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Embedded Applications Trends



Consumer/Home applications trends

Lottt

In-home
security

Home
automation

Terabyte storage
for PVR

m—»

Smart Cards for
protected content

Gaming displays

= 1 billion transistor chips

= ARM11 MPcore 1GHz CPU
= HDTV 1080p / 720i

= H.264 & VC1 Video

= Dolby Digital 5.1

= Integrated Multiple Digital Tuner

Locationfree TV yicless LCD TV

[ARM]



. Soft-RT constrained

Consumer/Home applications trends

. Increasingly complex functions
Scalable

. Highly distributed (multi-standard wireless)

. Widely ranging environments

Adaptive

Plenty of configurations/ customizations

. Tightening power budget
_ Green
Key enabler greener home appliances!

Predictable |

e

. Focus on User Quality-of-Experience

[ARM]



Embedded applications: Requirements

@ 3D gaming
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0.1-1 TOPS/W embedded platforms by 20135!



Technology Limits




The Era of “Power Limited Scaling”

Power trend
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Multi-core and Power

Power
Power = 1/4
Performance Performance = 1/2
Large Core I ‘
Multi-Core:
Power efficient
Better power and thermal
management




How are we going to do it?

...today: 10s of cores



Multicore “platforms’ [Dally0s]

Microcontroller (= SMP cluster!) is only -
the “master processor” (aka application

processor) sﬁa

- Not energy efficient for “number crunching” ook

control gk

Domain-specific specific functions are integrated at the
chip level to supplement the master processor

Instruction
supply

—- Dedicated IPs for legacy functions and for ultra-high energy
efficiency

- Domain specific processors (DSPs, VLIW, ASIPs) for complex and
evolving data-intensive standardized processing (e.g. baseband
modem, graphics, multimedia)

“Kitchen-sink” of standard 10s for maximum interface
flexibility (chip reuse + platform derivatives)

Lots of on-chip memories (caches, scratchpads, buffers)
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H Y U
SoC platform: Quo Vadis?

ITRS 2007 — SoC Consumer Portable
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Critical analysis
. Complex custom accelerators have high NRE - only
massive reuse justifies risk of a new design!

. Kitchen-sink reuse leads to “spaghetti” inteconnect

z%c%c‘b‘
= =

[ =

NoCs can h/elp,

= but no miracles
i %%@%8%7

. Programming model is messy -2 limited flexibility or lots
of platform knowledge needed

Ultimately, not a predictable & scalable solution!



Polycore (NoC) Platforms
... the path to 100s cores




Omogeneous Processor arrays
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Tilera’s TILE64

» 2TB/sec bisection BW

P (tile) 170-300mW
@ 600-1000MHz

* 40 Gbps 10 BW

» 200 Gbps DRAM BW

Regular processor fabric for predictability & efficiency



Tilera’s “Gentle Slope” Programming

=
o
=0

Gentle slope programming philosophy

- Facilitates immediate results using off-the-shelf code e T

- Incremental steps to reach performance goals

Three incremental steps

1. Compile and run standard C applications on a single tile

L

2. Run the program in parallel using standard SMP Linux
models — pthreads or processes

1L

3. Use stream programming using iLib — a light-weight
sockets-like API




Stream programming

. Direct user access to interconnect (compiler/library

assisted)

. Compute and send in one instruction
. Automatic demultiplexing of streams into registers
. Number of streams is virtualized

Communication

exposed
programming!
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Predictable execution on 100-cores platforms?




Challenges
... on the path to 1000 cores




Variability Challenge

. Complex SoCs in nm-integration:

— Systematic and random
variations (static variability)

—Non uniform workloads, high
operating temperature and hot
spots

— Non-uniform ageing (dynamic
variability)
—Low voltage operation of scaled
transistors
— Low-signal-to-noise ratios (run-
time errors)

memory
Pl

private
32kB
memory

P4

Static and dynamic variations:

How can we manage these effects?

private
32kB

memory

P3

NoC
interface




Robust design

Introspective platforms

Run-time W U ]
management j Variability Management
“Design for introspection” W|------- ’V ———————————

.
L Post silicon calibration }

—

N
[ Variability-tolerance JLPost-silicon monitoring

(f‘l-n-l- ~+%:

“Variability modeling” Lotm.ouc.;l Circuit models}

[Statistical Device models}




Local Closed Loop Control at Tile Level
Computing Tile

Sensor (P, V, T) Control Actuator (V, F)

[STM]




Distributed, hierarchical Global Control Loop
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_ Wekio@tc
Mapping Challenge

Predictable resource allocation & scheduling of parallel applications
on MPSoC platforms for real time systems

e | Gven:
=izl |« App. Description (Task Graph)
w11« Durations as BCET/WCET

| meramec
* Platform description

O 0 0

Memory 1/0
Interface Interface

SOFTWARE C.A.D. FOR MULTICORE
SYSTEMS

-
CAD Compute allocation & schedule
— tool Guaranteed to meet a global
_ =y deadline  constraint for every
execution scenario
|__opT.APP =) |othar’s talk (later today)




The problem with Sharing (interconnect, cache)
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* The WCETSs depend on the schedule (interference due to bus conflicts).

* The schedule depends on the WCETs.



Sharing challenge

Communication fabric is shared
- We need Predictable and scalable communication
We know (...almost) how to make a shared bus predictable

— Field buses: CAN, Flexray, TTTbus, ...many standards
— On-chip buses: Sonics

NoCs are harder: distributed, and must be efficient
— Circuit switching (virtual, physical, hybrid) e.g. Aethereal

— Priorities and preemption, e.g. QNoC
— Best effort with boundary traffic regulation, e.g. Xpipes

Predictability proof is non-trivial in all cases

- Requires hard guarantees on bandwidth & lantency



Contention-Free Routing with Pipelined TDMA

. Emulate circuits = Schedule packet injection

Irouter 21 RPN P
N PR S PR i

A

input 2 for router 1 is
output 1 for router 2

IR it PR SR P!

N\
4

Use slots to
e avoid contention

e divide up bandwidth

the input
routed to
the output
at this slot

. Alternative resource reservation schemes are possible!




- .-
Packet priorities with preemption

_ o QNoC: [Bolotin04]
. Multiple priority classes

_Signaling Input Port Output Port
-Real Time Stream Buffers
_Read-Write /SIGNAL /.../ SIGNAL \
— V.
. Requires as many VC as ~f L] . £
pI’IOI’ItIeS (') |:.|> RD/WR 7 5 RD/WR :>
. Statistical “"guarantees” (!) i &
~E.g. <0.01% arrive ﬂp’_p 3 f—
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. [Shi08] present solid WC (—cREoT— Control |

analysis Routing «€—| Scheduler < CREDIT
—~Bounds are quite conservative . o
~Jitter is an issue . pe
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Predictable Connections?

thresholds remote credits
buffer space to report
\ ] _ A
- 7T OO W1 B o
Master ] (TTT] :EI:I:EI ] Slave
) RESP ) ) RESP
e . TR
\ T \ NI
credits NoC remote
to report buffer space thresholds

. Best-effort connection setup & teardown
- Bounds are not defined for this

. Connection management required
- Credit-based E2E flow control to prevent buffer overflow at consumer

. Predictability of E2ZE connection depends on target behaviour
- EZ2E bandwidth + latency analysis is non-trivial!

An alternative view: E2E connection control is needed
anyway. Why not demanding QoS entirely to it?



Bounding D, BW for RR wormhole NoCs

Method RTB-LL Method RTB-HB
. Real Time Bound - Low Latency . Real Time Bound — High Bandwidth

. Suitable for the applications with flows . Suitable for applications with flows that

that have low worst-case latency have high average bandwidth and
Demands moderate worst-case latency Demands

. Must inject packets at pre-defined . No restrictions on packet injection
intervals (requires traffic regulators) to (unmodified hardware), traffic regulated
avoid self-interference only by backpressure
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Slave
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RTB-LL: Low Latency
©

Flow
Flow

Flow 4

ﬁ

O w O 7

Calculation example:
— Upper Bound Delay for flow 1 : UB1= Zero_Load Delay + L +u1(1) + u1(2) + u1(3)

— u1(1) : blocking time of p1 (of flow 1) in switch 1= direct contention in sw1 +
indirect contention in switch4 =L + L

— u1(2)= u1(3)=0

— uk(j): the blocking time of flow kat SWj because of direct or indirect contentions
with other flows

— Considering (a=1,b=1,L=4) : UB1=4*a+3*b+3*L = 19 cycles

— ml1=L+u1(1)+u1(2)+u1(3)=3*L = 12 cycles

— Considering (Flit_Width=1 byte, Clock_Freq=300 MHz):

— MBW1=L*Flit_Width/mi1*Clock Freq = 100 MByte/sec



A sample application
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Upper Bound Delay Comparison Bandwidth Comparison
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UB Minimum average maximum BW minimum average maximum
(cycles) (MB/s)
RTB-LL 17 91 139 RTB-LL 36 124 533
RTB-HB 24 174 392 RTB-HB 21 101 533
WCFC 17 237 545 WCFC 12 81 533

. Analysis is very fast, but conservative (competitive with network calculus)
. Assuming no backpressure from destination nodes

NoC-level QoS support may give better control on latency+bandwidth



A Plumbing Problem: Hot Module

* Many flows to the same
end-point (e.g. memory
controller)

* Module with variable < D—D UL gL
response time (e.g. DRAM) E/
L]
— Requ_estchannel buffers 0O D +— ollc—olc
may fill-up ‘0 4 Ly ’

— Congestion propagates to all

the network (wormhole)
 All guarantees are lost!
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Addressing the Hot Module Problem

E2E control [WalterNOCS06,AkessonCODESO07]

- Memory controllers supports fair memory allocation
— Backpressure at the initiator NIs (prevent clogging)

Distributed control [YooDATE09,JangDACQ09]

- Packets are prioritized according to MEM sequencing
- Network buffers exploited to reduce MemCTRL buffers
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O
Summing up

Predictable NoCs do exist
-~ Several mechanisms are available
Predictable NoC abstraction

- Given a set of flows - for each flow provides max delivery time and
min bandwidth guarantees

- Requires global analysis = takes time — issues in doing it on-line
— Assumes well-behaved initiators and targets
-~ Resource underutilization is a price to be paid

Predictability is a “max-min” property: as strong as its
weakest component!

— Currently external (DRAM) memory interface is the weakest
component




Help from technology
Bandwidth hungry, even more so for predictability

Packaging
Roadmap

Packaging
Roadmap /

-Small XY \ centric

i -Ele-perf (-KGD?) o -Small XYZ2 \
G -Ele-perf (-KGD?) )

embedded POP

— - 3 -
00000000 2007 Mamflox e Sl XYZ Substrate? t
-Small XYZ 2004 2T N Mem-flex -Tested o bondd
-
b Complementing
1998 Si-interposer

NOKIA

-Small: XYZ (onnecting People

-KGD

-Small XYZ
-Ele-perf -KGD.--

Through-silicon vias are at the technology bleeding edge today
Industry interest is growing: http://www.emc3d.org/



Scalable & predictable 3D-platform

3D-Network on-chip

» Packet-based ﬂ
communication with QoS
support (TDMA/priorities/ / /Ay PE /A
regulated traffic) /- B iy,

ARy Ay ,.,...W
* Architecturally scalable: more / _.-M/
nodes, more bandwidth NN~ B -~ 4

Z /4 /4
Z /L /L
/ / /

PE /~—
74

* Physically scalable:
segmented P2P links

Vertically Integrated main memory

* TSV main-memory communication from 10pJ/bit to 10fJ/bit

*10° interconnect density increase

* Priority/Bandwidth reservation (mainly for low-latency memory neighborhood)
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» Packet Based (NoC) regular
Communication Infrastructure
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System Bridge

System Bridge

arge Stacked Memory
uIt| Way Access (one per




“Reconciling” scalability & predictability

. Sharing cannot be fully avoided

- But it should be made explicit (existance & cost) 2 you can
access foreign memory neighborhoods, but with an explicit (and
deterministically bounded) cost

— Strict access policies for shared resources can be enforced (e.g.
no starvation) at a modest hardware cost

. Scalability is required for predictability

- Bottlenecks kill average and worst-case performance

— Scalability implies some “marginal over-design’, but it pays off
. Complete design-time knowledge is not required

- Safe assumptions at design time + slack reclamation at run time
— This goes hand-in-hand with (possibly significant) over-design



Than « you!

ACK: FP7 Predator, Genesys, Share




