V A
\ V4

MALARDALENS HOGSKOLA

Merging Techniques for
Faster Derivation of
WCET Flow Information

using Abstract Execution

Jan Gustafsson and Andreas Ermedahl

Malardalen Real-Time Research Center (MRTC)
Vasteras, Sweden

JGSKOLA

Contents

% Abstract Execution finds loop bounds
and infeasible paths

* Merging is used to speed up calculations
(but may introduce pessimism)

* We show how different merge point
placements affects speed and
pessimism

* We present a new efficient merging
technique based on sorting of program
points

L1

je %
V4

AbStraCt EXECution VS HOGSKOLA

% Based on Abstract Interpretation (Al)
¢ Al gives safe (over)approximation of possible values
of each variable at different program points
* “Executes” the program using abstract state(s)
¢ Not using traditional Al fixpoint calculation, instead
always running forward
% Result: an (over)approximation of possible

execution paths
¢ Might potentially include some infeasible paths
¢ Infeasible paths found are guaranteed to be infeasible

* Implemented in SWEET (SWEdish Execution Time
tool)

MRTC

MALARDALEN REAL-TIME
RESEARCH CENTRE

JGSKOLA

Example: Loop bound analysis

. . Loop | Abstract | Abstract ¢
1= _INPUT ! iteration | state at | state at q)
//i=1[1..4] D
while (i<10) { 1 = [1.4] R
// point A
point P 2 i = [3..6] 1
1=i4+2- q 3 i = [5..8] 1
} ' 4 i=[7.9] | i=[10.10] | || Result
5 i=[9.9] | i=[10.11]| HMin. #iterations: 3
6 1 i=11.11] | Y| Max. # iterations: 5

% Result includes all possible loop executions

* Three new abstract states generated at q
¢ Could be merged to one single abstract state:

MRTC i=[10.11]

MALARDALEN REAL-TIME
RESEARCH CENTRE

Problems with merging

* May yield abstract values that represent concrete
values in a less precise way

¢ Merging [6..6] and [10..11] yields [6..11], which also
contains the concrete values 7, 8, 9

* May lead to overestimated loop bounds
* May lead to that infeasible paths are missed

MRTC

MALARDALEN REAL-TIME
RESEARCH CENTRE

Example: Overestimated Ioop“;m
bound

int i, x; .
// i = [-5..5] * 11 possible runs
if (1 > 0) x=2;

else x=4; % Concrete worst cases when
// p
while (x < 10) i=1]1..5]
// . .
E (isoda(x)) | % Max. iterations = 4
X++;

else x=x+2;

}

MRTC

MALARDALEN REAL-TIME
RESEARCH CENTRE

Example: Overestimated Ioop“;m

bound
int i, x; Loop State at q | State at q
// i = [-5..5] iteration | |ast test | last test
if (1 > 0) x=2; true false #parallel states:
j}s: x=4; 5 [6..8] etc. 128
while (x < 10) etc.
{ // g 6 [7..9] etc.
if (is0Odd(x)) etc. N\| Result
x++; >M : : :
’ X. #iterations:
o e 7 8..9] etc. T1/] Max. #iterations: 8
} etc.
8 9.9 =
[-9] ‘L Worst case]
etc.

* Merging at p yields an overestimation

MRTC * ...and a lot of states

MALARDALEN REAL-TIME
RESEARCH CENTRE

Example: Overestimated Ioop“;m

bound
int i, x;
// i = [-5..5]
if (1 > 0) x=2; #parallel states:
else x=4; 6
// p >
while (x < 10) -
{ // q
if (is0Odd(x)) _I\>Result
x++; ' ' -
A —/| Max. #iterations: 7
}

* Merging at q yields fewer states and a
MRTC smaller overestimation

MALARDALEN REAL-TIME
RESEARCH CENTRE

Placement of Merge Points

* The placement of merge points is important

% There is a trade-off between precision and speed

% Optimal selection depends on code structure and
size

* SWEET allows the following placements:

4
2
L 2
2
L 2

MRTC

MALARDALEN REAL-TIME

at function entries

at function exits

at loop body termination, i.e., at the loop header
at loop exits

at joins after if-statements

RESEARCH CENTRE

JGSKOLA

Problems to solve

* AE may give many parallel states

* Merge reduces the number, but for some large
programs the problem remains

% For programs with many variables, each abstract
state can be large

% For programs with large input spaces, the number
of parallel states can be large

* We need to minimize the number of parallel states

MRTC

MALARDALEN REAL-TIME
RESEARCH CENTRE

Unordered and Ordered
Merge

? start
(@)

When all states are
merged states, how to
continue?

Unordered merge = all
merged states are
released

Ordered merge = only the
state lagging behind (F) is
released => fewer states

Fril pBpJ
iexit

MRTC (a) CFG with merge- (c) Ordered list of

MALARDALEN REALTIME mss nodes B, F, | and J merge nodes

Ordered list of merge nodes ;'

M| J
M| B
AN
:> Al wml :> Fi | P Bpd
AN
post wE|llclH bottom .
dominance VAN up (c) Ordered list of
clIolTE merge nodes

(b) Immediate post-
dominance tree

i exit

(a) CFG with merge-
nodes B, F, | and J

MALARDALEN REAL-TIME
RESEARCH CENTRE

yV &
\ V 4
MALARDALENS HOGSKOLA

Results - jcomplex

Merge type Merge node type
FE| FT| LBT| LT| LBIJALL
Unordered| ATime| 8.7(150| 0.72(0.18| 0.84(0.77
merge| WCET| 918|918| 1053|2087 1053|1053
Ordered| ATime| 87(83| 0.13|0.18| 0.18|0.16
merge| WCET| 918| 918| 3711(2087| 5395(5395

Table 1. Analysis results for jcomplex

* No merge: 7.2 seconds
% Unordered merge: fast and some overestimation
* Ordered merge: very fast but large overestimation

MRTC

MALARDALEN REAL-TIME
RESEARCH CENTRE

y A
\ ¥V 4
MALARDALENS HOGSKOLA

Results - insertsort

Merge type Merge node type
FE|FT| LBT| LT| LBI|ALL
Unordered| ATime| -| - 16[008] 19| 1.7
merge| WCET| -| - 332|332| 332 332
Ordered| ATime| -| -[0.09/0.08| 009(0.09
merge| WCET| -| - 332|332 332 332

Table 2. Analysis results for insertsort

* No merge: impossible to analyse (10% inputs)
* Unordered merge: fast and no overestimation
% Ordered merge: very fast and no overestimation

MRTC

MALARDALEN REAL-TIME
RESEARCH CENTRE

V A
\ V4

MALARDALENS HOGSKOLA

Results - esab mod

Merge type Merge node type
FE|FT| LBT|LT| LBI| ALL

Unordered| ATime
merge| WCET| -| - -l - - -
Ordered| ATime| - - -l - 163 161
merge| WCET| - - - -] 165795165795

Table 3. Analysis results for esab_mod

* No merge: impossible to analyse (1072 inputs)
% Unordered merge: impossible to analyse
* Ordered merge: gives a result in reasonable time

MRTC

MALARDALEN REAL-TIME
RESEARCH CENTRE

JGSKOLA

Conclusions

* Merging of states is useful for large
programs and programs with large
input spaces

* Ordered merge is very efficient

% It is cruical to select optimal type of
merging and placement of merge
points

* Ordered merge technique has a
general use

MALARDALEN REAL-TIME
RESEARCH

ESEARCH CENTRE
RTSS 2006

he End:!

Eor moreintformation:
Wwww.mrtc.mdh.se/projects/wcet

Unordered and Ordered ..
Merge
* Run analysis to merge points
* Merge all states at merge points

* Let the analysis wait at the merge points

* Unordered merge:

% When all states are at merge points, release all

* Ordered merge:

% When all states are at merge points, release only the “state
lagging behind”

* Gives fewer states

MRTC

MALARDALEN REAL-TIME
RESEARCH CENTRE

JGSKOLA

Flow Analysis

* Most programs can execute In several ways,
due to code structure and inputs

* A flow analysis should provide bounds on all
possible execution paths

* Required output to bound WCET estimate:

¢ Loop iteration bounds
¢ Recursion depth bounds

* Additional output to tighten WCET estimate:

¢ Input dependencies
¢ Infeasible paths

MRTC

MALARDALEN REAL-TIME
RESEARCH CENTRE

