
ContractContract--based approach to based approach to
l ft tl ft tanalyze software componentsanalyze software components

Abdelhafid Zitouni Lionel SEINTURIER Mahmoud BOUFAIDA
Laboratory LIRE LIFL-INRIA ADAM Laboratory LIRE

University of Constantine University of Lille University of ConstantineUniversity of Constantine University of Lille University of Constantine
Algeria France Algeria

ah_zitouni@yahoo.fr Linoel.Seinturier@lifl.fr boufaida@hotmail.com

ICECCS’08/Workshop « UML&AADL’2008 »,
BELFASTBELFAST

April, 2, 2008

CONTENTSCONTENTS

Introduction

Overview of the Approach pp

Abstract specification of a component

Proposal Architecture Description Language

ValidationValidation

Conclusion & future work

02/04/2008 2ICECCS/UML&AADL Wokshop’08 ,Belfast

Introduction (1/3)Introduction (1/3)Introduction (1/3)Introduction (1/3)

Component-based software development:

Building large software systems
Software components.

Component-based approaches:

Create, deploy software systems
assembled from components.

02/04/2008 ICECCS/UML&AADL Wokshop’08 ,Belfast 3

Introduction (2/3)Introduction (2/3)Introduction (2/3)Introduction (2/3)

Motivations

Previously developed components.

Behavioural and compositional conflicts among
components constitute a crucial barrier components constitute a crucial barrier.

Contract through a formal model analyze:g y
- Analyze pattern-based designs.
- Precise criteria of comparison.

02/04/2008 ICECCS/UML&AADL Wokshop’08 ,Belfast 4

IntroductionIntroduction (3/3)(3/3)IntroductionIntroduction (3/3)(3/3)

Contribution

Contract-based approach:

Representing, instantiating and integrating
design patterns, and analyzing theirg p y g
compositions

U i LOTOS A hiUsing LOTOS as an Architecture
Description Language (ADL) for formalising
these aspects.these aspects.

02/04/2008 ICECCS/UML&AADL Wokshop’08 ,Belfast 5

BackgroundBackground

Design PatternsDesign Patterns

Design patterns are a design paradigm used to solve problems that arise Des gn patterns are a des gn parad gm used to solve problems that ar se
when developing software within a particular context.

Capture the static and dynamic structure and collaboration among the Capture the static and dynamic structure and collaboration among the
components in a software design.

To build software systems a designer needs to solve many problems To build software systems, a designer needs to solve many problems.
Applying known design patterns to address these problems allows the
designer to take advantage of expert design experience

02/04/2008 ICECCS/UML&AADL Wokshop’08 ,Belfast 6

BackgroundBackground

LOTOSLOTOS

Language of Temporal Ordering Specifications (LOTOS) is a Language of Temporal Ordering Specifications (LOTOS) is a
formal description technique standardized at ISO, based on
a combination of CCS [Milner] and CSP [Hoare].

The basic idea supporting LOTOS is that systems can be
specified by expressing the relations among the interactions
that constitute their externally observable behaviour.

In LOTOS a system is seen as a process possibly consisting In LOTOS, a system is seen as a process, possibly consisting
of several sub-processes.

02/04/2008 ICECCS/UML&AADL Wokshop’08 ,Belfast 7

operator Description Example
[] either P1[a b] or P2[c d] depending P[a b c d]=P1[a b] [] P2[c d][] either P1[a,b] or P2[c,d] depending

on the environment
P[a,b,c,d] P1[a,b] [] P2[c,d]

⏐⏐⏐ Parallel composition without
synchronization: P1[a,b] is
independent from P2[c,d]

P[a,b,c,d]=P1[a,b]⏐⏐⏐P2[c,d]

[b] Parallel composition with
h i ti t b

P[a,b,c,d]=P1[a,b]⏐[b]⏐P2[c,d]
synchronization on gate b

>> Sequential composition: P1[a,b] is
followed, when P1 terminated, by
P2[c,d];

P[a,b,c,d]=P1[a,b] >> P2[c,d]

[> Disrupt: P1 [a, b] may be interrupted
at any time before its termination by

P[a,b,c,d]=P1[a,b] [> P2[c,d]
y y

P2[c, d].
; Process prefixing by action a a;P
Stop Process which cannot communicate

with any other process
Stop

Exit Process which can terminate and
then transforms itself into stop

Exit
then transforms itself into stop

LOTOS operatorsLOTOS operators

02/04/2008 8ICECCS/UML&AADL Wokshop’08 ,Belfast

CONTENTSCONTENTS

Introduction

O i f th A hOverview of the Approach

Abstract specification of a component

Proposal Architecture Description Language

l dValidation

Conclusion & future work

02/04/2008 9ICECCS/UML&AADL Wokshop’08 ,Belfast

Overview of our approachOverview of our approach

step2

<< Expert-pattern >>

step1
p

Structural Contract
Interface Contract
Behavioural Contract

step4

step3

step4
<< Abstract factory >>

LOTOS-ADLstep5
step6

step7

implementation

02/04/2008 10ICECCS/UML&AADL Wokshop’08 ,Belfast

Overview of our approachOverview of our approachpppp

<< Expert-pattern >>

Structural Contract
Interface Contract
Behavioural Contract

LOTOS-ADL

implementation

02/04/2008 11ICECCS/UML&AADL Wokshop’08 ,Belfast

CONTENTSCONTENTS

Introduction

O i f th A h Overview of the Approach

Abstract specification of a component

Proposal Architecture Description Language

l dValidation

Conclusion & futurework

02/04/2008 12ICECCS/UML&AADL Wokshop’08 ,Belfast

Abstract specification of a Abstract specification of a pp
componentcomponent

The abstract specification contains a formal
model of design component called designmodel of design component, called design
component contract.

A design component contract includes structural
contract behavioural contract and interface contract, behavioural contract and interface
contract

02/04/2008 13ICECCS/UML&AADL Wokshop’08 ,Belfast

The abstract specification contract The abstract specification contract
is defined by:is defined by:is defined by:is defined by:

ASC::={<Name> <SC> <IC> <BC>} ASC::={<Name>, <SC>,<IC>, <BC>}

For all i j / i # j name cpi # name cpjFor all i, j / i # j name.cpi # name.cpj

1402/04/2008 ICECCS/UML&AADL Wokshop’08 ,Belfast

The abstract specification contract The abstract specification contract
is defined by:is defined by:is defined by:is defined by:

ASC::={<Name> <SC> <IC> <BC>} ASC::={<Name>, <SC>,<IC>, <BC>}

describe the relations of the constructs
of each design component

02/04/2008 15ICECCS/UML&AADL Wokshop’08 ,Belfast

The abstract specification contract The abstract specification contract
is defined by:is defined by:is defined by:is defined by:

ASC::={<Name> <SC> <IC> <BC>} ASC::={<Name>, <SC>,<IC>, <BC>}

The finite set of input or output ports
attached to a design component and the
set of messages sent to or received by a set of messages sent to or received by a
component

02/04/2008 16ICECCS/UML&AADL Wokshop’08 ,Belfast

The abstract specification contract The abstract specification contract
is defined by:is defined by:is defined by:is defined by:

ASC::={<Name> <SC> <IC> <BC>} ASC::={<Name>, <SC>,<IC>, <BC>}

The behavioural properties are
constraints such as event ordering, and
action sequence of each design componentaction sequence of each design component

17ICECCS/UML&AADL Wokshop’08 ,Belfast02/04/2008

a. Structural contractsa. Structural contracts

The structural aspect of a design component contract SC is a tuple SC = (C, e st uctu a aspect o a es g co po e t co t act SC s a tup e SC (C,
A, M, T, Ar, Pc,Pa,),where

C is a set of classes in the design component,

A i t f tt ib t d fi d i l C A is a set of attributes defined in classes C,

M is a set of methods defined in classes C,

T is a set of types, yp

Ar is a set of access rights = {public, protected, private},

Pc is a set of connection predicates symbols that capture the relationships
For example (Inherit association aggregation) and For example (Inherit, association, aggregation,..), and

Pa is a set of action predicates symbols that can perform in a design
component For example (invoke, new, return…)

02/04/2008 ICECCS/UML&AADL Wokshop’08 ,Belfast 18

Can be formalized using a subset of First Order Logic (FOL),an be formal zed us ng a subset of F rst Order Log c (FOL),

The subset of FOL used to describe the structural aspect of a
desi n component comprises variable symbols connectives (‘ ’) design component comprises variable symbols, connectives (),
quantifiers (‘ ’), element (є) and predicate symbols acting upon
variable symbols.

The variable symbols represent class, objects, while the
predicate symbols represent permanent relations.

02/04/2008 ICECCS/UML&AADL Wokshop’08 ,Belfast 19

Entity predicates define whether a
design component has a specific

Relationship predicates define the
relations between classes, design component has a specific

class (abstract or concrete), what
a method (or attribute) is defined
in a class….

attributes, and operations and the
actions that a role can perform in a
component.

EntityEntity predicatespredicates Relationship Relationship predicatespredicates

02/04/2008 ICECCS/UML&AADL Wokshop’08 ,Belfast 20

ExampleExampleExampleExample

We consider the structure (class and interaction diagram)
of the Observer pattern (Gamma 1995): (The Observer of the Observer pattern (Gamma, 1995): (The Observer
pattern (also called Publisher-Subscriber) .

Define a one-to-many dependency between objects so
that when one object changes state, all its dependents
are notified and updated automaticallyar not f an up at automat ca y

02/04/2008 ICECCS/UML&AADL Wokshop’08 ,Belfast 21

Observer pattern (class diagram)Observer pattern (class diagram)

(0) Component-name is Observer where:() p
(1) abstract-class(Subject,Observer) є C;
(2) class(ConcreteObserver,ConcreteSubject)} є

C;
(3) (attach, detach, getstate, update, notify) є M;() (g p y)
(4) (void, datatyp)} єT;
(5) Inherit { (Observer, ConcreteObserver)

(Subject, ConcreteSubject) };
(6) Invoke{(Invoke(Subject attach observer (6) Invoke{(Invoke(Subject,attach, observer,

append) (Subject, detach, observer,remouve)
(Subject, notify, observer, update)};

(7) Return (concreteSubject, getstate,
subjectstate)

(8) Where Method {(attach, detach, notify) є
Subject
(updtate)єObservet (getstate, notify) є(p) (g , y)
ConcreteSubject

(updtate)є ConcreteObservet}

02/04/2008 22ICECCS/UML&AADL Wokshop’08 ,Belfast

Observer pattern (class diagram)Observer pattern (class diagram)

Public interface Observer {{
Public void Update (subject s) ;}

Public interface Subject {
Public void attach (Observer o) ;
Public void detach (Observer o);
Public void notify (); }

Public Class ConcreteSubject implements
Subject {Subject {

Public void attach (Observer o)
{…………} ;

Public void detach (Observer o)
{ };{…………};

Public void notify () {…………};
}

Public Class ConcreteObserver implements
Observer {Observer {

Public void Update (subject s)
{………………} ; }

02/04/2008 23ICECCS/UML&AADL Wokshop’08 ,Belfast

b. Interface contractsb. Interface contracts

Let a tuple IC = (P, IP,OP, IM,OM, IMI)Let a tuple I (, I ,O , IM,OM, IMI)

P is a finite set of process names,
IP is a finite set of input ports attached to a process,
OP is a finite set of output ports attached to a process OP is a finite set of output ports attached to a process,
IM is a finite set of input messages sent to a process and
OM is a finite set of output messages sent from a process,
IMI is the finite set of input messages sent from outside the
design component to a process.

02/04/2008 ICECCS/UML&AADL Wokshop’08 ,Belfast 24

Observer pattern (interaction diagram)Observer pattern (interaction diagram)Observer pattern (interaction diagram)Observer pattern (interaction diagram)

(0) Component-name is Observer where:

(1) (aConcreteSubject aConcreteObserver (1) (aConcreteSubject,aConcreteObserver,

anotherConcreteObserver) є C

(2) (inOS, inSO,self, input) є IP

(3) (outOS outSO output) є OP (3) (outOS, outSO, output) є OP

(4) (attach, detach, getstate, setstate,update,
notify, change) є IM

(5) (attach, detach, getstate, setstate, () (, , g , ,
update, notify) є OM

(6) (change) є IMI

02/04/2008 25ICECCS/UML&AADL Wokshop’08 ,Belfast

c. Behavioural contractsc. Behavioural contracts

We have chosen a basic LOTOS for defining a formal semantic We have chosen a bas c LO OS for def n ng a formal semant c
model of behavioural contracts because it represents a powerful
approach to modeling of behaviour and concurrency.

Powerful ability for describing behaviour and the availability of
l bli f l ifi itools enabling formal verification.

02/04/2008 ICECCS/UML&AADL Wokshop’08 ,Belfast 26

Observer pattern (interaction diagram)Observer pattern (interaction diagram)Observer pattern (interaction diagram)Observer pattern (interaction diagram)

(Specification Observer [input,output] : noexit:=
/* Si t *//*…. Signature……*/

behaviour
aConcreteSubject [input, output]

|[input, output]|

aConcreteObserver [input output]aConcreteObserver [input, output]

[]

anotherConcreteObserver [input, output]

where
Process aConcreteSubject [inCS outCS]:= noexitProcess aConcreteSubject [inCS, outCS]:= noexit

?setstate; !notify; !update ;?getsate;

aConcreteSubject [inCS, outCS]

Endprocess
Process aConcreteObserver [inaCO outaCO] := noexitProcess aConcreteObserver [inaCO, outaCO] : noexit

I; !setstate; ?update; !getstate

aConcreteObserver [inaCO, outaCO] Endprocess
Process bConcreteObserver [inbCO, outbCO] := noexit

I; !setstate; ?update; !getstateI; !setstate; ?update; !getstate

aConcreteObserver [inbCO, outbCO]

Endprocess
Endspec

02/04/2008 27ICECCS/UML&AADL Wokshop’08 ,Belfast

CONTENTSCONTENTS

Introduction

O i f th A h Overview of the Approach

Abstract specification of a component

Proposal Architecture Description Language

l dValidation

Conclusion & future work

02/04/2008 28ICECCS/UML&AADL Wokshop’08 ,Belfast

Proposal Proposal Architecture Description Architecture Description pp pp
Language (LOTOSLanguage (LOTOS--ADL)ADL)

LOTOS-ADL has been designed to address specification of
structural and dynamic architectures. y

- The structural viewpoint may be specified in terms of: The structural viewpoint may be specified in terms of:
components, connectors, and configurations of components and
connectors.

-The behavioural viewpoint may be specified in terms of:
actions a system executes or participates in, relations among

 f b h d b h f d actions to specify behaviours, and behaviours of components and
connectors, and how they interact

02/04/2008 ICECCS/UML&AADL Wokshop’08 ,Belfast 29

LOTOSLOTOS ADLADLLOTOSLOTOS--ADLADL

<LOTOS-ADL>:= < structural viewpoint, behavioural p ,
viewpoint>;

< structural viewpoint> := <component connector < structural viewpoint> := <component, connector,
configuration>/

component := <cp1, cp2, ….., cpn> n ≥ 2 and
 ≥ 1connector := <ct1, ct2, ….., ctm> m ≥ 1

with constraints:
for all cpi, cpj є component / name.cpi # name.cpjfor all cpi, cpj є component / name.cpi # name.cpj

є connector / name.cti # name.ctj
configuration: = < /* LOTOS operators construct*/>

<behavioural viewpoint>:= < LOTOS behavior
expression >p

02/04/2008 ICECCS/UML&AADL Wokshop’08 ,Belfast 30

LOTOSLOTOS ADLADLLOTOSLOTOS--ADLADL

A LOTOS specification describes a system through a hierarchy
of active components or processesof active components, or processes.

A process is an entity able to realize non-observable internal
actions, and also interact with others processes through
externally observable actions.externally observable actions.

02/04/2008 ICECCS/UML&AADL Wokshop’08 ,Belfast 31

simple clientsimple client serverserversimple clientsimple client--serverserver

specification Client-Server specification Cl ent Server
[invClt,terClt,invSrv,terSrv] :
noexit:=
library RESULT, SERVICES endlib

behavi urbehaviour
Client [invClt, terClt]

|[invClt, terClt]|
connector [invClt terClt invSrv connector [invClt, terClt, invSrv,

terSrv]
|[invSrv, terSrv]|
Server [invSrv terSrv]Server [invSrv, terSrv]
where

………
………

Endprocess

02/04/2008 ICECCS/UML&AADL Wokshop’08 ,Belfast 32

simple clientsimple client serverserversimple clientsimple client--serverserver

process Connector process Connector
[invClt,terClt,invSrv,terSrv] : noexit: =
invClt ? s : SERVICE ? op: OPER /*
the client passes the request to p q

connector* /
invSrv ! s ! op; /* the connector passes

the request to the server*/
! E /* h terSrv ! s ? r : RESULT; /*the server

passes the reply to the connector*/
terClt ! s ! r; /*the connector passes the

l h li */reply to the client*/
Connector [invClt, terClt,invSrv,terSrv]
Endproc

02/04/2008 ICECCS/UML&AADL Wokshop’08 ,Belfast 33

CONTENTSCONTENTS

Introduction

O i f th A h Overview of the Approach

Abstract specification of a component

Proposal Architecture Description Language

l dValidation

Conclusion & future work

02/04/2008 34ICECCS/UML&AADL Wokshop’08 ,Belfast

validationvalidationvalidationvalidation

For the verification of our approach, we use the FOCOVE (Formal
Concurrency Verification Environment) (available in
www focove new fr)www.focove.new.fr)

The FOCOVE environment is dedicated to the design and verification
for component based software development.

Translates a LOTOS program into a Labelled Transition System
(LTS) describing its exhaustive behaviour.

02/04/2008 ICECCS/UML&AADL Wokshop’08 ,Belfast 35

THE FOCOVE ENVIRONMENT AND THE FOCOVE ENVIRONMENT AND
GENERATION OF THE LABEL TRANSITION GENERATION OF THE LABEL TRANSITION

EESYSTEMSSYSTEMS

02/04/2008 ICECCS/UML&AADL Wokshop’08 ,Belfast 36

Conclusion Conclusion & future work& future workConclusion Conclusion & future work& future work

Use of formal specifications to assist and automate a system
design process based on reusable components and architecturesg p p

how to adopt LOTOS as ADL to describe the behaviour of
software architecture software architecture.

This language is mathematically well-defined and expressive: it g g y p
allows the description of concurrency, non-determinism,
synchronous and asynchronous communications.

02/04/2008 ICECCS/UML&AADL Wokshop’08 ,Belfast 37

Conclusion & future Conclusion & future workworkConclusion & future Conclusion & future workwork
We propose a solution which is based on extending the abstract We propose a solut on wh ch s based on extend ng the abstract
structural contract by introducing new primitives and
constraints .

We plan to extend a concept of contract using pre- and post-
conditions for describing the semantics of component’s services.

We are investigating to proposing a rules-based transformation
enabling the mapping from LOTOS specification to JAVA pseudo
code.

02/04/2008 ICECCS/UML&AADL Wokshop’08 ,Belfast 38

QuestionsQuestionsQuestions...Questions...

02/04/2008 39ICECCS/UML&AADL Wokshop’08 ,Belfast

