
WCET 2008, Prague, 2008-07-01 slide 1 of 15

Tid
rum

WCET'2008

Computing Time as a Program Variable:

Niklas Holsti

Tidorum Ltd

www.tidorum.fi

a
way

ar
ou

nd
infeasible paths

WCET 2008, Prague, 2008-07-01 slide 2 of 15

Tid
rum

Example: Saturating a value

● Make sure that x is between 1 and 10:

if x < 1 then x := 1; end if;
if x > 10 then x := 10; end if;

if x < 1 x := 1

end if;

x := 10

end if;

if x > 10

Infeasible combination of
- (new) value of x and
- value of condition x > 10

● The path that executes
both assignments x := 1
and x := 10 is infeasible

● This is the longest path
 overestimated WCET

WCET 2008, Prague, 2008-07-01 slide 3 of 15

Tid
rum

Reasoning

● Infeasible paths arise from dependencies (correlations)
between variable values/assignments
and values of branch conditions

● Some analysis of such dependencies is necessary

● Earlier work: “path-oriented” analysis
– find (in-) feasible combinations of CFG blocks/edges
– use “flow facts” to constrain eg. IPET

● Suggestion: “value-oriented” analysis
– find (in-) feasible combinations of variable values
– make execution time a variable, T
– thus, find (in-) feasible execution times = values of T

infeasible path infeasible value of T

WCET 2008, Prague, 2008-07-01 slide 4 of 15

Tid
rum

From values to feasible WCET

● Path-oriented:

dependencies
between values
of vars/conds

feasible
paths

WCET for
feasible paths

● Value-oriented:

dependencies
between values
of vars/conds
including T

feasible
values of T

specific analysis of
(in)feasible paths

bounds calculation
eg. by IPET

dependency-sensitive value analysis

WCET 2008, Prague, 2008-07-01 slide 5 of 15

Tid
rum

Adding the T variable (in a real tool)

● Add T to the internal representation (CFG) of the
machine-code program

● Add T := 0 at the start of the program/subprogram

● Add T := T + t(b) in each basic block b
– t(b) comes from processor-behaviour analysis

● using all structural paths in the CFG
● may include infeasible paths

● Ditto for control-flow edges that take some time

● Use interval arithmetic if t(b) is not a single value
– eg. context-dependent pipeline or cache effects

WCET 2008, Prague, 2008-07-01 slide 6 of 15

Tid
rum

Adding T to the “saturation” example

● Add T as a variable in the (pseudo-) source code

● Add else-parts to model the condition-evaluation time.

T := 0;

if x < 1 then x := 1; T := T + 3;
 else T := T + 1; end if;

if x > 10 then x := 10; T := T + 3;
 else T := T + 1; end if;

● ET of program = final value of T
– Infeasible path ET is 3 + 3 = 6 cycles.
– WCET is 1 + 3 = 4 cycles.
– BCET is 1 + 1 = 2 cycles.

WCET 2008, Prague, 2008-07-01 slide 7 of 15

Tid
rum

A dependency-sensitive value-analysis

● This is just one method/domain; others are possible
– similar to the analysis in the Bound-T WCET tool,
– which Bound-T currently uses mainly for loop bounds
– implemented with the Omega Calculator (Pugh et al.)

● Models:

– value of one variable : integer Z

– combined values of n variables : n-tuple Z n

– all combined values of n variables : n-tuple set Z n

– instruction : transfer relation Z n Z n = Z 2n

● Set : { [v1,v2,...,vn] | constraints }

● Relation : { [v1,v2,...,vn]  [v '1,v '2,...,v 'n] | constraints }

● Constraints in Presburger Arithmetic form: Presburger sets

WCET 2008, Prague, 2008-07-01 slide 8 of 15

Tid
rum

Presburger-set analysis of the example

 T := 0;

 {[x,T] }

 {[x,0]}

x := 1;
T := T + 3;

 {[x,0] | x < 1}

 {[1, 3]}

x < 1
T := T + 1;

 {[x,0] | x ≥ 1}

 {[x, 1] | x ≥ 1}

if x < 1 ...
x ≥ 1

 {[x,1] | x ≥ 1}  {[1,3]}

x := 10;
T := T + 3;

 {[x,1] | x > 10}

 {[10, 4]}

x > 10
T := T + 1;

 {[x,1] | 1 ≤ x ≤ 10}  {[1,3]}

 {[x,2] | 1 ≤ x ≤ 10}  {[1,4]}

if x > 10 ...

x ≤ 10

 {[x, 2] | 1 ≤ x ≤ 10}  {[1, 4]}  {[10, 4]}

pre-value set

instruction

post-value set

WCET 2008, Prague, 2008-07-01 slide 9 of 15

Tid
rum

What about loops?

● Three different things:
– finding loop bounds (bounds on # of iterations)
– finding the effect of loops on variable values
– handling infeasible paths involving loops.

● Presburger-set analysis can be used for all three things

● Focus: how T -variable works in infeasible looping paths

loop

head

initial values

post-loop (exit) values

repetition values

WCET 2008, Prague, 2008-07-01 slide 10 of 15

Tid
rum

The repetition relation of a loop

● The repetition relation of a loop shows how variable
values change in one repetition of the loop
– from the transfer relations of the instructions in the loop
– exit from loop is treated separately (as normal flow)

● Example: Reverse order of vec[n .. n + 9]:

i := n; j := n + 9;
while i < j loop
 z := vec[i]; vec[i] := vec[j]; vec[j] := z;
 i := i + 1;
 j := j – 1;
end loop;

● Ignore the vec[] values (pointer analysis...)

● The repetition relation R for i, j, n, z is:

R = { [i, j, n, z]  [i + 1, j – 1, n, z '] | i < j }

WCET 2008, Prague, 2008-07-01 slide 11 of 15

Tid
rum

Invariant, induction, and fuzzy variables

● Use the repetition relation R to classify each variable v as:
– invariant: R does not change v

– induction: R sets v := v + dv, where dv is constant Z \{0}
– fuzzy: R changes v in other (unknown) ways

● Computation: see paper

– intersect R with { [v, dv]  [v + dv] }
– project to dv
– take convex hull  interval of possible dv

● Example above:

– i and j are induction variables; di = 1, dj = -1
– n is invariant; in other words dn = 0
– z is fuzzy.

WCET 2008, Prague, 2008-07-01 slide 12 of 15

Tid
rum

Induction model of loop

● Add iteration counter c = 0, 1, ...

● Induction model: Value of v at start of iteration c is
– if invariant: v = v0 = initial value of v

– if induction: v = v0 + c  dv

– if fuzzy: v is unconstrained (unknown)

● Loop bound N: see paper
– propagate the induction model to the back edge:
 { [i, j, n, z] | i – 1 < j+1 and i = n+1+c and j = n+8+c }
– project to c
– take convex hull  bounds on c that allow repetition
– example: c  4.

● Post-loop values: Propagate induction model to exit

– effect on induction variable: v := v + N  dv , N constant
● plus possible effect of the loop-exit path

WCET 2008, Prague, 2008-07-01 slide 13 of 15

Tid
rum

T is an induction variable

● Effect of loop is T := T + N  dT
– dT is the execution time of one loop repetition
– N is a constant (range)

● dT from dependency-sensitive analysis of loop body
– excludes infeasible paths contained in the loop body

● when infeasibility is iteration-independent

● dT is a Presburger variable
– can depend on other variables
– shows dependency between paths inside and outside loop
– final T excludes infeasible combinations of such paths

● when infeasibility is iteration-independent

● Hard to handle iteration-specific infeasibility

● Fails for infeasible “path – loop-bound” combinations

WCET 2008, Prague, 2008-07-01 slide 14 of 15

Tid
rum

Example iteration-independent case

● No path can take the slow case of both branches
– infeasible longest path = 100 + 7  200 = 1500 cycles
– longest feasible path = 10 + 7  200 = 1410 cycles

● T-analysis works; final T = 1410.

T := 0;
if x < 1 then T := T + 100;
 else T := T + 10;
end if;

for i in 1 .. 7 loop
 if x > 3 then T := T + 200;
 else T := T + 20;
 end if;
end loop;

contradictory
conditions

● apply in the same
way on each loop
iteration

● x is invariant

WCET 2008, Prague, 2008-07-01 slide 15 of 15

Tid
rum

Summary

● Add execution-time variable T
– T becomes “entangled” with other variables/conditions

● Use dependency-sensitive value-analysis
– final value of T is “entangled” with feasible paths

● Good:
– no specific analysis and representation of infeasible paths
– handles many kinds of infeasible paths

● Bad:
– history-sensitive t(b) may be over-estimated
– Presburger-set analysis is costly; hard to scale up

● Possible future work:
– implementation and evaluation
– other, cheaper dependency-sensitive value-analyses

● but non-convexity (disjunction) is probably desirable

