Extending statecharts
with process algebra
operators

Marc Frappiet,
B. Fraikin, R. St-Denis : Sherbrooke
F. Gervais, R. Laleau : Paris-Est

Plan

m Statecharts and Information systems
specifications

m ASTD : Algebraic State Transition
Diagrams

B Semantics of ASTD

B Conclusion

Statecharts

m oraphical notation

m hierarchy + orthogonality

B hierarchical states

= AND states (parallel)
® OR states (choice)

m nice for single instance behaviour

B provision for multiple instances in seminal paper

(SCP 87)

m “zever” implemented or formalised

A library in statecharts

Acquire

Discard

Lend
‘ ‘ Renew
Return

Problems

m need a guard to prevent discarding unreturned
books
m behaviour of a single book

® how to deal with several books?

® put n copies of book in parallel

Adding members

main

Register

Unregister

Problems

B memberts can borrow several books at the same
time
® how to say that in statecharts?
® two copies of loan
B one in member
B one in book

® how do they interact?
m can broadcast communication help?

m how can I say that member m1 borrows book b1?

Process algebra

m CCS, CSP, ACP, LOTOS, EB3, ...
m algebra

B operators to combine process expressions
B scquence, choice, interleave, synchronisation, guard, ...

B quantification

® operators 1s the essence of abstraction

m combine small units to build large units

A Process expression for books

book(b : BookId) =

(b,)

loan(_, b)*

(b)

A process expression for loans

loan(bld:BookID, mId:MemberID) =

(mlId) < (mld) =
(mId, bld)
((mlId) < (mld) =
(bId))*

(bld)

10

A process expression for members

member(m : Memberld) =

(m, _,_)

(lI'b : BooklId : loan(m, b)*)

(m)

11

Main process expression

main =
(Il'b : Bookld : book(b)™)
|
(' m : Memberld : member(m)*)

12

ASTD

m Algebraic State Transition Diagrams
m ASTD = statecharts + process algebra

® oraphical notation

® power of abstraction

m statecharts become elementary process
eXpressions

B combine them using operators

B formal semantics

B operational semantics

13

A book ASTD

book(bld : int), aut

Acquire(bld)

Discard(bld) loan(bld,mld)

14

A member ASTD

member(mld : int), aut

Register(miq) libld:int |

Unregister(mld) loan(bld,mlid)

15

A loan ASTD

loan(bld : int, mid : int), aut

Renew(bld)

16

The main ASTD

member(mid) book(bld)

17

ASTD Operators

: sequence
. choice
: quantified choice

: parallel composition with synchronisation

interleave, = parallel composition

b)

: quantified version
: guard
. Kleene closure

. allows recursive calls

18

Power of abstraction

B suppose you have two statecharts, & and b

B you want to compose them as follows
m execute A an arbitrary number of times
m then execute D an arbitrary number of times
m then start over again, an arbitrary number of times
m can’t do it in statecharts without peeking into a
and D’s structure with guards

® introduce a dependency between the compound and
the components

19

Power of abstraction

N

in(3)]
—>

FoRNGYRG

[in(3)] [in(4) in(6)] [in(6)]

Integration with the business class

book
Acquire

Discard
ListBook

bookld
title

diagram

loan

IL.end
Renew
Return

date

member

Register
Unregister
memberld
name
nbl.oans
maxNblLoans

21

State variables

m system trace is the only state variable
m attributes are functions on the system trace

m can be used anywhere in ASTDs

® guard, quantification sets, ...

(mlId : Memberld) =

(mld, _) :0,
(mId,) .1+ (mId),
(bId) : if (bld) = mld
then (mlId) - 1,

(mId,) :L;

22

Operational semantics

m first used by Milner for CCS

B transitions

O

s —>g 8

B ASTD a can execute o from state s and move to
state s’

23

Operational semantics

m transitions defined by a set of inference rules
m rules for each operator

®m allows non-determinism

m if several transitions can fire from s, then one is
nondeterministically chosen

B no priotity

24

State

m clementary states

m compound states
® one state type for each operator

B eg, sequence

(2o, left, s)
(EDO, rlghta S/)

25

Sequence state transitions

(2o,left,1)

(':>o,|6f'[,2>
e3

(= o,right,4)

26

Sequence state transitions

(2o,left,1)

(2o,left,2)

e2

(= o,left,2)

27

Sequence inference rules

execute the left component

when the left component
is in a final state, the right
component can execute

execute the right component

28

Closure state transitions

(= o,left,(x,—started, 1))
|

(= o,right, (x,started, 2))

(= o,right, (k,started, 2))

29

*1

*9

Closure inference rules

o, I’

(*o, started?, 3) Q (*o, true, 5/)

o,I’ /
S —p S

(%o, true, s) oL, (%o, true, s')

/

30

Initial and final states

m initial state 1s defined for each ASTD type

m an ASTD type denotes the set of ASTDs that can be
constructed for a given operator

® recursively defined

m final state 1s a Boolean function which
determines if a state 1s final

31

Initial and final states

it (2,1, 7))

(2o, left, init(l))
final;(s) A final,(init(r))

final,.(s)

IR

Jinal((%o,right, s))

Kleene closure init((x,b)) = (%o, false, init(b))

final((xo, started?, s)) = final,(s) V —started?

32

Conclusion

B process algebra operators can improve the
expressiveness of statecharts

m complete, precise models of information systems

B not just single instance scenarios, but also multiple instance
scenarios

m future work
®m tools for animation
® model checking

m code generation

St

	Extending statecharts with process algebra operators
	Plan
	Statecharts
	A library in statecharts
	Problems
	Adding members
	Problems
	Process algebra
	A Process expression for books
	A process expression for loans
	A process expression for members
	Main process expression
	ASTD
	A book ASTD
	A member ASTD
	A loan ASTD
	The main ASTD
	ASTD Operators
	Power of abstraction
	Power of abstraction
	Integration with the business class diagram
	State variables
	Operational semantics
	Operational semantics
	State
	Sequence state transitions
	Sequence state transitions
	Sequence inference rules
	Closure state transitions
	Closure inference rules
	Initial and final states
	Initial and final states
	Conclusion

