Predicated Worst-Case Execution-Time (WCET) Analysis

Amine Marref, Guillem Bernat

{marref,bernat}@cs.york.ac.uk

University of York

Roadmap

- Background
- Motivation
- Predicated WCET Analysis
- Results
- Conclusions

Background

Generalities

- Schedulability analysis needs WCET
 - Also optimization

WCET of a task is the maximum execution time that a task can ever exhibit

Goals: safety + tightness

- Types of analysis
 - Static analysis (SA)
 - flow analysis, hardware modeling, calculation
 - Dynamic analysis (end-to-end)
 - Random, GAs, best-effort, engineering wisdom

Measurement-based (MB)

flow analysis, measurements, calculation

Background: IPET

- General procedure
 - Partition into segments
 - Find execution times of segments
 - Calculate: path-based, tree-based, IPET (Implicit Path-Enumeration Technique)

Background: ILP Issue

Motivation: Example 1

 $f = max(\sum_{i=A}^{D} x_i \times c_i + \sum_{j=1}^{2} x'_j \times c'_j)$

Motivation: Example 2

Blocks

 $x_A, x_B, x_C, x_D, x_E, x_F, x_G$ $c_A, c_B, c_C, c_D, c_E, c_F, c_G$ $c_E \in \{c_{E/B}, c_{E/C}\}$ $c_{E/B} = \hat{c} - g_1$ $c_{E/C} = \hat{c} - g_2$

Gains $x'_1 = x_{BDE} = ?$ $x'_2 = x_{CDE} = ?$ $c'_1 = g_1$ $c'_2 = g_2$

$$f = max(\sum_{i=A}^{G} x_i \times c_i + \sum_{j=1}^{2} x'_j \times c'_j)$$

Motivation: Summary

- The problem of modeling the variablity in execution times using ILP reduces to the problem of mapping the x' variables to some x variables in the model
 - The mapping is straight forward in Example 1: The effect of B on D occurs whenever B executes
 - The mapping in Example 2 is not obvious
 - Ermedahl suggested bounding the effect from top and bottom
 - Tedious if affected block far from affecting block
 - Because ILP is not path-sensitive, negative effects can be included in the final solution without the block sequences causing them
 - This causes pessimism
- Need to include some path-sensitivity
 - A particular execution time of some basic block only occurs given some block has executed before
 - e.g. $x_B > 0 \Rightarrow c_D = 10$ (Example 1)

A Solution Using ILP

- ILP supports conjunction and negation only
- Disjunction is supported through model duplication
- We can implement path-sensitivity through mutual exclusive constraints
 - Implications become disjunctions
 - $(x_B > 0 \Rightarrow c_D = 10) \Leftrightarrow (x_B \le 0 \lor c_D = 10)$
 - Solve all instances of the disjunctive ILP
 - a model with n disjunctions solved in at least 2^n runs
- exponential behaviour

CLP, PWA

- Use Constraint-Logic Programming
 - Conditional execution times expressed through implication
- This yields Predicated WCET Analysis
 - Performing WCET analysis by considering all different execution times of a program segment and expressing them as the outcomes of executing some other segments in the past
- Derive constraints
 - Find segments that affect execution time of current segment
 - Link these effects to execution times
- Solve model using CLP

Results: Tightness

		program	blocks	implications	wcet		aain
					HMU	PWA	yanı
		select	40	27	558627	432803	22.6%
		cover	599	2593	44801	38081	15%
		fdct	12	6	77759	66975	15%
		fir	17	4	87822	81742	7%
		lms	134	86	747776	724752	4.3%
		cnt	36	2	94672	92912	1.9%
		bsort	20	4	58179	57539	1.2%
		ns	22	5	892708	888148	0.6%
RTSYork							

Results: Solution Time -Uninformed Constraint Search

Results: Solution Time & Scalability

Summary/Conclusions

- Presented predicated WCET Analysis
- Logic programming can be used to model execution dependencies
- Hardware analysis integration rendered possible
- Enforces path-sensitivity in execution times
- ILP not powerful enough to handle execution time variations
- if model has a manageable number of disjunctions, use ILP, otherwise CLP
- Also use CLP to handle unusual flow facts e.g. A xor B or mot C

Current Work

- Deriving constraints from traces
- Performing WCET coverage
- Implementing search procedures to solve constraints more efficiently
- Investigating the scalability of the approach

