
Evidence Srl - info@evidence.eu.com – 2008

OSEK Standard and experiments on 
microcontroller devices

Paolo Gai

Evidence Srl

pj@evidence.eu.com



Evidence Srl - info@evidence.eu.com – 2008

summary

� the hardware

� example 1 – ISR2 and tasks

� example 2 – application modes and resources

� example 3 – events, alarms, ErrorHook, ORTI



Evidence Srl - info@evidence.eu.com – 2008

the hardware

� the evaluation board used is a FLEX board (Light or Full) 
with a Demo Daughter board

� during the examples, we’ll use the following devices:

� the DSPIC MCU

� 1 timer

� a button

� used to generate interrupts when pressed or released

� also used as external input

� leds

� 16x2 LCD



Evidence Srl - info@evidence.eu.com – 2008

Example 1 – Tasks and ISR2

� The demo shows the usage of the following primitives:

DeclareTask – ActivateTask – TerminateTask - Schedule

� Demo structure

� The demo is consists of two tasks, Task1 and Task2.

� Task1 repeatedly puts on and off a sequence of LEDs

� Task2 simply turns on and off a LED, and

� is activated by the press of a button. Task2 is de facto a disturbing
task that, depending on the configuration parameters,

� may preempt Task1



Evidence Srl - info@evidence.eu.com – 2008

Ex. 1 Configuration 1: Full preemptive

� This configuration is characterized by the following
properties:

� periodic interrupt � Task1 activation � LED 0 to 5 blink

� button � Task2 activation � Task2 always preempts Task1, blinks
LED 6/7 and prints a message

Notes:

� Task2 is automatically activated by StartOS

� AUTOSTART=TRUE

� Conformance Class is BCC1 

� lost activations if the button pressed too fast!



Evidence Srl - info@evidence.eu.com – 2008

Ex. 1 Configuration 2: Non preemptive

� Task1 is NON preemptive

� Task2 runs only when Task1 does not run

� LEDs 6 and 7 does not interrupt the ChristmasTree

� IRQs are not lost, but task activations may be



Evidence Srl - info@evidence.eu.com – 2008

Ex. 1 Configuration 3: Preemption points

� Task1 calls Schedule in the middle of the Christmas tree

� Result:

� Task2 can now preempt Task1 in the middle of the Christmas tree



Evidence Srl - info@evidence.eu.com – 2008

Ex. 4 Configuration 4: Multiple Activations.

� BCC2 Conformance class

� Task2 can now store pending activations, which are 
executed whenever possible



Evidence Srl - info@evidence.eu.com – 2008

Example 2 - Resources and App. modes

� The demo shows the usage of the following primitives:

GetActiveApplicationMode, GetResource, ReleaseResource

� Demo structure

� Two tasks, LowTask and HighTask. They share a resource.

� LowTask is a periodic low priority task, activated by a timer, with a 
long execution time. 

� Almost all its execution time is spent inside a critical section. LED 0 
is turned on when LowTask is inside the critical section.

� HighTask is a high priority task that increments (decrements) a 
counter depending on the application mode being ModeIncrement
(ModeDecrement). The task is aperiodic, and is activated by the 
ISR linked to the button. 



Evidence Srl - info@evidence.eu.com – 2008

Example 2 - Resources and App. modes (2)

� Application Modes are used to implement a task behavior
dependent on a startup condition

� (ERIKA specific) HighTask and LowTask are configured to share 
the same stack by setting the following line inside the OIL task 
properties:

STACK = SHARED;



Evidence Srl - info@evidence.eu.com – 2008

Example 3 - Event and Alarm API Example

� The demo shows the usage of the following primitives:

WaitEvent, Getevent, ClearEvent, SetEvent, ErrorHook, 
StartupHook, SetRelAlarm, CounterTick

� Demo structure:

� The demo consists of two tasks, Task1 and Task2.

� Task1 is an extended task. Extended tasks are tasks that:

� can call blocking primitives (WaitEvent)

� must have a separate stack

� A task is considered an Extended Task when the OIL file includes
events inside the task properties. 

� Task1 waits for two events:

� Timer � CounterTick � AlarmTask1 � TimerEvent � LED 1

� Button IRQ � SetEvent(ButtonEvent) � LED 2



Evidence Srl - info@evidence.eu.com – 2008

Example 3 - Event and Alarm API Example (2)

� Button press � ISR2 �SetRelAlarm(AlarmTask2) � Task2 
activation � LED 3 on.

� ErrorHook � when the button is pressed rapidly twice

� SetRelAlarm primitive called by the Button IRQ on an already armed
alarm

� The alarm support is basically a wakeup mechanism that can be
attached to application or external events (such as timer 
interrupts) by calling CounterTick to implement an asynchronous
notification. 

� (ERIKA Enterprise specific) Task1 needs a separate stack because
it uses WaitEvent.



Evidence Srl - info@evidence.eu.com – 2008

Example 3 - Event and Alarm API Example (3)

� Running the example

� Timer Interrupt � Counter1 incremented.

� AlarmTask1 � TimerEvent event set on Task1 � Task1 wakes up, 
get the event, and blinks LED 1. 

� The visible result is that LED 1 periodically blinks on the board.

� button press � Task1 runs and LED 3 goes on and off

� rapid button press � ErrorHook due to multiple calls of 
SetRelAlarm

� ORTI Informations are available for this demo


