8th International Workshop on Worst-Case Execution Time (WCET'2008)

Improving the WCET computation time by IPET using CFG partitioning

C. BALLABRIGA, H. CASSÉ

{ballabri, casse}@irit.fr

TRACES – IRIT - Université de Toulouse - France

1

Clément BALLABRIGA

WCET Computation

- WCET computation by static analysis
 - program control flow analysis
 - architecture effects analysis
 - WCET computation \rightarrow IPET
- IPET : widely-used WCET computation approach
 - express program flow and hardware effects using an ILP system
 - an ILP solver is used to compute the WCET (an objective function to maximize)

ILP solving

 ILP solving time is high, and increases nonlinearly with system size

(ILP solving time, with **lp_solve**)

solution: split systems into smaller subsystems

regions : basic idea

- single-entry, single exit regions (SESE)
- WCET of a region computable independently

region

(R. Johnson et al. - The Program Structure Tree: Computing Control Regions in Linear Time – SIGPLAN Conference on Programming Language Design and Implementation, 1994)

regions : basic idea

- single-entry, single exit regions
- WCET of a region computable independently
- computed WCET used in parent region

(region now modeled by a single edge)

Program Structure Tree (PST)

- regions can be structured into a tree
- compute the WCET by a bottom-up visit

PST view

the regions in the PST must be computable independently without altering the final WCET

CFG view

Cache issues

- main problem: Persistence
- parametrized persistence is easier to handle (C. Ballabriga, H. Cassé – Improving the First-Miss Computation in Set-Associative Instruction Caches – ECRTS'08)

compute other regions

compute other regions

Pipeline: Exegraph

- Exegraph: compute BB execution time using a graph and BB predecessors
 (C. Rochange, P. Sainrat - A Context-Parameterized Model for Static Analysis of Execution Times – HiPEAC'2007)
- several context-handling modes

 one time whatever the predecessors
 one time for each direct predecessor
 one time for each sequence of 2 pred.

 one time for each sequence of more than 2 pred.

in cases 1 and 2 Exegraph does not introduce region dependencies

Pipeline: Exegraph

3

sequences of two basic blocks

only entry BB is affected

example:

- all paths go through this BB
- we can compute the region WCET minus this BB.

Pipeline: Exegraph

sequences of two basic blocks

3

example:

- all paths go through this BB
- we can compute the region WCET minus this BB.

Conclusion

experimentation software
 OTAWA, our WCET
 computation tool

target architecture

- simple pipeline (Exegraph)
- 4-way associative instruction cache, LRU policy (categories)

results

on average, 6.5 times faster

future works:

- test with others solvers
- apply to COTS
- check adaptability to others hardware analyses