
1

Safe Design of High-Performance
Embedded Systems in an MDE framework

Huafeng Yu
Abdoulaye Gamatié
Éric Rutten
Jean-Luc Dekeyser

INRIA - CNRS - LIFL - USTLINRIA - CNRS - LIFL - USTL

2

Outline

IntroductionIntroduction

Repetitive computation and control modelingRepetitive computation and control modeling

Formal application validation and a case studyFormal application validation and a case study

ConclusionsConclusions

3

Introduction

High-performance embedded systems (HPES)High-performance embedded systems (HPES)

• High-performance computing in embedded systems

• Examples: signal/image/video processing
– High-definition TV, Personal Digital Assistant, digital camera,

multimedia cellular phone, etc.

• Motivations: need of design environment to address issues of increasing
system complexity and design reliability

– Automatic code generation, performance evaluation, validation, etc.

4

Gaspard2 framework for the design of HPES

CharacteristicsCharacteristics

• Hardware/software co-design

• Model-Driven Engineering approach
– High-level modeling, automatic code generation, etc.

• MARTE profile

• Core formalism for high-performance computing
– System regularity
– Multidimensional array

• Performance evaluation, etc.

NeedsNeeds

• Control mechanism and profile

• Application validation

5

Gaspard2 repetitive computation
and control modeling

6

An example of Gaspard2 application

Gaspard2 basic conceptsGaspard2 basic concepts

• Elementary components: atomic functions

• Hierarchical components: task parallelism

• Repetitive components: data parallelism

7

Gaspard2 control

RequirementsRequirements

• High-level state-based control

• Partial regularity preservation

• Verifiable and safe control

• Compatibility with MARTE

8

Control profile in accord with MARTE (1)

Main control conceptsMain control concepts
• Computation mode
• Controller

– Determine which computation is chosen according to its internal state
• Switch

– Chose the right computation according to controller's decision

Two UML concepts for behavioral modeling:Two UML concepts for behavioral modeling:
• State machines
• Collaborations

9

Control profile in accord with MARTE (2)

UML State machinesUML State machines

• An object-oriented variant of State charts

• Explicit description of the behavior of systems

Main concepts of State machinesMain concepts of State machines

• StateMachine, Region, Vertex, State, Pseudostate, Transition, Trigger,
Event, Expression, etc.

Usage specialization of state machinesUsage specialization of state machines

• Event
– ChangeEvent (prefixed by when) and AnyEvent (all)

• State
– DoActivity

– Expressions for the specification of an OpaqueBehavior

10

Control profile in accord with MARTE (3)

An example of State machine:An example of State machine:

11

Control profile in accord with MARTE (4)

State machine component: an exampleState machine component: an example

12

Control profile in accord with MARTE (5)

UML collaborationsUML collaborations

• A collaboration specifies the relationship between collaborating elements
from a certain point of view

Mode switch componentMode switch component

• Two types of ports
– Mode port (receive mode values, a UML behavior port)
– Data port (receive or send data)

• Change of its internal computations according to received mode values

• Correspondence between mode, mode value and collaboration
– A collaboration specifies a mode, which is identified by a mode value
– A collaboration is named according to a mode value

13

Control profile in accord with MARTE (6)

Mode switch component: an exampleMode switch component: an example

14

A typical composition

15

Validation requirements

UML-related verificationsUML-related verifications

Gaspard2-related verificationsGaspard2-related verifications

• Safe array assignment, data dependency analysis, etc.

Application-related verificationsApplication-related verifications

• Properties to be verified
– Functional properties
– Non-functional properties

16

Formal validation and a case study

17

Synchronous languages for validation

Synchronous languagesSynchronous languages

• Strong mathematical foundations

• Unambiguous specifications

• Languages: Esterel, Lustre, Signal, etc.

• Large number of associated validation tools

• Platforms: Esterel Studio, Scade, RT-Builder, etc.

Model transformationModel transformation

• From the Gaspard2 model towards the synchronous equational model

• Prototype tool as an Eclipse plugin

18

Model checking

Model checking of functional propertiesModel checking of functional properties

• Properties to be verified
– Reachability, safety, ...

• Reachability verification example
– Black & white state and color state

Model checking of non-functional propertiesModel checking of non-functional properties

• Non-functional properties
– Energy, communication quality, processor load, memory usage, etc.

• Properties to be verified
– Reachability, ...

• Verification example
– Reachability verification under energy constraints

19

A case study

An example of model checkingAn example of model checking

CE_Color: a_var(Color, 0, 30, 0);
CE_Monochrome: a_var(Monochrome, 0, 20, 0);
CE_ColorEffect: CE_Color + CE_Monochrome;
CE_GL: CE_ColorEffect + CE_ImageStyle + ...;
MAX_En: 110;
CE_Limitation: a_sup(CE_GL, CE_MAX);
Reachable(S , CE_Limitation);

Tools used in the model checkingTools used in the model checking

20

Model checking

An example of model checkingAn example of model checking

CE_Color: a_var(Color, 0, 30, 0);
CE_Monochrome: a_var(Monochrome, 0, 20, 0);
CE_ColorEffect: CE_Color + CE_Monochrome;
CE_GL: CE_ColorEffect + CE_ImageStyle + ...;
MAX_En: 110;
CE_Limitation: a_sup(CE_GL, CE_MAX);
Reachable(S , CE_Limitation);

Tools used in the model checkingTools used in the model checking

21

Conclusions

22

Conclusions

A MARTE-compatible control profileA MARTE-compatible control profile

• On the basis of UML state machines and collaborations

Model transformation into synchronous languagesModel transformation into synchronous languages

• Manual transformation of the control into synchronous languages

• Extension of the synchronous model

• Extension in consideration of the presented control mechanism

Formal validationFormal validation

• In consideration of non-functional properties

• Illustration through a case study

23

Thank you for your attention!

