Safe Design of High-Performance

Embedded Systems in an MDE framework

Abdoulaye Gamatié
Eric Rutten
Jean-Luc Dekeyser

40.ans’ &I INRIA



Outline

Introduction
Repetitive computation and control modeling

Formal application validation and a case study

Conclusions




Introduction

High-performance embedded systems (HPES)

High-performance computing in embedded systems

Examples: signal/image/video processing

High-definition TV, Personal Digital Assistant, digital camera,
multimedia cellular phone, etc.

Motivations: need of design environment to address issues of increasing
system complexity and design reliability

Automatic code generation, performance evaluation, validation, etc.




Gaspard2 framework for the design of HPES

Characteristics
Hardware/software co-design

Model-Driven Engineering approach
High-level modeling, automatic code generation, etc.

MARTE profile

Core formalism for high-performance computing
System regularity
Multidimensional array

Performance evaluation, etc.

Needs
Control mechanism and profile

Application validation




Gaspard?2 repetitive computation
and control modeling




An example of Gaspard2 application

Gaspard2 basic concepts
Elementary components: atomic functions
Hierarchical components: task parallelism

Repetitive components: data parallelism

<<Camponent>> E]I
MonochromeMode
< <Component> >
i [{320,240)] mono : MonoFilter [{40,30}] o [{320,2401]
< <FlowPort>
[T{Flnwmrt:-::- [j i [18.81] o [{8,8}] |: } S t :|
< <Tiler>> s < FlowPort> = < <FlowFort>> {fitting = "{1,1}",
{ﬁl:‘tlng ={1 1}, origin = 0,0},
origin = "{0,0}", paving = "{{8,0L{0,81}"}
paving = "{{8,0}{0,8}1"}




Gaspard2 control

Requirements

High-level state-based control

Partial regularity preservation

Verifiable and safe control

Compatibility with MARTE




Control profile in accord with MARTE (1)

Main control concepts
Computation mode
Controller
Determine which computation is chosen according to its internal state
Switch
Chose the right computation according to controller's decision

<= COmponent=>= E]
Color Effect

ctr_color [{1}] c: ColorComrol o]

ctr_color mode_out : ColorModes [{1}r]

event_color [{1}] mude_um[]
. event_color o [{320,2:401]

5 Culurﬁtvleﬁwitchg]
i[{320,240}] mode_color
i o

Two UML concepts for behavioral modeling:
State machines
Collaborations




Control profile in accord with MARTE (2)

UML State machines
An object-oriented variant of State charts

Explicit description of the behavior of systems

Main concepts of State machines

StateMachine, Region, Vertex, State, Pseudostate, Transition, Trigger,
Event, Expression, etc.

Usage specialization of state machines

Event
ChangeEvent (prefixed by when) and AnyEvent (all)

State
DoActivity
Expressions for the specification of an OpaqueBehavior

‘ B INRIA ‘




Control profile in accord with MARTE (3)

An example of State machine:

Pseudostate, Vertex

Region

Composite state, Vertex

/

V'

EffectOff

I" whe ie_ef_fect}

all

when (e_affect) N all
when {(e_r_u) when (e_r_u) all

Low ]: Medium C{ High J

when (e_r_d) U when (e_r_d}
all all

EffectOn

State, Vertex

Transition

A\

State, Vertex




Control profile in accord with MARTE (4)

State machine component: an example

o D0 FPRE PV AL 2 g_‘];
ColorControl

[ ] ctr_color : Boolean [{1}]
=< <FlowPort=>

State_out : States [{1}] [:l

[:l event_color_down : Boolean [{1}] < < FlowPort ==
= < FlowPort> =

event_color_up : Boolean [{11] Mk e oML : Eujzr:uuu:l::rt[i].}}] Ej
< < FlowPort> =

State_in : States [{1}]
< FlowPort= =

? when (event_color_up
. and ctr_color)

[ caolor manochrome ]

i
when (event_color down
1 and ctr_colar) "
d d




Control profile in accord with MARTE (5)

UML collaborations

A collaboration specifies the relationship between collaborating elements
from a certain point of view

Mode switch component

Two types of ports
Mode port (receive mode values, a UML behavior port)
Data port (receive or send data)

Change of its internal computations according to received mode values

Correspondence between mode, mode value and collaboration
A collaboration specifies a mode, which is identified by a mode value
A collaboration is named according to a mode value




Control profile in accord with MARTE (6)

Mode switch component: an example

< COMpanents I
ColorEffectSwitch

maode_color : ColorMades [{1}]
< < FlowPorts> =

¢ : ColorMode g]

< < FlowPorts =

: ColorEffectSwitch=] 5
=F [ Lo

T

| | Ll
: Monochrom el'u'tndeg]




A typical composition

Gaspard component

State machine
9 e component

State value

Mode value

Mode switch
component

Model

Mode2

ehmmmsmmmmessmesecamaaaa,,, .

State machine

.
e,
-
LT

region.ostate=self.name and
app.mode=enumeration.M1

la révolution de I'information

.
-

-
- et
-u®

» .
4iemssasassssssssssscsssssssseaih

n o Mode switch
O component
g
e, Model =
-k .

et M2

-
..t:.-----.----------------------1m.

amamEs
as L
“e,

Mode switch b
component .
. Mode2




Validation reguirements
UML-related verifications

Gaspard2-related verifications

Safe array assignment, data dependency analysis, etc.

Application-related verifications

Properties to be verified
Functional properties
Non-functional properties




Formal validation and a case study




Synchronous languages for validation

Synchronous languages
Strong mathematical foundations
Unambiguous specifications
Languages: Esterel, Lustre, Signal, etc.
Large number of associated validation tools

Platforms: Esterel Studio, Scade, RT-Builder, etc.

Model transformation

From the Gaspard2 model towards the synchronous equational model

Prototype tool as an Eclipse plugin




Model checking

Model checking of functional properties

Properties to be verified
Reachability, safety, ...

Reachability verification example
Black & white state and color state

Model checking of non-functional properties

Non-functional properties
Energy, communication quality, processor load, memory usage, etc.

Properties to be verified
Reachability, ...

Verification example
Reachability verification under energy constraints




A case study

<< COomponents>
CellePhoneExample

event_energy [{1}]

event_energy

es : EnergyStatus =]

mode_out

event_comm_ EE\I“ ty [{1}]

et

cg : CommQuality 5]
mode_energy

event_comm_gquali

mode_out

event_computing

event_color [{1

{1}]

eveni_image_s

mode_videosource mode_resolution mede_imagestyle
I 1

=

: Controller
event_energy

event_comm_quality etr_color

event_computing_resource
ctr_resolution

event_color

ctr_imagestyle
event_image_style
event_resolution ctr_videosource
event_video_source mode_color

I g

| - = T L]

event_resolutign

event_video_source [{1}]

:tr_videu_sfnilce [{1n

camera_video [{B20,240}]

'l

vs @ VideoSource

event_video_source

camera_video

ol

local_video

online-video

mode_out l{lL]

ctr_resofution [{1}]

r: Resolution

event_resalution

mod

—[:l event_imagestyle

]_|—[:|'
o

[etr_im tyle [{1}] mode_out [{1}]
k_out [{13] ‘Lﬂ* ﬁtr_tr:E‘[{I}] mud&_’J::t: ColorModes [{1}]

is : ImageStyle =]

|
¢ : ColorEffect

—{ ] event_calor

D[]—I_[:l i

o [{320,240}

40

la révolution de I'information

B INRIA




Model checking

An example of model checking

CE_Color: a_wvar(Color, 0, 30, 0);
CE_Monochrome: a_war (Monochrome, 0, 20, 0);
CE_ColorEffect: CE_Color + CE_Monochrome;
CE_GL: CE_ColorEffect + CE_ImageStyle + ...;
MAX En: 110;

CE_Limitation: a_sup(CE_GL, CE_MAX);
Reachable (S , CE _Limitation);

Tools used in the model checking

oML ) Y

ML v

[ specifications J Model [ Targos J Matqu
transformation compiler

IS EEESSESENEEEEEEEE Il'l'.'

Model checking ’
= Discrete controller synthesis ;

s EE SIS EEEEEEEEE .

*
-
-

B INRIA




Conclusions




Conclusions

A MARTE-compatible control profile

On the basis of UML state machines and collaborations

Model transformation into synchronous languages
Manual transformation of the control into synchronous languages
Extension of the synchronous model

Extension in consideration of the presented control mechanism

Formal validation

In consideration of non-functional properties

lllustration through a case study




Thank you for your attention!




