the implementation and standardised 
interfacing features for control units with different 
architectural designs

� intelligent usage of the hardware present on the vehicle

� for example, using a vehicle network the ABS controller could give a 
speed feedback to the powertrain microcontroller



Evidence Srl - info@evidence.eu.com – 2008

system philosophy

� standard interface ideal for automotive applications

� scalability

� using conformance classes

� configurable error checking 

� portability of software

� in reality, the firmware on an automotive ECU is 10% RTOS and 
90% device drivers



Evidence Srl - info@evidence.eu.com – 2008

support for automotive requirements

� the idea is to create a system that is

� reliable

� with real-time predictability

� support for 

� fixed priority scheduling with immediate priority ceiling

� non preemptive scheduling

� preemption thresholds

� ROM execution of code

� stack sharing (limited support for blocking primitives)

� documented system primitives
� behavior

� performance of a given RTOS must be known



Evidence Srl - info@evidence.eu.com – 2008

static is better

� everything is specified before the system runs

� static approach to system configuration

� no dynamic allocation on memory

� no dynamic creation of tasks

� no flexibility in the specification of the constraints

� custom languages that helps off-line configuration of the 
system

� OIL: parameters specification (tasks, resources, stacks…)

� KOIL: kernel aware debugging



Evidence Srl - info@evidence.eu.com – 2008

application building process

application
C code

RTOS configuration
OIL

drivers configuration
DIL

RTOS library
.a

device drivers
C/ASM code

OIL
Conf. Tool

C/ASM
Compiler

device drivers
templates

RTOS configuration
C code

ORTI description
KOIL

Linker

Debugger

objects
.o
objects
.o
objects
.o

DIL
Conf. Tool

binary image
.elf

input

output

third part libraries



Evidence Srl - info@evidence.eu.com – 2008

OSEK/VDX standards

� The OSEK/VDX consortium packs its standards in different 
documents

� OSEK OS operating system

� OSEK Time time triggered operating system

� OSEK COM communication services

� OSEK FTCOM fault tolerant communication

� OSEK NM network management

� OSEK OIL kernel configuration

� OSEK ORTI kernel awareness for debuggers

� next slides will describe the OS, OIL, ORTI and COM parts



Evidence Srl - info@evidence.eu.com – 2008

processing levels

� the OSEK OS specification describes the processing levels 
that have to be supported by an OSEK operating system



Evidence Srl - info@evidence.eu.com – 2008

conformance classes

� OSEK OS should be scalable with the application needs

� different applications require different services

� the system services are mapped in Conformance Classes

� a conformance class is a subset of the OSEK OS standard

� objectives of the conformance classes

� allow partial implementation of the standard

� allow an upgrade path between classes

� services that discriminates the different conformance 
classes

� multiple requests of task activations

� task types

� number of tasks per priority



Evidence Srl - info@evidence.eu.com – 2008

conformance classes (2)

� there are four conformance classes

� BCC1
basic tasks, one activation, one task per priority

� BCC2
BCC1 plus: > 1 activation, > 1 task per priority

� ECC1
BCC1 plus: extended tasks

� ECC2
ECC1 plus: > 1 activation (basic tasks), > 1 task per priority



Evidence Srl - info@evidence.eu.com – 2008

conformance classes (3)



Evidence Srl - info@evidence.eu.com – 2008

basic tasks

� a basic task is 
� a C function call that is executed in a proper context

� that can never block

� can lock resources

� can only finish or be preempted by an higher priority task or ISR

� a basic task is ideal for implementing a kernel-supported 
stack sharing, because

� the task never blocks

� when the function call ends, the task ends, and its local variables are 
destroyed

� in other words, it uses a one-shot task model

� support for multiple activations

� in BCC2, ECC2, basic tasks can store pending activations (a task can 
be activated while it is still running)



Evidence Srl - info@evidence.eu.com – 2008

extended tasks

� extended tasks can use events for synchronization

� an event is simply an abstraction of a bit mask

� events can be set/reset using appropriate primitives

� a task can wait for an event in event mask to be set

� extended tasks typically

� have its own stack

� are activated once

� have as body an infinite loop over a WaitEvent() primitive

� extended tasks do not support for multiple activations

� ... but supports multiple pending events



Evidence Srl - info@evidence.eu.com – 2008

scheduling algorithm

� the scheduling algorithm is fundamentally a 

� fixed priority scheduler

� with immediate priority ceiling

� with preemption threshold

� the approach allows the implementation of

� preemptive scheduling

� non preemptive scheduling

� mixed

� with some peculiarities...



Evidence Srl - info@evidence.eu.com – 2008

scheduling algorithm: peculiarities

� multiple activations of tasks with the same priority

� are handled in FIFO order

� that imposes in some sense the internal scheduling data structure



Evidence Srl - info@evidence.eu.com – 2008

OSEK task primitives (basic and extended tasks)

� TASK(<TaskIdentifier>) {…}
� used to define a task body (it’s a macro!)

� DeclareTask(<TaskIdentifier>)
� used to declare a task name (it’s a macro!)

� StatusType ActivateTask(TaskType <TaskID>)
� activates a task

� StatusType TeminateTask(void)
� terminates the current running task (from any function nesting!)

� StatusType ChainTask(TaskType <TaskID>)
� atomic version of TerminateTask+ActivateTask

� StatusType Schedule(void)
� rescheduling point for a non-preemptive task

� StatusType GetTaskID(TaskRefType <TaskID>)
� returns the running task ID

� StatusType GetTaskState(TaskType <TaskID>, TaskStateRefType
<State>)
� returns the status of a given task



Evidence Srl - info@evidence.eu.com – 2008

OSEK event primitives

� DeclareEvent(<EventIdentifier>)

� declaration of an Event identifier (it’s a macro!)

� StatusType SetEvent(TaskType <TaskID>,

EventMaskType <Mask> )

� sets a set of event flags to an extended task

� StatusType ClearEvent(EventMaskType <Mask>)

� clears an event mask (extended tasks only)

� StatusType GetEvent(TaskType <TaskID>, 
EventMaskRefType <Event>)

� gets an event mask

� StatusType WaitEvent(EventMaskType <Mask>)

� waits for an event mask (extended tasks only)

� this is the only blocking primitive of the OSEK standard



Evidence Srl - info@evidence.eu.com – 2008

scheduling algorithm: resources

� resources

� are typical Immediate Priority Ceiling mutexes

� the priority of the task is raised when the task locks the resource



Evidence Srl - info@evidence.eu.com – 2008

scheduling algorithm: resources (2)

� resources at interrupt level

� resources can be used at interrupt level

� for example, to protects drivers

� the code directly have to operate on the interrupt controller



Evidence Srl - info@evidence.eu.com – 2008

scheduling algorithm: resources (3)

� preemption threshold implementation

� done using “internal resources” that are locked when the task starts 
and unlocked when the task ends

� internal resources cannot be used by the application



Evidence Srl - info@evidence.eu.com – 2008

OSEK resource primitives

� DeclareResource(<ResourceIdentifier>)

� used to define a task body (it’s a macro!)

� StatusType GetResource(ResourceType <ResID>)

� resource lock function

� StatusType ReleaseResource(ResourceType <ResID>)

� resource unlock function

� RES_SCHEDULER

� resource usd by every task �the task becomes non preemptive



Evidence Srl - info@evidence.eu.com – 2008

interrupt service routine

� OSEK OS directly addresses interrupt management in the 
standard API

� interrupt service routines (ISR) can be of two types

� Category 1: without API calls
simpler and faster, do not implement a call to the scheduler at the 
end of the ISR

� Category 2: with API calls
these ISR can call some primitives (ActivateTask, ...) that change 
the scheduling behavior. The end of the ISR is a rescheduling point

� ISR 1 has always a higher priority of ISR 2

� finally, the OSEK standard has functions to directly 
manipulate the CPU interrupt status



Evidence Srl - info@evidence.eu.com – 2008

OSEK interrupts primitives

� ISR(<ISRName>) {…}

� define an ISR2 function

� void EnableAllInterrupts(void)

� void DisableAllInterrupts(void)

� enable and disable ISR1 and ISR2 interrupts

� void ResumeAllInterrupts(void)

� void SuspendAllInterrupts(void)

� enable and disable ISR1 and ISR2 interrupts (nesting possible!)

� void ResumeOSInterrupts(void)

� void SuspendOSInterrupts(void)

� enable and disable only ISR2 interrupts (nesting possible!)



Evidence Srl - info@evidence.eu.com – 2008

counters and alarms

� counter
� is a memory location or a hardware resource used to count events

� for example, a counter can count the number of timer interrupts to 
implement a time reference

� alarm
� is a service used to process recurring events

� an alarm can be cyclic or one shot

� when the alarm fires, a notification takes place

� task activation

� call of a callback function

� set of an event



Evidence Srl - info@evidence.eu.com – 2008

OSEK alarm primitives

� DeclareAlarm(<AlarmIdentifier>)

� declares an Alarm identifier (it’s a macro!)

� StatusType GetAlarmBase ( AlarmType <AlarmID>, 
AlarmBaseRefType <Info> )

� gets timing informations for the Alarm

� StatusType GetAlarm ( AlarmType <AlarmID> TickRefType <Tick>)

� value in ticks before the Alarm expires

� StatusType SetRelAlarm(AlarmType <AlarmID>,
TickType <increment>, TickType <cycle>)

� StatusType SetAbsAlarm(AlarmType <AlarmID>, 

TickType <start>, TickType <cycle>) 

� programs an alarm with a relative or absoulte offset and period

� StatusType CancelAlarm(AlarmType <AlarmID>)

� cancels an armed alarm



Evidence Srl - info@evidence.eu.com – 2008

application modes

� OSEK OS supports the concept of application modes

� an application mode is used to influence the behavior of the 
device

� example of application modes

� normal operation

� debug mode

� diagnostic mode

� ...



Evidence Srl - info@evidence.eu.com – 2008

OSEK Application modes primitive

� AppModeType GetActiveApplicationMode(void)
� gets the current application mode

� OSDEFAULTAPPMODE
� a default application mode value always defined

� void StartOS(AppModeType <Mode>) 
� starts the operating system

� void ShutdownOS(StatusType <Error>)
� shuts down the operating system (e.g., a critical error occurred)



Evidence Srl - info@evidence.eu.com – 2008

hooks

� OSEK OS specifies a set of hooks  that are called at specific 
times

� StartupHook
when the system starts



Evidence Srl - info@evidence.eu.com – 2008

hooks (2)

� PreTaskHook
before a task is scheduled

� PostTaskHook
after a task has finished its slice

� ShutdownHook
when the system is shutting down (usually because of an 
unrecoverable error)

� ErrorHook
when a primitive returns an error



Evidence Srl - info@evidence.eu.com – 2008

error handling

� the OSEK OS has two types or error return values
� standard error 
(only errors related to the runtime behavior are returned)

� extended error
(more errors are returned, useful when debugging)

� the user have two ways of handling these errors

� distributed error checking
the user checks the return value of each primitive

� centralized error checking
the user provides a ErrorHook that is called whenever an error 
condition occurs

� macros can be used to understand which is the failing primitive and 
what are the parameters passed to it



Evidence Srl - info@evidence.eu.com – 2008

OSEK OIL

� goal

� provide a mechanism to configure an OSEK application inside a 
particular CPU (for each CPU there is one OIL description)

� the OIL language

� allows the user to define objects with properties
(e.g., a task that has a priority)

� some object and properties have a behavior specified by the 
standard

� an OIL file is divided in two parts

� an implementation definition
defines the objects that are present and their properties

� an application definition
define the instances of the available objects for a given application



Evidence Srl - info@evidence.eu.com – 2008

OSEK OIL objects

� The OIL specification defines the properties of the following 
objects:

� CPU
the CPU on which the application runs

� OS
the OSEK OS which runs on the CPU

� ISR
interrupt service routines supported by OS

� RESOURCE
the resources which can be occupied by a task

� TASK
the task handled by the OS

� COUNTER
the counter represents hardware/software tick source for alarms.



Evidence Srl - info@evidence.eu.com – 2008

OSEK OIL objects (2)

� EVENT
the event owned by a task. A

� ALARM
the alarm is based on a counter

� MESSAGE
the COM message which provides local or network communication

� COM
the communication subsystem

� NM
the network management subsystem



Evidence Srl - info@evidence.eu.com – 2008

OIL example: implementation definition

OIL_VERSION = "2.4";

IMPLEMENTATION my_osek_kernel {

[...]

TASK {

BOOLEAN [

TRUE { APPMODE_TYPE APPMODE[]; },

FALSE

] AUTOSTART;

UINT32 PRIORITY;

UINT32 ACTIVATION = 1;

ENUM [NON, FULL] SCHEDULE;

EVENT_TYPE EVENT[];

RESOURCE_TYPE RESOURCE[];

/* my_osek_kernel specific values */

ENUM [

SHARED,

PRIVATE { UINT32 SIZE; }

] STACK;

};

[...]

};



Evidence Srl - info@evidence.eu.com – 2008

OIL example: application definition

CPU my_application {

TASK Task1 {

PRIORITY = 0x01;

ACTIVATION = 1;

SCHEDULE = FULL;

AUTOSTART = TRUE;

STACK = SHARED;

};

};



Evidence Srl - info@evidence.eu.com – 2008

part V

I/O management



Evidence Srl - info@evidence.eu.com – 2008

I/O Management architecture

� the application calls I/O functions

� typical I/O functions are non-blocking

� OSEK BCC1/BCC2 does not have blocking primitives

� blocking primitives can be implemented

� with OSEK ECC1/ECC2

� not straightforward

� the driver can use

� polling

� typically used for low bandwidth, fast interfaces

� typically non-blocking

� typically independent from the RTOS



Evidence Srl - info@evidence.eu.com – 2008

I/O Management architecture (2)

� interrupts

� there are a lot of interrupts in the system

� interrupts nesting often enabled

� most of the interrupts are ISR1 (independent from the RTOS) because 
of runtime efficiency 

� one ISR2 that handles the notifications to the application

� DMA

� typically used for high-bandwidth devices
(e.g., transfers from memory to device



Evidence Srl - info@evidence.eu.com – 2008

I/O Management: using ISR2

ISR1

Library API

Application callback

global
data

I/O Driver

ISR2



Evidence Srl - info@evidence.eu.com – 2008

I/O Management architecture (3)

� another option is to use the ISR2 inside the driver to wake
up a driver task

� the driver task will be scheduled by the RTOS together
with the other application tasks



Evidence Srl - info@evidence.eu.com – 2008

I/O Management architecture

ISR1

Library API

Application callback

global
data

ISR2

I/O Driver

I/O Tasks


