Computing Time as a Program Variable:

a way around infeasible paths

Niklas Holsti

Tidorum Ltd

www.tidorum.fi
Example: Saturating a value

- Make sure that x is between 1 and 10:

```plaintext
if x < 1 then x := 1; end if;
if x > 10 then x := 10; end if;
```

- The path that executes both assignments $x := 1$ and $x := 10$ is infeasible.
- This is the longest path \Rightarrow overestimated WCET.
Reasoning

- Infeasible paths arise from dependencies (correlations) between variable values/assignments and values of branch conditions
- Some analysis of such dependencies is necessary
- Earlier work: “path-oriented” analysis
 - find (in-) feasible combinations of CFG blocks/edges
 - use “flow facts” to constrain eg. IPET
- Suggestion: “value-oriented” analysis
 - find (in-) feasible combinations of variable values
 - make execution time a variable, T
 - thus, find (in-) feasible execution times = values of T
From values to feasible WCET

• Path-oriented:

 dependencies between values of vars/conds \rightarrow \textbf{feasible paths} \rightarrow \textbf{WCET for feasible paths}

 specific analysis of (in)feasible paths

 bounds calculation eg. by IPET

• Value-oriented:

 dependencies between values of vars/conds including T

 dependency-sensitive value analysis

 feasible values of T
Adding the T variable (in a real tool)

- Add T to the internal representation (CFG) of the machine-code program
- Add $T := 0$ at the start of the program/subprogram
- Add $T := T + t(b)$ in each basic block b
 - $t(b)$ comes from processor-behaviour analysis
 - using all structural paths in the CFG
 - may include infeasible paths
- Ditto for control-flow edges that take some time
- Use interval arithmetic if $t(b)$ is not a single value
 - eg. context-dependent pipeline or cache effects
Adding T to the “saturation” example

- Add T as a variable in the (pseudo-) source code
- Add else-parts to model the condition-evaluation time.

```plaintext
T := 0;
if x < 1 then x := 1; T := T + 3;
   else T := T + 1; end if;
if x > 10 then x := 10; T := T + 3;
   else T := T + 1; end if;
```

- ET of program = final value of T
 - Infeasible path ET is 3 + 3 = 6 cycles.
 - WCET is 1 + 3 = 4 cycles.
 - BCET is 1 + 1 = 2 cycles.
A dependency-sensitive value-analysis

• This is just one method/domain; others are possible
 – similar to the analysis in the Bound-T WCET tool,
 – which Bound-T currently uses mainly for loop bounds
 – implemented with the Omega Calculator (Pugh et al.)

• Models:
 – value of one variable: integer $\in \mathbb{Z}$
 – combined values of n variables: n-tuple $\in \mathbb{Z}^n$
 – all combined values of n variables: n-tuple set $\subseteq \mathbb{Z}^n$
 – instruction: transfer relation $\subseteq \mathbb{Z}^n \times \mathbb{Z}^n = \mathbb{Z}^{2n}$

• Set: $\{ [v_1,v_2,...,v_n] \mid constraints \}$

• Relation: $\{ [v_1,v_2,...,v_n] \rightarrow [v'_1,v'_2,...,v'_n] \mid constraints \}$

• Constraints in Presburger Arithmetic form: Presburger sets
Presburger-set analysis of the example

pre-value set — — — — — — — — — — — — {[x,T]}

T : = 0;

instruction — — — — — — — — — — — — —

post-value set — — — — — — — — — — — — —

{[x,0] | x ≥ 1} → if x < 1 ...

T : = T + 1;

{x ≥ 1} → x < 1

{[x,0] | x < 1}

{x := 1; T := T + 3;}

{[1, 3]}

{{x,1] | x ≥ 1} ∪ {[1,3]}

if x > 10 ...

T : = T + 1;

{x > 10} → x ≤ 10

{x := 10; T := T + 3;}

{[10, 4]}

{{x,1] | 1 ≤ x ≤ 10} ∪ {[1,3]}

{x := 10; T := T + 3;}

{[10, 4]}

{{x,1] | 1 ≤ x ≤ 10} ∪ {[1,4]}

{x := 10; T := T + 3;}

{[10, 4]}

{{x, 2] | 1 ≤ x ≤ 10} ∪ {[1, 4]} ∪ {[10, 4]}
What about loops?

- Three different things:
 - finding **loop bounds** (bounds on # of iterations)
 - finding the **effect** of loops on **variable values**
 - handling **infeasible paths** involving loops.

- Presburger-set analysis **can** be used for all three things

- Focus: how T -variable works in infeasible looping paths
The repetition relation of a loop

- The **repetition relation** of a loop shows how variable values change in one repetition of the loop
 - from the transfer relations of the instructions in the loop
 - exit from loop is treated separately (as normal flow)

- Example: Reverse order of `vec[n .. n + 9]`:

```
i := n; j := n + 9;
while i < j loop
  z := vec[i]; vec[i] := vec[j]; vec[j] := z;
i := i + 1;
j := j – 1;
end loop;
```

- Ignore the `vec[]` values (pointer analysis...)

- The repetition relation R for i, j, n, z is:
 $$R = \{ [i, j, n, z] \rightarrow [i + 1, j – 1, n, z'] \mid i < j \}$$
Invariant, induction, and fuzzy variables

- Use the repetition relation R to classify each variable v as:
 - **invariant**: R does not change v
 - **induction**: R sets $v := v + dv$, where dv is constant $\in \mathbb{Z} \setminus \{0\}$
 - **fuzzy**: R changes v in other (unknown) ways

- **Computation**: see paper
 - intersect R with $\{ [v, dv] \rightarrow [v + dv] \}$
 - project to dv
 - take convex hull \Rightarrow interval of possible dv

- **Example above**:
 - i and j are induction variables; $di = 1$, $dj = -1$
 - n is invariant; in other words $dn = 0$
 - z is fuzzy.
Induction model of loop

• Add iteration counter $c = 0, 1, ...$

• **Induction model**: Value of v at start of iteration c is
 - if invariant: $v = v_0 = \text{initial value of } v$
 - if induction: $v = v_0 + c \times dv$
 - if fuzzy: v is unconstrained (unknown)

• **Loop bound N**: see paper
 - propagate the induction model to the back edge:
 \[
 \{ [i, j, n, z] \mid i - 1 < j + 1 \text{ and } i = n + 1 + c \text{ and } j = n + 8 + c \}\n \]
 - project to c
 - take convex hull \Rightarrow bounds on c that allow repetition
 - example: $c \leq 4$.

• **Post-loop values**: Propagate induction model to exit
 - effect on induction variable: $v := v + N \times dv$, N constant
 • plus possible effect of the loop-exit path
T is an induction variable

- Effect of loop is $T := T + N \times dT$
 - dT is the execution time of one loop repetition
 - N is a constant (range)
- dT from dependency-sensitive analysis of loop body
 - excludes infeasible paths contained in the loop body
 - when infeasibility is iteration-independent
- dT is a Presburger variable
 - can depend on other variables
 - shows dependency between paths inside and outside loop
 - final T excludes infeasible combinations of such paths
 - when infeasibility is iteration-independent
- Hard to handle iteration-specific infeasibility
- Fails for infeasible “path – loop-bound” combinations
Example iteration-independent case

No path can take the slow case of both branches
- infeasible longest path = $100 + 7 \times 200 = 1500$ cycles
- longest feasible path = $10 + 7 \times 200 = 1410$ cycles

- T-analysis works; final $T = 1410$.
Summary

• Add execution-time variable T
 – T becomes “entangled” with other variables/conditions

• Use dependency-sensitive value-analysis
 – final value of T is “entangled” with feasible paths

• Good:
 – no specific analysis and representation of infeasible paths
 – handles many kinds of infeasible paths

• Bad:
 – history-sensitive $t(b)$ may be over-estimated
 – Presburger-set analysis is costly; hard to scale up

• Possible future work:
 – implementation and evaluation
 – other, cheaper dependency-sensitive value-analyses
 • but non-convexity (disjunction) is probably desirable