
Merging Techniques for
 Faster Derivation of

WCET Flow Information
 using Abstract Execution

Jan Gustafsson and Andreas Ermedahl

Mälardalen Real-Time Research Center (MRTC)
Västerås, Sweden

2

Contents
 Abstract Execution finds loop bounds

 and infeasible paths
 Merging is used to speed up calculations

 (but may introduce pessimism)
 We show how different merge point

 placements affects speed and
 pessimism

 We present a new efficient merging
 technique based on sorting of program
 points

3

Abstract Execution

[5..8]
[7..9]
[9..9]

[10..10]
[10..11]
[11..11]

[1..4]
[3..6]

4

Example: Loop bound analysis

i = INPUT;

// i = [1..4]
while(i < 10) {
 // point p
 ...
 i = i + 2;
}
// point q

Loop
iteration

Abstract
 state at

 p

Abstract
 state at q

1

Loop
iteration

Abstract
 state at

 p

Abstract
 state at q

1 i = [1..4] ⊥

Loop
iteration

Abstract
 state at

 p

Abstract
 state at q

1 i = [1..4] ⊥
2 i = [3..6] ⊥

Loop
iteration

Abstract
 state at

 p

Abstract
 state at q

1 i = [1..4] ⊥
2 i = [3..6] ⊥
3 i = [5..8] ⊥

Loop
iteration

Abstract
 state at

 p

Abstract
 state at q

1 i = [1..4] ⊥
2 i = [3..6] ⊥
3 i = [5..8] ⊥
4 i = [7..9] i = [10..10]

Loop
iteration

Abstract
 state at

 p

Abstract
 state at q

1 i = [1..4] ⊥
2 i = [3..6] ⊥
3 i = [5..8] ⊥
4 i = [7..9] i = [10..10]
5 i = [9..9] i = [10..11]

Loop
iteration

Abstract
 state at

 p

Abstract
 state at q

1 i = [1..4] ⊥
2 i = [3..6] ⊥
3 i = [5..8] ⊥
4 i = [7..9] i = [10..10]
5 i = [9..9] i = [10..11]
6 ⊥ i = [11..11]

Loop
iteration

Abstract
 state at

 p

Abstract
 state at q

1 i = [1..4] ⊥ !

2 i = [3..6] ⊥
3 i = [5..8] ⊥
4 i = [7..9] i = [10..10]
5 i = [9..9] i = [10..11]
6 ⊥ i = [11..11]

Result
Min. #iterations: 3
Max. # iterations: 5

5

Problems with merging

6

Example: Overestimated loop
 bound

 11 possible runs
 Concrete worst cases when

 Max. iterations = 4

int i, x;

if (i > 0) x=2;
else x=4;
// p
while (x < 10)
 { // q
 if (isOdd(x))
 x++;
 else x=x+2;
 }

7

Example: Overestimated loop
 bound

 Merging at p yields an overestimation
 …and a lot of states

int i, x;

if (i > 0) x=2;
else x=4;
// p
while (x < 10)
 { // q
 if (isOdd(x))
 x++;
 else x=x+2;
 }

Loop
iteration

State at p
x =

State at q
x =

0 [2..4] ⊥

Loop
iteration

State at p
x =

State at q
x =

0 [2..4] ⊥
1 [2..4] [2..4]

Loop
iteration

State at q
last test

 true

State at q
last test

 false
1 [2..4] [2..4]

Loop
iteration

State at q
last test

 true

State at q
last test

 false
1 [2..4] [2..4]
2 [3..5] [4..6]

Loop
iteration

State at q
last test

 true

State at q
last test

 false
1 [2..4] [2..4]
2 [3..5] [4..6]
3 [4..6]

[5..7]
[5..7]
[6..8]

Loop
iteration

State at q
last test

 true

State at q
last test

 false
1 [2..4] [2..4]
2 [3..5] [4..6]
3 [4..6]

[5..7]
[5..7]
[6..8]

4 [5..7]
[6..8]
[6..8]
[7..9]

[6..8]
[7..9]
[7..9]
[8..9]

#parallel states:
8

Loop
iteration

State at q
last test

 true

State at q
last test

 false
2 [3..5] [4..6]
3 [4..6]

[5..7]
[5..7]
[6..8]

4 [5..7]
[6..8]
[6..8]
[7..9]

[6..8]
[7..9]
[7..9]
[8..9]

5 [6..8]
etc.

etc.

Loop
iteration

State at q
last test

 true

State at q
last test

 false

5 [6..8]
etc.

etc.

6 [7..9]
etc.

etc.

7 [8..9]
etc.

etc.

8 [9..9]
etc.

etc.

Result
Max. #iterations: 8

Worst case

#parallel states:
16
#parallel states:
128

8

Example: Overestimated loop
 bound

 Merging at q yields fewer states and a
 smaller overestimation

int i, x;

if (i > 0) x=2;
else x=4;
// p
while (x < 10)
 { // q
 if (isOdd(x))
 x++;
 else x=x+2;
 }

Result
Max. #iterations: 7

#parallel states:
6

…

9

Placement of Merge Points

10

Problems to solve

11

Unordered and Ordered
 Merge

Unordered merge = all
 merged states are
 released

When all states are
 merged states, how to
 continue?

Ordered merge = only the
 state lagging behind (F) is
 released => fewer states

M

M

M

M

12

Ordered list of merge nodes

bottom
up

M

M

M

M

post
dominance

M

M

M

M

Results - jcomplex

  No merge: 7.2 seconds
  Unordered merge: fast and some overestimation
  Ordered merge: very fast but large overestimation

Results - insertsort

  No merge: impossible to analyse (1093 inputs)
  Unordered merge: fast and no overestimation
  Ordered merge: very fast and no overestimation

Results – esab_mod

  No merge: impossible to analyse (1012 inputs)
  Unordered merge: impossible to analyse
  Ordered merge: gives a result in reasonable time

RTSS 2006
 16

Conclusions
 Merging of states is useful for large

 programs and programs with large
 input spaces

 Ordered merge is very efficient
 It is cruical to select optimal type of

 merging and placement of merge
 points

 Ordered merge technique has a
 general use

RTSS 2006
 17

18

Unordered and Ordered
 Merge

19

Flow Analysis

