Modes in asynchronous systems

J-F. Rolland - M. Filali - J-P. Bodeveix D. Thomas -D. Chemouil

ASTRIUM - IRIT - CNES

UML-AADL April 2008

Outline

- 3 Abstract specification
- Back to AADL
- 5 Ongoing work

6 Conclusion

- 2 Modes in AADL
- 3 Abstract specification
- Back to AADL
- 5 Ongoing work
- 6 Conclusion

Context of the study

- general study : superpose to AADL precise description standard a formal description.
- provide a formal specification for :
 - simulators.
 - verification tools.
 - code generators.
 - general purpose tools base of model transformations.
- approach : use of TLA.

Modes in real time systems

- Real time systems imply a fixed set of tasks
- Number of real time system have different behaviors
 multi-moded systems
- A mode is characterized by :
 - A set of functionalities
 - A set of tasks
 - And a set of active hardware

- Typical example : the aircraft
 - take-off
 - Ianding
 - cruise
- Another example : Satellite inboard software
 - Launch
 - Operational
 - Safe
 - Low power

- 3 Abstract specification
- 4 Back to AADL
- 5 Ongoing work
- 6 Conclusion

Modes in AADL

- Describe different operational states
 - Software and hardware components
 - Connections
 - Properties
- Each component can have different configurations
- Mode transition : a complex behavior

The mode automaton

- State \rightarrow Mode
 - Name
 - One must be initial
- Transition
 - Name
 - Associated to an event
 - Deterministic transitions

Mode dependent architecture

Subcomponents

Main_Gps: process Gps_Sender.Basic in modes (Dualmode, Mainmode); Backup_Gps: process Gps_Sender.Basic in modes (Dualmode, Backupmode);

Connections

Properties

```
bool1 => false in modes (M1);
bool2 => true in modes (M2);
```


- 3 Abstract specification
- Back to AADL
- Ongoing work

6 Conclusion

Abstract specification of modes

• Focus on the mode transitions :

- No scheduling
 - Active
 - Inactive
 - Awaiting Mode
- No communications
- A simple deterministic mode automaton

Thread types and transition atomicity

- Thread types :
 - Critical threads must terminate in the current mode.
 - Normal threads can be stopped in the current mode.
 - Zombie threads are allowed to survive in the next mode.
- \rightsquigarrow Mode transitions cannot be atomic :
 - StartModeTransition.
 - ModeTransition.
 - EndModeTransition.

Mode transitions

Mode transitions

Outline

- 2 Modes in AADL
- 3 Abstract specification
- Back to AADL
- 5 Ongoing work

6 Conclusion

Correspondance with AADL modes

- In AADL mode may be defined at different hierarchical levels
- Only one level for the abstraction : flat automatons
- Equivalent to the mode automata of the instance model

Scheduling abstraction

- Synchronized property :
- Active_thread_handling_protocol property :
- Urgency property :

- Synchronized property :
 - Periodic threads
 - Mode switch only occurs at the hyperperiod of synchronized threads
 - In AADL V1 : a boolean value
 - Evolution : A list of transition name
 - \rightarrow Corresponds to critical threads
- Active_thread_handling_protocol property :
- Urgency property :

- Synchronized property :
- Active_thread_handling_protocol property :
 - Define the protocol used to process buffers of the thread
 - Allow specific thread to end their execution in the new mode
 - \rightarrow Equivalent to zombie threads
- Urgency property :

- Synchronized property :
- Active_thread_handling_protocol property :
- Urgency property :
 - Used in the dispatch of aperiodic thread
 - Used to choose a mode transition
 - \rightarrow Corresponds to the priority of the transition

Outline

- 2 Modes in AADL
- 3 Abstract specification
- Back to AADL
- 5 Ongoing work
 - 6 Conclusion

Status of the specification

- Model of AADL execution platform :
 - scheduling (Fixed priorities)
 - shared resources (IPCP)
 - Timed communications through ports and shared resources
 - Modes
- Checked properties
 - Schedulability
 - Size of buffers
 - Integrity of shared data
 - No deadlock

Outline

- 2 Modes in AADL
- 3 Abstract specification
- 4 Back to AADL
- 5 Ongoing work

6 Conclusion

Conclusion

formal description of AADL modes

- abstraction of AADL modes
- concretization of the abstraction

o perspectives :

- provide early verifications for models based on modes.
- study some implementations schemes.

thank you for your attention. Questions?

