
Merging Techniques for
 Faster Derivation of

WCET Flow Information
 using Abstract Execution

Jan Gustafsson and Andreas Ermedahl

Mälardalen Real-Time Research Center (MRTC)
Västerås, Sweden

2

Contents
 Abstract Execution finds loop bounds

 and infeasible paths
 Merging is used to speed up calculations

 (but may introduce pessimism)
 We show how different merge point

 placements affects speed and
 pessimism

 We present a new efficient merging
 technique based on sorting of program
 points

3

Abstract Execution

[5..8]
[7..9]
[9..9]

[10..10]
[10..11]
[11..11]

[1..4]
[3..6]

4

Example: Loop bound analysis

i = INPUT;

// i = [1..4]
while(i < 10) {
 // point p
 ...
 i = i + 2;
}
// point q

Loop
iteration

Abstract
 state at

 p

Abstract
 state at q

1

Loop
iteration

Abstract
 state at

 p

Abstract
 state at q

1 i = [1..4] ⊥

Loop
iteration

Abstract
 state at

 p

Abstract
 state at q

1 i = [1..4] ⊥
2 i = [3..6] ⊥

Loop
iteration

Abstract
 state at

 p

Abstract
 state at q

1 i = [1..4] ⊥
2 i = [3..6] ⊥
3 i = [5..8] ⊥

Loop
iteration

Abstract
 state at

 p

Abstract
 state at q

1 i = [1..4] ⊥
2 i = [3..6] ⊥
3 i = [5..8] ⊥
4 i = [7..9] i = [10..10]

Loop
iteration

Abstract
 state at

 p

Abstract
 state at q

1 i = [1..4] ⊥
2 i = [3..6] ⊥
3 i = [5..8] ⊥
4 i = [7..9] i = [10..10]
5 i = [9..9] i = [10..11]

Loop
iteration

Abstract
 state at

 p

Abstract
 state at q

1 i = [1..4] ⊥
2 i = [3..6] ⊥
3 i = [5..8] ⊥
4 i = [7..9] i = [10..10]
5 i = [9..9] i = [10..11]
6 ⊥ i = [11..11]

Loop
iteration

Abstract
 state at

 p

Abstract
 state at q

1 i = [1..4] ⊥ !

2 i = [3..6] ⊥
3 i = [5..8] ⊥
4 i = [7..9] i = [10..10]
5 i = [9..9] i = [10..11]
6 ⊥ i = [11..11]

Result
Min. #iterations: 3
Max. # iterations: 5

5

Problems with merging

6

Example: Overestimated loop
 bound

 11 possible runs
 Concrete worst cases when

 Max. iterations = 4

int i, x;

if (i > 0) x=2;
else x=4;
// p
while (x < 10)
 { // q
 if (isOdd(x))
 x++;
 else x=x+2;
 }

7

Example: Overestimated loop
 bound

 Merging at p yields an overestimation
 …and a lot of states

int i, x;

if (i > 0) x=2;
else x=4;
// p
while (x < 10)
 { // q
 if (isOdd(x))
 x++;
 else x=x+2;
 }

Loop
iteration

State at p
x =

State at q
x =

0 [2..4] ⊥

Loop
iteration

State at p
x =

State at q
x =

0 [2..4] ⊥
1 [2..4] [2..4]

Loop
iteration

State at q
last test

 true

State at q
last test

 false
1 [2..4] [2..4]

Loop
iteration

State at q
last test

 true

State at q
last test

 false
1 [2..4] [2..4]
2 [3..5] [4..6]

Loop
iteration

State at q
last test

 true

State at q
last test

 false
1 [2..4] [2..4]
2 [3..5] [4..6]
3 [4..6]

[5..7]
[5..7]
[6..8]

Loop
iteration

State at q
last test

 true

State at q
last test

 false
1 [2..4] [2..4]
2 [3..5] [4..6]
3 [4..6]

[5..7]
[5..7]
[6..8]

4 [5..7]
[6..8]
[6..8]
[7..9]

[6..8]
[7..9]
[7..9]
[8..9]

#parallel states:
8

Loop
iteration

State at q
last test

 true

State at q
last test

 false
2 [3..5] [4..6]
3 [4..6]

[5..7]
[5..7]
[6..8]

4 [5..7]
[6..8]
[6..8]
[7..9]

[6..8]
[7..9]
[7..9]
[8..9]

5 [6..8]
etc.

etc.

Loop
iteration

State at q
last test

 true

State at q
last test

 false

5 [6..8]
etc.

etc.

6 [7..9]
etc.

etc.

7 [8..9]
etc.

etc.

8 [9..9]
etc.

etc.

Result
Max. #iterations: 8

Worst case

#parallel states:
16
#parallel states:
128

8

Example: Overestimated loop
 bound

 Merging at q yields fewer states and a
 smaller overestimation

int i, x;

if (i > 0) x=2;
else x=4;
// p
while (x < 10)
 { // q
 if (isOdd(x))
 x++;
 else x=x+2;
 }

Result
Max. #iterations: 7

#parallel states:
6

…

9

Placement of Merge Points

10

Problems to solve

11

Unordered and Ordered
 Merge

Unordered merge = all
 merged states are
 released

When all states are
 merged states, how to
 continue?

Ordered merge = only the
 state lagging behind (F) is
 released => fewer states

M

M

M

M

12

Ordered list of merge nodes

bottom
up

M

M

M

M

post
dominance

M

M

M

M

Results - jcomplex

  No merge: 7.2 seconds
  Unordered merge: fast and some overestimation
  Ordered merge: very fast but large overestimation

Results - insertsort

  No merge: impossible to analyse (1093 inputs)
  Unordered merge: fast and no overestimation
  Ordered merge: very fast and no overestimation

Results – esab_mod

  No merge: impossible to analyse (1012 inputs)
  Unordered merge: impossible to analyse
  Ordered merge: gives a result in reasonable time

RTSS 2006 16

Conclusions
 Merging of states is useful for large

 programs and programs with large
 input spaces

 Ordered merge is very efficient
 It is cruical to select optimal type of

 merging and placement of merge
 points

 Ordered merge technique has a
 general use

RTSS 2006 17

18

Unordered and Ordered
 Merge

19

Flow Analysis

