Interactive Timing Profiles based on Bayesian Networks

Michael Zolda, TU Wien 2008-07-01

Traditional Workflow for WCET Analysis

Interactive Timing Profiles

ITP User Interaction

Modeling with Bayesian Networks

- Today's systems are becoming too complex
 - Software complexity, caches, pipeline, speculation, ...

- Can neither ignore nor model all the details
- Use probabilistic model to summarize details

- Bayesian networks
 - Describe a probabilistic model
 - Random Variables

- → Nodes
- Conditional dependencies ↔ Arcs
- Conditional Probability table for each node and its immediate predecessors

Approach Structure

Prob. ET Query

General User Queries

Bayesian Network Model

State Machine Model

Bayesian Network of Success

- How likely is it that a happy person is putting in some effort?
 - Set evidence for variable happiness
 - Perform belief update
 - Read belief at variable effort

Abstract State Machine Model

```
if(m==0) {
s0:
s1:
       if(y!=0)
s2:
         m=x%y;
       if(m==0)
s3:
s4:
          z++;
     k++;
s5:
     } else {
       f=1;
s6:
     if(m==0) {
s7:
s8:
       f=0;
s9:
```

Program Code

State Machine Model

Segmentated Abstract State Machine Model

 G_1

State Machine Model

```
if(m==0) {
s1:
          if(y!=0)
s2:
             m=x%y;
          if(m==0)
s4:
             z++i
s5:
          k++;
       } else {
          f=1;
s6:
                                                              \mathsf{G}_{\scriptscriptstyle{\Delta}}
       if(m==0) {
s8:
          f=0;
s9:
```

Program Code

Segmentated Abstract State Machine Model

Deriving the ITP

- Deriving the structure
 - Context sets
 - Candidate segments
 - Knowledge about cache layout
 - Pipelining effects over segment boundaries
 - Control flow dependencies
- Deriving the parameterization
 - Classifying execution times
 - Use conditional relative frequencies

T _{G1}		10	ms	11ms		
T _{G2}		20ms	21ms	20ms	21ms	
T _{G3}	50ms	0.7	0.4	0.3	0.2	
	51ms	0.3	0.6	0.7	0.9	

Combining Execution Times

T _{G1}		10ms		11ms			null			
T _{G2}		20ms	21ms	null	20ms	21ms	null	20ms	21ms	null
T_G	30ms	1	0	0	0	0	0	0	0	0
	31ms	0	1	0	1	0	0	0	0	0
	32ms	0	0	0	0	1	0	0	0	0
	null	0	0	0	0	0	0	0	0	1
	inc.	0	0	1	0	0	1	1	1	0

State Machine Model

Future Work

- Segment concept
 - Useful segmentation
 - Identification of suitable segments
- Richer network structure
 - Timing information
 - Explicit modeling of control flow
 - Conditions on program variables
- Integration with the FORTAS model
- Outcome classification
- Implementation
- Quantitative results

Conclusion

- Approach for Timing Analysis
 - Interactive (What-if scenarios)
 - Probabilistic (Distributions of execution Times)
- WCET query is a special case

The End