THALES

ITEA-SPICES*

The project global objective is to provide means to *certify* component-based applications thanks to modeling techniques.

Open standards technologies

- AADL (SAE) for *modeling*
- Lightweight-CCM (OMG) for *composition techniques*

Our approach consists in using a component-based (Lw-CCM) development process to automatically compose the analyzable (AADL) model of the system

*Support for Predictable Integration of mission Critical Embedded Systems

- Guarantees a clear separation of roles
 - Application designer, component designer, framework designer, platform designer, and system integrator
- Uses non-functional code generation so as to enforce functional code portability
 - Components envelopes code is generated by the component framework from their IDL3 definition
 - Application migration from host to target only consists in using a different generation configuration
- Enables early validation on host
 - Functional unit tests and functional validation can be made on host since the functional code is the same on host and target.

Lw-CCM Based Development Process 2/2 (

Design Actor		Role
application designer	1	design of the component-based software application
component designer	2	design and implementation of components
platform designer	3	design of the target platform
framework designer	4 5	design of the component framework add-ons: services and connectors
system integrator	4 6	deployment of the application on the targeted platform

02/04/2008, AADL-UML 2008, Belfast

- Problem: The PSM of the system is evolving all along the design process
 - Error prone
 - Time consuming
 - Difficult maintenance
- Approach: Automate the production of this model

Global Modeling Approach

Tool 1: Already existing and deployed on an industrial project

Tool 2: Prototyped in the scope of SPICES

Enables to model precisely component-based architecture using the
<u>common subset</u> of AADL and Lw-CCM/RTCORBA/POSIX constructs.

Tool 3: Perspective of our work

Enables to improve confidence between runtime implementation and lower level model

Design Actor	Modeling Constructs	
application designer 1	Lw-CCM components assembly	
component designer 2	AADL component implementation models	
platform designer 3	AADL Platform model	
framework designer 4 5	AADL models of framework add-on: predefined components + technical services + composition mechanisms	
system integrator 4 6	Lw-CCM deployment plan	

02/04/2008, AADL-UML 2008, Belfast

AADL models

Models	AADL constructs	
AADL Platform model	Memory, processors, buses.	
AADL components implementations models	Set of subprogram types and implementations with subprogram calls and event data ports and requires subprogram group access with AADLv1.6	

Lw-CCM models (1/2)

Models		Lw-CCM constructs		Corresponding AADL constructs
Assembly model	1.	Predefined components	1.	Depends on the Lw-CCM component type: Threads for RT-Timer component
	2.	Technical services	2.	Set of subprogram types and implementations: One must be "service_pre_invoke", another must be "service_post_invoke".
	3.	Connectors	3.	Depends on the connector type

Lw-CCM models (2/2)

Models	Lw-CCM constructs	Corresponding AADL constructs
Assembly model	4. Connections	4. Connections between event data ports + requires/provides subprogram group access with AADLv1.6
	5. Instances	5. Subprogram calls (with AADLv1.0) / subprogram group instance with AADLv1.6
	6. instances configuration	6. Insertion of technical services subprograms calls
		+ Instantiation and initialization of data corresponding to attributes
Deployment Plan	1. Nodes	Processes definition and allocation on processors
	2. instances allocation on nodes	2. Allocation of activation and/or communication threads into processes
		+ server subprograms and Actual_Subprogram_Call property for remote components (with AADLv1.0)

9

02/04/2008, AADL-UML 2008, Belfast

Land & Joint Systems

THALES

Objective

Check feasibility of verification and validation *all along* the development process

Realization: a three steps schedulability analysis

- 1. Use of OSATE schedulability plug-in to budgetize threads execution time and allocate their execution on processes
- 2. Use of MAST to experiment more precise analysis, including operation sequence calls on a component model
- 3. Use of UPPAAL so as to include control flow in the schedulability analysis

Results show the importance of refining models all along the design process.

Conclusion and Perspectives (

The approach presented

- Provides a methodology to master complexity when designing complex and critical real-time distributed embedded systems
- Permits early and iterative design space exploration thanks to model analysis
- Enables to reuse pieces of development as well as corresponding models
- Authorizes iterative refinements of the models
- Eases the maintenance of the global model

Perspectives

- Usage of AADL v1.6 or higher simplifies the definition of mapping rules between AADL and Lw-CCM.
- Code generation: non-functional and deployment code should be generated from the AADL global model
 - Considered tool: Ocarina code generator for PolyORB-HI.
 - Objective: improve insurance to respect the AADL semantics and enable to master links between AADL global model and non-functional code implementation.

02/04/2008, AADL-UML 2008, Belfast

Thank you for your attention,

Do you have questions?

Etienne.Borde@fr.thalesgroup.com

