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Embedded Applications Trends  



Consumer/Home applications trends 

[ARM] 



Consumer/Home applications trends 

[ARM] 

●  Increasingly complex functions 

●  Highly distributed (multi-standard wireless) 

●  Widely ranging environments  

●   Plenty of configurations/ customizations 

●  Tightening power budget 

●   Key enabler greener home appliances! 

●  Soft-RT constrained 

●  Focus on User Quality-of-Experience 

Scalable 

Adaptive 

Green 

Predictable 



Embedded applications: Requirements 
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0.1-1 TOPS/W embedded platforms by 2015! 



Technology Limits  
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The Era of “Power Limited Scaling” 



Multi-core and Power 
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How are we going to do it?  

…today: 10s of cores 



Multicore “platforms” 
●  Microcontroller (SMP cluster!) is only 

the “master processor” (aka application 
processor) 

–  Not energy efficient for “number crunching” 

●  Domain-specific specific functions are integrated at the 
chip level to supplement the master processor 

–  Dedicated IPs for legacy functions and for ultra-high energy 
efficiency 

–  Domain specific processors (DSPs, VLIW, ASIPs) for complex and 
evolving data-intensive standardized processing (e.g. baseband 
modem, graphics, multimedia) 

●  “Kitchen-sink” of standard IOs for maximum interface 
flexibility (chip reuse + platform derivatives) 

●  Lots of on-chip memories (caches, scratchpads, buffers) 

[Dally08] 



Nomadik ST-Ericsson (n8820) Application Processor 

Main Core 

Memory System HW Accelerators 

I/Os 



SoC platform: Quo Vadis? 
ITRS 2007 – SoC Consumer Portable 



Critical analysis 
●  Complex custom accelerators have high NRE  only 

massive reuse justifies risk of a new design! 
●  Kitchen-sink reuse leads to “spaghetti” inteconnect 

●  Programming model is messy  limited flexibility or lots 
of platform knowledge needed 

Ultimately, not a predictable & scalable solution! 

NoCs can help, 
but no miracles 



Polycore (NoC) Platforms 
… the path to 100s cores 
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Tilera’s TILE64 
•  2TB/sec bisection BW 
•  P (tile) 170-300mW  
  @ 600-1000MHz 

•  40 Gbps IO BW 
•  200 Gbps DRAM BW 

Regular processor fabric for predictability & efficiency 



Tilera’s “Gentle Slope” Programming Model 

Gentle slope programming philosophy 

–  Facilitates immediate results using off-the-shelf code 

–  Incremental steps to reach performance goals 

Three incremental steps 

1.  Compile and run standard C applications on a single tile 

2.  Run the program in parallel using standard SMP Linux 
models – pthreads or processes 

3.  Use stream programming using iLib – a light-weight 
sockets-like API 
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sub r5, r3, r55 

 Dynamic 
Switch 

add r55, r3, r4 

 Dynamic 
Switch 

Stream programming 

TA
G

 

●  Direct user access to interconnect (compiler/library 
assisted) 

●  Compute and send in one instruction 
●  Automatic demultiplexing of streams into registers 
●  Number of streams is virtualized 
●  Streams do not necessarily go through memory for 

power efficiency 

Communication
exposed 

programming! 



Predictable execution on 100-cores platforms? 
●  Distributed storage and multi-hop multi-channel interconnects 

–  More modularity  reduced “implicit” interaction on shared resources 
–  More bandwidth available  conservative allocation is viable  

●  Simpler processing elements 
–  Less average-case acceleration tricks which adversely impact worst-case 
–  Easier construction of high-level performance/power models 

●  Explicit  communication/ storage programming models 
–  Simplifies high-level SW analysis (distributed, actor-centric programming models) 
–  Model-based SW design using pre-verified components 

Good news 

●  Sharing challenge: Sharing is still needed and must be managed 
–  Communication links in NoCs 
–  Main memory (DRAM) 
–  I/Os 

●  Mapping challenge: Allocation & Scheduling becomes extremely complex 
–  Need strong DA support – cannot be done manually 
–  Spatial+temporal optimization problem (place/route/schedule) 

●  Variability challenge: Applications, components and environment are “dynamic” 
–  Nothing is fully known at design time 
–  Must handle unreliable fabrics 

Bad news 



Challenges 
… on the path to 1000 cores 



Variability Challenge 

¡ Local failures ! 

    Part not working 

●   Complex SoCs in nm-integration:  
–  Systematic and random 

variations (static variability) 
– Non uniform workloads, high 

operating temperature and hot 
spots 

–  Non-uniform ageing (dynamic 
variability) 

– Low voltage operation of scaled 
transistors 

–  Low-signal-to-noise ratios (run-
time errors) 

Static and dynamic variations: 
How can we manage these effects? 



Robust design 
Introspective platforms 

Statistical Device models 

Statistical Circuit models 

Post-silicon monitoring Post silicon calibration 

Run-time 
management 

Variability-tolerance 

“Variability modeling” 

“Variability Management” 

“Design for introspection” 



Local Closed Loop Control at Tile Level 

V F 

Sensor (P, V, T) Actuator (V, F) Control 

Computing Tile 

[STM] 



Distributed, hierarchical Global Control Loop 

[STM] 

Requires predictably  
fast communication  
for control packets 

E2E latency 

In rate Out rate 



Talk	  topic	  

Predictable resource allocation & scheduling of parallel applications 
on MPSoC platforms for real time systems 

Given: 
• App. Description (Task Graph) 
• Durations as BCET/WCET 
• Platform description 

Compute allocation & schedule 
Guaranteed to meet a global 
deadline constraint for every 
execution scenario 

OPT. APP. 
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Mapping Challenge 

Lothar’s talk (later today) 



The problem with Sharing (interconnect, cache) 

• The WCETs depend on the schedule (interference due to bus conflicts). 
• The schedule depends on the WCETs. 

Circular 
Dependency! 

[Eles09] 



Sharing challenge 

●  Communication fabric is shared  
–  We need Predictable and scalable communication  

●  We know (…almost) how to make a shared bus predictable 
–  Field buses: CAN, Flexray, TTTbus, …many standards 
–  On-chip buses: Sonics 

●  NoCs are harder: distributed, and must be efficient 
–  Circuit switching (virtual, physical, hybrid) e.g. Aethereal 

–  Priorities and preemption, e.g. QNoC 
–  Best effort with boundary traffic regulation, e.g. Xpipes 

●  Predictability proof is non-trivial in all cases 
–  Requires hard guarantees on bandwidth & lantency 



Contention-Free Routing with Pipelined TDMA 
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●  Alternative resource reservation schemes are possible! 

●  Emulate circuits   Schedule packet injection  

NXP’s Æthereal 



Packet priorities with preemption 

N 

T 

Input Port Output Port ●  Multiple priority classes 
– Signaling 
– Real Time Stream 
– Read-Write 
– DMA Block Transfer 

●  Requires as many VC as 
priorities (!) 

●  Statistical “guarantees” (!) 
– E.g.  <0.01% arrive 
later then required 

●  [Shi08] present solid WC 
analysis 

– Bounds are quite conservative 
– Jitter is an issue 

QNoC: [Bolotin04]  



Predictable Connections? 

NoC 

Master 
REQ 

RESP 

Slave 
REQ 

RESP 

NI NI credits 
to report 

remote  
buffer space thresholds 

credits 
to report 

remote  
buffer space 

●  Best-effort connection setup & teardown 
–  Bounds are not defined for this 

●  Connection management required 
–  Credit-based E2E flow control to prevent buffer overflow at consumer 

●  Predictability of E2E connection depends on target behaviour 
–  E2E bandwidth + latency analysis is non-trivial! 

thresholds 

An alternative view: E2E connection control is needed 
anyway. Why not demanding QoS entirely to it? 



Bounding D, BW for RR wormhole NoCs 

Method RTB-LL 

●  Real Time Bound - Low Latency 

●  Suitable for the applications with flows 
that have low worst-case latency 
Demands  

●  Must inject packets at pre-defined 
intervals (requires traffic regulators) to 
avoid self-interference  

Method RTB-HB 

●  Real Time Bound – High Bandwidth 

●  Suitable for applications with flows that 
have high average bandwidth and 
moderate worst-case latency Demands  

●  No restrictions on packet injection 
(unmodified hardware), traffic regulated 
only by backpressure 



RTB-LL:      Low Latency  

Calculation example:  
–  Upper Bound Delay for flow 1 : UB1= Zero_Load_Delay + L 
–  u1(1) : blocking time of p1 (of flow 1) in switch 1= direct contention in sw1 + 

indirect contention in switch 4 = L + L  
–  u1(2)= u1(3)=0 
–  uk(j): the blocking time of flow k at SWj     because of  direct or  indirect contentions 

with other flows 
–  Considering (a=1,b=1,L=4) : UB1=4*a+3*b+3*L = 19 cycles 
–  mI1=L+u1(1)+u1(2)+u1(3)=3*L = 12 cycles 
–  Considering (Flit_Width=1 byte, Clock_Freq=300 MHz): 
–  MBW1=L*Flit_Width/mI1*Clock_Freq = 100 MByte/sec 

+ u1(1) + u1(2) + u1(3) 



A sample application 

A real-time application for 
NoC with 26 Ip-Cores and  

67 traffic flows 

Mapping the 
application on a 5-
switches network 



Results for the sample application  

UB 

(cycles) 

Minimum average maximum 

RTB-LL 17 91 139 

RTB-HB 24 174 392 

WCFC 17 237 545 

BW 

(MB/s) 

minimum average maximum 

RTB-LL 36 124 533 

RTB-HB 21 101 533 

WCFC 12 81 533 

●  Analysis is very fast, but conservative (competitive with network calculus) 
●  Assuming no backpressure from destination nodes  

NoC-level QoS support may give better control on latency+bandwidth 
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•  Module with variable 
response time (e.g. DRAM) 

–  Request channel buffers 
may fill-up 

–  Congestion propagates to all 
the network (wormhole) 

•  All guarantees are lost! 

A Plumbing Problem: Hot Module 

•  Many flows to the same 
end-point (e.g. memory 
controller) 



Addressing the Hot Module Problem 

●  E2E control [WalterNOCS06,AkessonCODES07] 
–  Memory controllers supports fair memory allocation 
–  Backpressure at the initiator NIs (prevent clogging) 

●  Distributed control [YooDATE09,JangDAC09] 
–  Packets are prioritized according to MEM sequencing 
–  Network buffers exploited to reduce MemCTRL buffers 

NIm 

NIm NIm 

NIs 



Summing up 

●  Predictable NoCs do exist 
–  Several mechanisms are available 

●  Predictable NoC abstraction 
–  Given a set of flows  for each flow provides max delivery time and 

min bandwidth  guarantees 

–  Requires global analysis  takes time – issues in doing it on-line 
–  Assumes well-behaved initiators and targets   
–  Resource underutilization is a price to be paid 

●  Predictability is a “max-min” property: as strong as its 
weakest component! 

–  Currently external (DRAM) memory interface is the weakest 
component 



Help from technology 
Bandwidth hungry, even more so for predictability  

Through-silicon vias are at the technology bleeding edge today 
Industry interest is growing:  http://www.emc3d.org/ 
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MEM MEM MEM MEM 

3D-Network on-chip 

• Packet-based 
communication with QoS 
support (TDMA/priorities/ 
regulated traffic) 

• Architecturally scalable: more 
nodes, more bandwidth 

• Physically scalable: 
segmented P2P links 

Scalable & predictable 3D-platform 
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Vertically Integrated main memory 

• TSV main-memory communication from 10pJ/bit to 10fJ/bit  

• 105 interconnect density increase 

• Priority/Bandwidth reservation (mainly for low-latency memory neighborhood) 



System Bridge 

STM Platform 2012: Architecture Template 
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•  Synchronous Computing 
Domain. Redundant Grain 
•  SMP Cluster 
•  Voltage & Frequency 
Island. Isolatable 

•  Decoupled Domains 
•  Data Flow Programming 
Model 

•  Decoupled Domains 

L3 L3 L3 
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•  Large Stacked Memory 
•  Multi Way Access (one per 
domain) using TSV 

•  Packet Based (NoC) regular 
Communication Infrastructure 
•  Packet Based (NoC) regular 
Communication Infrastructure 
•  Packet Based (NoC) regular 
Communication Infrastructure 

System Bridge 

Fabric 
Controller 

Core 

[STM, CEA] 



“Reconciling” scalability & predictability 

●  Sharing cannot be fully avoided 
–   But it should be made explicit (existance & cost)  you can 

access foreign memory neighborhoods, but with an explicit (and 
deterministically bounded) cost 

–  Strict access policies for shared resources can be enforced (e.g. 
no starvation) at a modest hardware cost 

●  Scalability is required for predictability 
–  Bottlenecks kill average and worst-case performance 
–  Scalability implies some “marginal over-design”, but it pays off 

●  Complete design-time knowledge is not required 
–  Safe assumptions at design time + slack reclamation at run time 
–  This goes hand-in-hand with (possibly significant) over-design 



ACK: FP7 Predator, Genesys, Share 


