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Formal Performance Analysis Applications

• formal models for performance analysis optimization are in 
use for very different types of embedded system

– distributed networks

– MpSoC

source: Daimler
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Example: Automotive Embedded Systems

• Complexity challenge

– Hundreds of 

functions

– Networked control

– Many suppliers

– Heterogeneous

• Design challenges

– supply chains

– systems integration 

– verification

• Software standardization: OSEK → AUTOSAR

source: Daimler-Chrysler

55 ECUs & 7 Buses of 4 types with Gateways
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Automotive Networked Systems

• distributed networked system with complex end-to-end time 
constraints and numerous integrated functions on shared
resources
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Automotive Design Chain

OEM
- BMW, Daimler, GM, PSA, Toyota, …

- global system, integration and network Gateway

ECU1

CAN1 CAN2

FlexRay

ECU2

ECU4

ECU5

ECU8ECU7

ECU - Supplier
- Bosch, Delphi, Valeo, …
- ECU responsibility

Bosch Delphi Valeo

RTE - Supplier
- Vektor, ETAS, Elektrobit, 

Mentor, …HW Component - Supplier
- Infineon, Freescale, ST, Toshiba, …

specs ECUs

specs SoCs

© R. Ernst, TU Braunschweig, 2008 8

Requirements

System Design System Test

Requirements  Test

Module Design

Function Design Function Test

Module Test

V Model

Implementation Integration
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Requirements

System Design System Test

Requirements  Test

Module Design

Function Design Function Test

Module Test

System
Timing

Estimation

Network Timing
Estimation

V – Model and Timing

ECU Timing
Estimation

ECU Timing
Verification

Network Timing
Verification

System
Timing

Verification
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AUTOSAR - Automotive Software Architecture 

• SW-Components (SW-C)

– encapsulate the applications

• Virtual Functional Bus (VFB)

– communication mechanisms

– interface to Basic SW

• Mapping

– configuration and generation
of RTE and Basic SW 

• Runtime Environment (RTE)

– VFB implementation on a 
specific ECU

• Basic Software (BSW)

– infrastructural functionality
on an ECU

Source: www.autosar.org
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SW Component Execution 

• Standardized RTE eases compiling & linking together several 
SW components from different teams/vendors

Vehicle Function
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RTE
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Sensor SWC
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courtesy: K.Richter, Symtavision
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Timing Chains and Hand-Over Points 

• Hidden timing chains and non-functional dependencies 
challenge predictability

• Timing verification required to support design process
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Timing Hierarchy - Automotive

single process timingrunnable

global system timing

single component or 
network channel 
timing

SW-C 1
runnableA

runnableB

runnableC SW-C2runnableZ

runnableX

runnableYECU 1

gateway 1

ECU1

ECU3

ECU2

ECU4

ECU6ECU5

gateway 2
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Timing Model Hierarchy

IP

MP M P

M

T1 T2

P

BSW

RTE

T1 T2

• system timing model

– performance of components 
integrated in a network

• component timing model

– activation function

– component
scheduling/arbitration

• task timing model

– execution load and timing

– communication load and timing

activation * *
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Timing Model Hierarchy - Task

IP

MP M P

M

T1 T2

P

BSW

RTE

T1 T2

• system timing model

– performance of components 
integrated in a network

• component timing model

– activation function

– component
scheduling/arbitration

• task timing model

– execution load and timing

– communication load and timing

activation * *



© R. Ernst, TU Braunschweig, 2008 17

Formal Modeling Fundamentals – Task Execution

• task core execution time is the time needed to execute a 
given task when running alone on a processor

• task core execution time does not include

– operating system overhead

– the influcence of other tasks

– waiting and synchronization times for global resources

– shared cache and memory access times 
(L1 cache often included)

• task core execution time is determined in different ways

– estimated in early design phases

– measured with a cycle accurate simulator (e.g. CoWare, Vast)

– measured with instrumented code on a prototype (e.g. dspace)

– formally analyzed using WCET analysis

© R. Ernst, TU Braunschweig, 2008 18

Formal Modeling Fundamentals – Communication

• core communication time is the transmission time for a 
given message to be communicated over a link when no 
other communication is active 

• core communication time does not include

– arbitration (scheduling)

– buffering 

– gateway, multi-hop or MIN timing overhead 

• core communication time is determined in different ways

– simulation or prototyping

– communication analysis based on formal model of 
communication protocol

• individually adapted to communication protocol

• typically simpler than WCET analysis 
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Timing Model Hierarchy  - Activation

IP

MP M P

M
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RTE

T1 T2

• system timing model

– performance of components 
integrated in a network

• component timing model

– activation function

– component
scheduling/arbitration

• task timing model

– execution load and timing

– communication load and timing

activation * *

© R. Ernst, TU Braunschweig, 2008 20

Formal Modeling Fundamentals – Activation

• total task load, also called utilization of task i, Ui, depends on 
activation function

total task load = load/task execution * task activation requency

= task core execution time * task activation frequency

– example: periodic task i with core execution time Ci and period Ti

Ui = Ci/Ti

• what defines the task activation function ?

– application model (Simulink, SPW, LabView, …)

– environment model (reactive systems) 

– service contracts (max no of requests per time, …)

→ typically application rather than platform dependent

→ platform can „modulate“ activation timing to avoid 
malfunction (e.g. traffic shaping, back pressure)

• two classes of activation – time activation, event activation
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Activation Functions

• two classes of activation 

• time activation – tasks are periodically activated by clock

• example: periodic sample in signal processing / control eng.

• event activation – tasks are activated when event arrives

• example: automata, flow graph

S

C

B4

B2B1 B3
event 
source

sample 
clock

event activated

time activated

event 
model

event/communication 
model

activation functions - example
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Events and Activation Dependency

• event activation requires event buffering

– event queues

– no event lost (under normal operation)

• time activation does not always require buffering

– buffering requirements only depends on the application 
semantics

• may allow to drop data

• dropping data may be 
required to obtain 
latest sample

B2 B3buffer

C

B4

B2

sample 
clock

register
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Modeling Events as Streams

• in system level formal performance models, events are 
modeled as streams rather than as sequences of individual 
events 

• examples

– a clock is given by its period rather than as a sequence of 
clock ticks

→ clock can be modeled as an event stream

– a sampled sensor signal is modeled by the sample period and 
the sample jitter

• the event streams are defined as functions or as parameter 
tuples
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Popular Event Stream Models – PJD  

• standard event model used in classical schedulability 
analysis 

– event sequences are modeled by three parameters, period p, 
jitter j, and minimum time interval d between 2 events  

– important models that can easily be described 

• strictly periodic events (typically clock released)

• periodic events with jitter 

• sporadic events

• sporadically periodic events

– covers a large class of applications

– conservatively approximates more complex functions

te1 te2 te3
tptp

tJ
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Popular Event Stream Models - Arrival Curves 

• arrival curves of the network calculus 

– captures the no. of event in a time interval Δt

– αl (Δt) is lower bound

– αu (Δt) is upper bound

• can be used to describe the standard event models 

• reaches infinite values for Δt → ∞
– must be approximated or extended by periodic function 

for Δt → ∞

• is approximated when event sequences become very 
complex, e.g. as a result of operations on event sequences

Swiss Federal
Institute of Technology 26

Arrival Curves - Example

t [ms] 

events

maximum / minimum
arriving events in any

interval of length 2.5 ms

2.5 

events

Δ [ms] 2.5 

number of events in 
in t=[0 .. 2.5] ms

αl

αu

t

Δ

Event Stream

Arrival Curves
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Example 1: Periodic with Jitter

periodic periodic with jitter

Swiss Federal
Institute of Technology 28

Example 2: Periodic with Jitter and Minimum Distance d

Arrival curves:
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Total Load of a Task

• with activation model and core execution time or (core 
communication time), we can now derive the total load of a 
task

• the resource is not fully available to one task or 
communication, but is shared with others 

T1 T2

* *
C1 C2

U1 U2
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Overview

• applications for formal performance analysis methods

• formal performance modeling and analysis principles
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• component analysis

• system analysis

• enhancements to the basic analysis

• summary and comparison

• conclusion
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Timing Model Hierarchy  - Component Timing

IP

MP M P

M

T1 T2

P

BSW

RTE

T1 T2

• system timing model

– performance of components 
integrated in a network

• component timing model

– activation function

– component
scheduling/arbitration

• task timing model

– execution load and timing

– communication load and timing

activation * *
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Timing Effects of Scheduling/Arbitration

• tasks execute longer than their core execution time 

– time assigned to other tasks

– operating system overhead

– context switch, blocking, …

• response time of a task is maximum from time of activation 
to task termination

context switch
core execution

time

preemptionworst case response time

example: static priority preemptive 
scheduling
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Scheduling Analysis

• different analysis algorithms 

– generalization of busy window algorithm (Lehoczky, Tindell) to 
fit general event model (Richter, Jersak, Henia, Racu, Ernst, 
Schliecker, et al.)

• Tool SymTA/S

– extension of Network Calculus to Real-time Calculus 
(Chakraborty, Wandeler, Künzli, Thiele, et al.) 

• Tool MPA
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Analysis uses “Busy Window” approach

T1

C2T2 T2

T 2
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C2T2
C2T2

w2(3)
2 * T2 R2(3)

increase wi until 
fix point found 

where equations
hold!

t

window starts with 
worst case load
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Busy Window Analysis 

• very versatile approach 

• has been extended to analyze even difficult scheduling strategies
– round-robin, non preemptive, collaborative processes (e.g. OSEK), …

• can handle parameter dependent worst case (e.g. release offsets – time table) 

• can handle stream queues and register communication

• window size increases with load (limited by deadline)

• this window „unrolling“ process can be considered as symbolic simulation

45

activations

w2 (4)
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Importance of Context Switch Consideration

• context switch increases load → non load preserving

81

context switch

response time increases from 45 to 81
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Time Table for Release Offset
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Swiss Federal
Institute of Technology 38

Real-time Calculus

Processor

Task

Input
Stream

Service
Model

Load
Model

Concrete 
Instance

Abstract 
Representation

Processing
Model

R(t) R’(t)

C(t)

α(Δ)

β(Δ)
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Service Model (Resources)

t [ms] 

availability

maximum/minimum
available service in any

interval of length 2.5 ms

available service 
in t=[0 .. 2.5] ms

2.5 

βu

βl
service

Δ [ms] 2.5 

t

Δ

Resource Availability

Service Curves
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Greedy Processing Component (GPC)

remaining
resources

Examples:
computation (event – task instance, resource –
computing resource [tasks/second])
communication (event – data packet, resource –
bandwidth [packets/second])

FIFO buffer
input
event

stream

output
event

stream

available
resources
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Greedy Processing Component

GPC

• Component is triggered by 
incoming events. 

• A fully preemptable task is 
instantiated at every event 
arrival to process the incoming 
event.

• Active tasks are processed in 
a greedy fashion in FIFO 
order.

• Processing is restricted by the 
availability of resources. 

Behavioral Description

Swiss Federal
Institute of Technology 42

Greedy Processing Component (GPC)

R(t)

C(t)

R’(t)

C’(t)
t

C(t)

R(t)

R’(t)

Conservation Laws

GPC
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MPA-RTC – Scheduling - Examples

Fixed Priority Preemptive
Scheduling

Time Division Multiple
Access (TDMA)

Swiss Federal
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Delay and Backlog

maximum delay D

maximum
backlog B

βl

αu
[αl, αu]

[βl, βu]

[βl’, βu’]

[αl’, αu’]GPC

→ same solution for Busy Window analysis 
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Timing Model Hierarchy – System Timing Model

IP

MP M P

M

T1 T2

P

BSW

RTE

T1 T2

• system timing model

– performance of components 
integrated in a network

• component timing model

– activation function

– component
scheduling/arbitration

• task timing model

– execution load and timing

– communication load and timing

activation * *

© R. Ernst, TU Braunschweig, 2008 46

System Analysis using Composition

• independently scheduled subsystems are coupled by data
flow

⇒ subsystems coupled by streams of data

⇒ interpreted as activating events

⇒ coupling corresponds to event propagation

comp 1

scheduling 
comp 1            

P2

P1

comp 2 

scheduling 
comp 2

P4

P3

event stream
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Compositional Analysis Principle

environment model 

local analysis

derive output event model 

map to input event model 

until convergence or non-schedulability

find fix point 
where input and 
output models
converge

Symbolic 
Simulation 
or RTC  
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System-level Analysis Results

• end-to-end latencies 

• buffer sizes

• system load 

• ….

example: complex end-to-end 
latency analysis w. SymTA/S

source:
Symtavision
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Compositional Analysis Properties

• compatible event stream models allow to couple any 
number of blocks for local analysis

→ scalable

• fixpoint iteration automatically adapts to platform topology

→ easy integration and extension

→ RTC and SymTA/S analysis blocks have been shown to easily 
work together [KHT07]

• very short analysis time (few seconds) opens new 
opportunities in design space and robustness optimization

© R. Ernst, TU Braunschweig, 2008 50

event 
model

RTC

arrival 
curve

w. periodic 
extension

symbolic
simulation

fix point 
iteration

for 
composition

component
analysis

system analysis

PJD
arrival 
curve

approx

The Compositional Analysis „Landscape“

SymTA/S MPA
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Further Performance Models

• timed automata have been used to  explicitely model the 
task scheduling algorithm and OS interactions and then 
apply model checking to identify deadline violations

• can be more accurate in the indivi-
dual component model 
but is computationally 
far more expensive

• work e.g. Madsen 
or Johnson

• can potentially be 
linked 
via common event stream
models 

source: Jan Madsen, MpSoC 2007
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Performance Verification Flow- ECU

application 
modeling tool 

• activation 
• dependencies

code generator/
manual design

SW 
processes

ECU integration
RTE
configuration

WCET analysis

compositional 
performance 
analysis

tracing tool

simulation tool

stimulationexecutable
system

process performance parameters
• timing
• communication

system
performance
parameters
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Example: Safety-Critical ECU

• Chassis domain: Active Front Steering (SIL 3)

– Verifying Performance and Timing for all critical cases

– Optimizing ECU performance and cost (use of cheaper CPU)

– Safeguarding against liability claims

• late design phase

• formal analysis used 
as complement to prototyping
to reach higher confidence

Source: BMW
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Integration: Tracing + SymTA/S

– Single function execution times

– Interrupt Frequency

courtesy: K.Richter, Symtavision
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Tracing plus SymTA/S Analysis

Risk avoided

• Measured 10ms task: Response time 6,9ms

– 4 CAN, 8 SPI interrupts, 7 preemptions by 1ms task

• SymTA/S Analysis of 10ms task: Worst-case response time 9ms

– 10 CAN, 8 SPI interrupts, 9 preemptions by 1ms task, blocking

10ms task

10ms task

courtesy: K.Richter, Symtavision
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WCET Tool Integration
ASCET (ETAS)
•Model-based software development

•Modeling and design of control 
functions

•Design of software modules, 
comprising description of 

•Interface

•Contained behavioral entities 
(processes)

aiT (AbsInt) – Alternative 1
•Target-Specific WCET determination for OS 
tasks and processes 

e.g. for TriCore 1796 microcontroller

•Based on static analysis method (calculation)

•Early in development stage

SymTA/S (Symtavision)

Information about Processes

Target-
specific 
WCET

•OS-specific schedulability analysis

•ERCOSEK

•RTA-OSEK

•Design space exploration

•Sensitivity analysis

•Integration of software modules to 
complete ECU system

•Configuration of OS schedule 
(ERCOSEK ,RTA-OSEK)

•Process to task mapping

•Task configuration (Task 
Type, Priority, Period, 
Scheduling, etc.)

•Rapid Prototyping / Virtual Prototyping

INTECRIO (ETAS)

RTA-Trace (ETAS) –
Alternative 2
•Trace dynamic behavior of system 
under consideration

•Measurement-based

•Task execution times, etc.

•Interrupt behaviorInterrupt 
behavior

WCETs

Software module desc.
(Interface, Processes)

OS 
configuration 

Improved
OS 
configuration 

Informa-
tion

Iterative 
development 
cycle

Information exchange 
btw. dedicated tools
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Enhancements to the Basic Analysis

• shared memory modeling on multi-core systems

– „secondary“ traffic from shared memory and coprocessor 
access in conflict with other traffic

– many schedulability hazards

– requires model and analysis extension 

– active research area (see literature and tutorial link)

• robustness analysis

– identification of „system reserves“ for potential changes

– can be used for optimization (see literature and tutorial link)

• scenario analysis
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Scenario Analysis

• Identify different sets of tasks or deviating core execution 
times of tasks for different application contexts →
scenarios

• Example: engine acceleration/idle, .. 

• Interesting is transition between scenarios 

– possibly leading to overloads, lost data, …

• Analysis: analyse scenarios individually + analyse 
transition

Accelerating on a hill
Holding the speed
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Conclusion

• several performance analysis and optimization approaches 
have have brought system analysis far beyond the stage of 
toy examples

• the cost of a predictable design has been reduced by 
higher modeling and analysis precision 

• WCET analysis is part of the analysis chain and currently 
often “substituted” by extensive simulation

• challenges for WCET analysis arise in multi-core systems, 
scenario analysis and system optimization  
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