
1

Extending statecharts Extending statecharts
with process algebra with process algebra

operatorsoperators

Marc Frappier,Marc Frappier,
B. Fraikin, R. StB. Fraikin, R. St--Denis : SherbrookeDenis : Sherbrooke

F. Gervais, R. Laleau : ParisF. Gervais, R. Laleau : Paris--EstEst

2

PlanPlan

Statecharts and Information systems Statecharts and Information systems
specificationsspecifications
ASTD : Algebraic State Transition ASTD : Algebraic State Transition
DiagramsDiagrams
Semantics of ASTDSemantics of ASTD
ConclusionConclusion

3

StatechartsStatecharts

graphical notationgraphical notation
hierarchy + orthogonalityhierarchy + orthogonality

hierarchical stateshierarchical states
AND states (parallel)AND states (parallel)
OR states (choice)OR states (choice)

nice for single instance behaviournice for single instance behaviour
provision for multiple instances in seminal paper provision for multiple instances in seminal paper
(SCP 87)(SCP 87)
““nevernever” implemented or formalised” implemented or formalised

4

A library in statecharts A library in statecharts

5

ProblemsProblems

need a guard to prevent discarding unreturned need a guard to prevent discarding unreturned
booksbooks
behaviour of a single bookbehaviour of a single book

how to deal with several books?how to deal with several books?
put n copies of book in parallelput n copies of book in parallel

6

Adding membersAdding members

7

ProblemsProblems

members can borrow several books at the same members can borrow several books at the same
timetime

how to say that in statecharts?how to say that in statecharts?
two copies of loantwo copies of loan

one in memberone in member
one in bookone in book
how do they interact?how do they interact?

can broadcast communication help?can broadcast communication help?
how can I say that member m1 borrows book b1?how can I say that member m1 borrows book b1?

8

Process algebraProcess algebra

CCS, CSP, ACP, LOTOS, EB3, ...CCS, CSP, ACP, LOTOS, EB3, ...
algebraalgebra

operators to combine process expressionsoperators to combine process expressions
sequence, choice, interleave, synchronisation, guard, ...sequence, choice, interleave, synchronisation, guard, ...
quantificationquantification

operators is the essence of abstractionoperators is the essence of abstraction
combine small units to build large unitscombine small units to build large units

9

A Process expression for booksA Process expression for books

book(b : BookId) =

Acquire(b, _)
•

 loan(_, b)¯

•

 Discard(b)

10

A process expression for loansA process expression for loans

loan(bId:BookID, mId:MemberID

) =

nbLoans(mId) < maxNbLoans(mId) 
Lend(mId, bId)

•
 (nbLoans(mId) < maxNbLoans(mId) 

Renew(bId))¯

•
 Return(bId)

11

A process expression for membersA process expression for members

member(m

: MemberId) =

Register(m, _,_)
•

 (8

b : BookId : loan(m, b)*)
•

 Unregister(m)

12

Main process expressionMain process expression

main =
(8

b : BookId : book(b)¯

)

7
(8

m : MemberId

: member(m)¯

)

13

ASTDASTD

Algebraic State Transition DiagramsAlgebraic State Transition Diagrams
ASTD = statecharts + process algebraASTD = statecharts + process algebra

graphical notationgraphical notation
power of abstractionpower of abstraction

statecharts become elementary process statecharts become elementary process
expressionsexpressions

combine them using operatorscombine them using operators
formal semanticsformal semantics

operational semanticsoperational semantics

14

A book ASTDA book ASTD

15

A member ASTDA member ASTD

16

A loan ASTDA loan ASTD

17

The main ASTDThe main ASTD

18

ASTD OperatorsASTD Operators

: sequence: sequence
|| : choice: choice

|x|x : quantified choice: quantified choice

|[]||[]|: parallel composition with synchronisation: parallel composition with synchronisation
8 interleave, interleave, 7 parallel compositionparallel composition
8x, |[]|x : quantified version

 : guard: guard
¯ : Kleene closure: Kleene closure
ASTD call ASTD call : allows recursive calls: allows recursive calls

19

Power of abstractionPower of abstraction

suppose you have two statecharts, suppose you have two statecharts, aa and and bb
you want to compose them as followsyou want to compose them as follows

execute execute aa an arbitrary number of timesan arbitrary number of times
then execute then execute bb an arbitrary number of timesan arbitrary number of times
then start over again, an arbitrary number of timesthen start over again, an arbitrary number of times

can’t do it in statecharts without peeking into can’t do it in statecharts without peeking into aa
and and bb’s’s structure with guardsstructure with guards

introduce a dependency between the compound and introduce a dependency between the compound and
the componentsthe components

20

Power of abstractionPower of abstraction

21

Integration with the business class Integration with the business class
diagramdiagram

book member
Register
Unregister

Lend
Renew
Return

Acquire
Discard
ListBook

loan

bookId
title

memberId
name
nbLoans
maxNbLoans

date

1*

borrower

22

State variablesState variables

system trace is the only state variablesystem trace is the only state variable
attributes are functions on the system traceattributes are functions on the system trace
can be used anywhere in can be used anywhere in ASTDsASTDs

guard, quantification sets, ...guard, quantification sets, ...

nbLoansnbLoans(mId : (mId : MemberIdMemberId) =) =
RegisterRegister((mIdmId, _) : 0,, _) : 0,
LendLend(mId(mId, _) : 1 + , _) : 1 + nbLoansnbLoans(mId),(mId),
ReturnReturn(bId(bId) :) : ifif

borrowerborrower(bId(bId) =) = mIdmId

then then nbLoansnbLoans(mId) (mId) --

1,1,
UnregisterUnregister((mIdmId, _) : , _) : ^̂;;

23

Operational semanticsOperational semantics

first used by Milner for CCSfirst used by Milner for CCS
transitionstransitions

ASTD a can execute ASTD a can execute ss from state s and move to from state s and move to
state sstate s’’

24

Operational semanticsOperational semantics

transitions defined by a set of inference rulestransitions defined by a set of inference rules
rules for each operatorrules for each operator
allows nonallows non--determinismdeterminism

if several transitions can fire from s, then one is if several transitions can fire from s, then one is
nondeterministicallynondeterministically chosenchosen
no priorityno priority

25

StateState

elementary stateselementary states
compound statescompound states

one state type for each operatorone state type for each operator
egeg, sequence, sequence

26

Sequence state transitionsSequence state transitions

(0,left,1)

(0,left,2)

(0,right,4)

27

Sequence state transitionsSequence state transitions

(0,left,1)

(0,left,2)

(0,left,2)

28

Sequence inference rulesSequence inference rules

execute the left component

when the left component
is in a final state, the right
component can execute

execute the right component

29

Closure state transitionsClosure state transitions

(0,left,(¯,ÿstarted, 1))

(0,right,(¯,started, 2))

(0,right,(¯,started, 2))

30

Closure inference rulesClosure inference rules

31

Initial and final statesInitial and final states

initial state is defined for each ASTD typeinitial state is defined for each ASTD type
an ASTD type denotes the set of an ASTD type denotes the set of ASTDsASTDs that can be that can be
constructed for a given operatorconstructed for a given operator
recursively definedrecursively defined

final state is a Boolean function which final state is a Boolean function which
determines if a state is finaldetermines if a state is final

32

Initial and final statesInitial and final states

sequence

Kleene closure

33

ConclusionConclusion

process algebra operators can improve the process algebra operators can improve the
expressiveness of statechartsexpressiveness of statecharts
complete, precise models of information systemscomplete, precise models of information systems

not just single instance scenarios, but also multiple instance not just single instance scenarios, but also multiple instance
scenariosscenarios

future workfuture work
tools for animationtools for animation
model checkingmodel checking
code generationcode generation

	Extending statecharts with process algebra operators
	Plan
	Statecharts
	A library in statecharts
	Problems
	Adding members
	Problems
	Process algebra
	A Process expression for books
	A process expression for loans
	A process expression for members
	Main process expression
	ASTD
	A book ASTD
	A member ASTD
	A loan ASTD
	The main ASTD
	ASTD Operators
	Power of abstraction
	Power of abstraction
	Integration with the business class diagram
	State variables
	Operational semantics
	Operational semantics
	State
	Sequence state transitions
	Sequence state transitions
	Sequence inference rules
	Closure state transitions
	Closure inference rules
	Initial and final states
	Initial and final states
	Conclusion

