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Statecharts

m oraphical notation

m hierarchy + orthogonality

B hierarchical states

= AND states (parallel)
® OR states (choice)

m nice for single instance behaviour

B provision for multiple instances in seminal paper

(SCP 87)

m “zever” implemented or formalised



A library in statecharts

Acquire

Discard

Lend
‘ ‘ Renew
Return




Problems

m need a guard to prevent discarding unreturned
books
m behaviour of a single book

® how to deal with several books?

® put n copies of book in parallel



Adding members

main

Register

Unregister




Problems

B memberts can borrow several books at the same
time
® how to say that in statecharts?
® two copies of loan
B one in member
B one in book

® how do they interact?
m can broadcast communication help?

m how can I say that member m1 borrows book b1?



Process algebra

m CCS, CSP, ACP, LOTOS, EB3, ...
m algebra

B operators to combine process expressions
B scquence, choice, interleave, synchronisation, guard, ...

B quantification

® operators 1s the essence of abstraction

m combine small units to build large units



A Process expression for books

book(b : BookId ) =

(b, )

loan( _, b)*

(b)



A process expression for loans

loan(bld:BookID, mId:MemberID ) =

(mlId) < (mld) =
(mId, bld)
( (mlId) < (mld) =
(bId))*

(bld)
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A process expression for members

member(m : Memberld ) =

(m, _,_)

(lI'b : BooklId : loan( m, b)* )

(m)
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Main process expression

main =
(Il'b : Bookld : book(b)™)
|
(' m : Memberld : member(m)*)
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ASTD

m Algebraic State Transition Diagrams
m ASTD = statecharts + process algebra

® oraphical notation

® power of abstraction

m statecharts become elementary process
eXpressions

B combine them using operators

B formal semantics

B operational semantics
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A book ASTD

book(bld : int), aut

Acquire(bld)

Discard(bld) loan(bld,mld)
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A member ASTD

member(mld : int), aut

Register(miq) libld:int |

Unregister(mld) loan(bld,mlid)
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A loan ASTD

loan(bld : int, mid : int), aut

Renew(bld)
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The main ASTD

member(mid) book(bld)
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ASTD Operators

: sequence
. choice
: quantified choice

: parallel composition with synchronisation

interleave, = parallel composition

b)

: quantified version
: guard
. Kleene closure

. allows recursive calls
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Power of abstraction

B suppose you have two statecharts, & and b

B you want to compose them as follows
m execute A an arbitrary number of times
m then execute D an arbitrary number of times
m then start over again, an arbitrary number of times
m can’t do it in statecharts without peeking into a
and D’s structure with guards

® introduce a dependency between the compound and
the components

19



Power of abstraction
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Integration with the business class

book
Acquire

Discard
ListBook

bookld
title

diagram

loan

IL.end
Renew
Return

date

member

Register
Unregister
memberld
name
nbl.oans
maxNblLoans
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State variables

m system trace is the only state variable
m attributes are functions on the system trace

m can be used anywhere in ASTDs

® guard, quantification sets, ...

(mlId : Memberld) =

(mld, _) :0,
(mId, ) .1+ (mId),
(bId) : if (bld) = mld
then (mlId) - 1,

(mId, ) :L;
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Operational semantics

m first used by Milner for CCS

B transitions

O

s —>g 8

B ASTD a can execute o from state s and move to
state s’
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Operational semantics

m transitions defined by a set of inference rules
m rules for each operator

®m allows non-determinism

m if several transitions can fire from s, then one is
nondeterministically chosen

B no priotity
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State

m clementary states

m compound states
® one state type for each operator

B eg, sequence

(2o, left, s)
(EDO, rlghta S/)
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Sequence state transitions

(2o,left,1)

(':>o,|6f'[,2>
e3

(= o,right,4)
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Sequence state transitions

(2o,left,1)

(2o,left,2)

e2

(= o,left,2)
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Sequence inference rules

execute the left component

when the left component
is in a final state, the right
component can execute

execute the right component
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Closure state transitions

(= o,left,(x,—started, 1))
|

(= o,right, (x,started, 2))

(= o,right, (k,started, 2))
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*1

*9

Closure inference rules

o, I’

(*o, started?, 3) Q (*o, true, 5/)

o,I’ /
S —p S

(%o, true, s) oL, (%o, true, s')

/
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Initial and final states

m initial state 1s defined for each ASTD type

m an ASTD type denotes the set of ASTDs that can be
constructed for a given operator

® recursively defined

m final state 1s a Boolean function which
determines if a state 1s final
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Initial and final states

it (2,1, 7))

(2o, left, init(l))
final;(s) A final,(init(r))

final,.(s)

IR

Jinal((%o,right, s))

Kleene closure init((x,b)) = (%o, false, init(b))

final((xo, started?, s)) = final,(s) V —started?
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Conclusion

B process algebra operators can improve the
expressiveness of statecharts

m complete, precise models of information systems

B not just single instance scenarios, but also multiple instance
scenarios

m future work
®m tools for animation
® model checking

m code generation
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