
Designing Scalable and Predictable
SoC Communication Fabrics

Embedded Applications Trends

Consumer/Home applications trends

[ARM]

Consumer/Home applications trends

[ARM]

●  Increasingly complex functions

●  Highly distributed (multi-standard wireless)

●  Widely ranging environments

●  Plenty of configurations/ customizations

●  Tightening power budget

●  Key enabler greener home appliances!

●  Soft-RT constrained

●  Focus on User Quality-of-Experience

Scalable

Adaptive

Green

Predictable

Embedded applications: Requirements

Year of Introduction
2005 2007 2009 2011 2013 2015

5 GOPS/W

100GOPS/W

Sign
recognition

A/V
streaming

Adaptive
route

Collision
avoidance

Autonomous
driving

3D projected
display

HMI by motion
Gesture detection

Ubiquitous
navigation

Si Xray

Gbit radio

UWB

802.11n

Structured
encoding

Structured
decoding

3D TV 3D gaming

H264
encoding

H264
decoding

Image
recognition

Fully recognition
(security)

Auto
personalization

dictation

3D ambient
interaction

Language Emotion
recognition

Gesture
recognition

Expression
recognition

Mobile
Base-band

1TOPS/W

[Philips/IMEC]
[DARPA08]

10GOPS/W

Scalable

Green
Adaptive

0.1-1 TOPS/W embedded platforms by 2015!

Technology Limits

1990 1995 2000 2005 2010 2015 2020

100

10-2

10-4

10-6

1

Gate-
Oxide
Leakage

Sub-
Threshold
Leakage

Dynamic Power

Po
w

er
 C

on
su

m
pt

io
n

Power trend

Power density trend

[STM ASIC]

Technology
innovations
(e.g. high-k
dielectrics)

30%

[Intel, Microsoft and Stanford]

The Era of “Power Limited Scaling”

Multi-core and Power

C1 C2

C3 C4

Cache

Large Core

Cache

1

2

3

4

1

2 Small
Core 1 1

1

2

3

4

1

2

3

4

Power

Performance
Power = 1/4

Performance = 1/2

Multi-Core:
Power efficient

Better power and thermal
management

How are we going to do it?

…today: 10s of cores

Multicore “platforms”
●  Microcontroller (SMP cluster!) is only

the “master processor” (aka application
processor)

–  Not energy efficient for “number crunching”

●  Domain-specific specific functions are integrated at the
chip level to supplement the master processor

–  Dedicated IPs for legacy functions and for ultra-high energy
efficiency

–  Domain specific processors (DSPs, VLIW, ASIPs) for complex and
evolving data-intensive standardized processing (e.g. baseband
modem, graphics, multimedia)

●  “Kitchen-sink” of standard IOs for maximum interface
flexibility (chip reuse + platform derivatives)

●  Lots of on-chip memories (caches, scratchpads, buffers)

[Dally08]

Nomadik ST-Ericsson (n8820) Application Processor

Main Core

Memory System HW Accelerators

I/Os

SoC platform: Quo Vadis?
ITRS 2007 – SoC Consumer Portable

Critical analysis
●  Complex custom accelerators have high NRE only

massive reuse justifies risk of a new design!
●  Kitchen-sink reuse leads to “spaghetti” inteconnect

●  Programming model is messy limited flexibility or lots
of platform knowledge needed

Ultimately, not a predictable & scalable solution!

NoCs can help,
but no miracles

Polycore (NoC) Platforms
… the path to 100s cores

PCIe 1
MAC
PHY

PCIe 0
MAC
PHY

Serdes

Serdes

Flexible IO

GbE 0

GbE 1 Flexible IO

UART, HPI
JTAG, I2C,

SPI

DDR2 Memory Controller 3

DDR2 Memory Controller 0

DDR2 Memory Controller 2

DDR2 Memory Controller 1

XAUI
MAC
PHY 0

Serdes

XAUI
MAC
PHY 1

Serdes

Omogeneous processor arrays

PROCESSOR

P2

Reg File

P1 P0

CACHE
L2 CACHE

L1I L1D

ITLB DTLB

2D DMA

STN

MDN TDN

UDN IDN

SWITCH

Tilera’s TILE64
•  2TB/sec bisection BW
•  P (tile) 170-300mW
 @ 600-1000MHz

•  40 Gbps IO BW
•  200 Gbps DRAM BW

Regular processor fabric for predictability & efficiency

Tilera’s “Gentle Slope” Programming Model

Gentle slope programming philosophy

–  Facilitates immediate results using off-the-shelf code

–  Incremental steps to reach performance goals

Three incremental steps

1.  Compile and run standard C applications on a single tile

2.  Run the program in parallel using standard SMP Linux
models – pthreads or processes

3.  Use stream programming using iLib – a light-weight
sockets-like API

T

T

T

M
E
M

M
E
M

sub r5, r3, r55

 Dynamic
Switch

add r55, r3, r4

 Dynamic
Switch

Stream programming

TA
G

●  Direct user access to interconnect (compiler/library
assisted)

●  Compute and send in one instruction
●  Automatic demultiplexing of streams into registers
●  Number of streams is virtualized
●  Streams do not necessarily go through memory for

power efficiency

Communication
exposed

programming!

Predictable execution on 100-cores platforms?
●  Distributed storage and multi-hop multi-channel interconnects

–  More modularity reduced “implicit” interaction on shared resources
–  More bandwidth available conservative allocation is viable

●  Simpler processing elements
–  Less average-case acceleration tricks which adversely impact worst-case
–  Easier construction of high-level performance/power models

●  Explicit communication/ storage programming models
–  Simplifies high-level SW analysis (distributed, actor-centric programming models)
–  Model-based SW design using pre-verified components

Good news

●  Sharing challenge: Sharing is still needed and must be managed
–  Communication links in NoCs
–  Main memory (DRAM)
–  I/Os

●  Mapping challenge: Allocation & Scheduling becomes extremely complex
–  Need strong DA support – cannot be done manually
–  Spatial+temporal optimization problem (place/route/schedule)

●  Variability challenge: Applications, components and environment are “dynamic”
–  Nothing is fully known at design time
–  Must handle unreliable fabrics

Bad news

Challenges
… on the path to 1000 cores

Variability Challenge

¡ Local failures !

 Part not working

●  Complex SoCs in nm-integration:
–  Systematic and random

variations (static variability)
– Non uniform workloads, high

operating temperature and hot
spots

–  Non-uniform ageing (dynamic
variability)

– Low voltage operation of scaled
transistors

–  Low-signal-to-noise ratios (run-
time errors)

Static and dynamic variations:
How can we manage these effects?

Robust design
Introspective platforms

Statistical Device models

Statistical Circuit models

Post-silicon monitoring Post silicon calibration

Run-time
management

Variability-tolerance

“Variability modeling”

“Variability Management”

“Design for introspection”

Local Closed Loop Control at Tile Level

V F

Sensor (P, V, T) Actuator (V, F) Control

Computing Tile

[STM]

Distributed, hierarchical Global Control Loop

[STM]

Requires predictably
fast communication
for control packets

E2E latency

In rate Out rate

Talk	 topic	

Predictable resource allocation & scheduling of parallel applications
on MPSoC platforms for real time systems

Given:
• App. Description (Task Graph)
• Durations as BCET/WCET
• Platform description

Compute allocation & schedule
Guaranteed to meet a global
deadline constraint for every
execution scenario

OPT. APP.

SO
FT
W
A
RE

	 C
.A
.D
.	 F
O
R	
M
U
LT
IC
O
RE

	 	
SY
ST
EM

S	

CAD	
tool	

Mapping Challenge

Lothar’s talk (later today)

The problem with Sharing (interconnect, cache)

• The WCETs depend on the schedule (interference due to bus conflicts).
• The schedule depends on the WCETs.

Circular
Dependency!

[Eles09]

Sharing challenge

●  Communication fabric is shared
–  We need Predictable and scalable communication

●  We know (…almost) how to make a shared bus predictable
–  Field buses: CAN, Flexray, TTTbus, …many standards
–  On-chip buses: Sonics

●  NoCs are harder: distributed, and must be efficient
–  Circuit switching (virtual, physical, hybrid) e.g. Aethereal

–  Priorities and preemption, e.g. QNoC
–  Best effort with boundary traffic regulation, e.g. Xpipes

●  Predictability proof is non-trivial in all cases
–  Requires hard guarantees on bandwidth & lantency

Contention-Free Routing with Pipelined TDMA

router 1

router 3

router 2 network
interface

network
interface

network
interface

1

1

2

1 2

1

3 3

input 2 for router 1 is
output 1 for router 2

the input
routed to

 the output
 at this slot

3 3

1

1

2

2

1

1

2

2

1

1

2

2

2

2

1

1

2

2

1

1

4 4

-
-
-
-

o1
-
i1
i1
-

o2
-
-
-
-

o3
-
-
-
-

o4
-
-
i4
-

o1
-
-
-
-

o2
-
-
-
-

o3
i1
-
-
-

o4
Use slots to
•  avoid contention
•  divide up bandwidth

-
-
-
-

o1

i1
-

-
-

o3
-
-
-
-

o4
i1

-
-

o2

i3

●  Alternative resource reservation schemes are possible!

●  Emulate circuits Schedule packet injection

NXP’s Æthereal

Packet priorities with preemption

N

T

Input Port Output Port ●  Multiple priority classes
– Signaling
– Real Time Stream
– Read-Write
– DMA Block Transfer

●  Requires as many VC as
priorities (!)

●  Statistical “guarantees” (!)
– E.g. <0.01% arrive
later then required

●  [Shi08] present solid WC
analysis

– Bounds are quite conservative
– Jitter is an issue

QNoC: [Bolotin04]

Predictable Connections?

NoC

Master
REQ

RESP

Slave
REQ

RESP

NI NI credits
to report

remote
buffer space thresholds

credits
to report

remote
buffer space

●  Best-effort connection setup & teardown
–  Bounds are not defined for this

●  Connection management required
–  Credit-based E2E flow control to prevent buffer overflow at consumer

●  Predictability of E2E connection depends on target behaviour
–  E2E bandwidth + latency analysis is non-trivial!

thresholds

An alternative view: E2E connection control is needed
anyway. Why not demanding QoS entirely to it?

Bounding D, BW for RR wormhole NoCs

Method RTB-LL

●  Real Time Bound - Low Latency

●  Suitable for the applications with flows
that have low worst-case latency
Demands

●  Must inject packets at pre-defined
intervals (requires traffic regulators) to
avoid self-interference

Method RTB-HB

●  Real Time Bound – High Bandwidth

●  Suitable for applications with flows that
have high average bandwidth and
moderate worst-case latency Demands

●  No restrictions on packet injection
(unmodified hardware), traffic regulated
only by backpressure

RTB-LL: Low Latency

Calculation example:
–  Upper Bound Delay for flow 1 : UB1= Zero_Load_Delay + L
–  u1(1) : blocking time of p1 (of flow 1) in switch 1= direct contention in sw1 +

indirect contention in switch 4 = L + L
–  u1(2)= u1(3)=0
–  uk(j): the blocking time of flow k at SWj because of direct or indirect contentions

with other flows
–  Considering (a=1,b=1,L=4) : UB1=4*a+3*b+3*L = 19 cycles
–  mI1=L+u1(1)+u1(2)+u1(3)=3*L = 12 cycles
–  Considering (Flit_Width=1 byte, Clock_Freq=300 MHz):
–  MBW1=L*Flit_Width/mI1*Clock_Freq = 100 MByte/sec

+ u1(1) + u1(2) + u1(3)

A sample application

A real-time application for
NoC with 26 Ip-Cores and

67 traffic flows

Mapping the
application on a 5-
switches network

Results for the sample application

UB

(cycles)

Minimum average maximum

RTB-LL 17 91 139

RTB-HB 24 174 392

WCFC 17 237 545

BW

(MB/s)

minimum average maximum

RTB-LL 36 124 533

RTB-HB 21 101 533

WCFC 12 81 533

●  Analysis is very fast, but conservative (competitive with network calculus)
●  Assuming no backpressure from destination nodes

NoC-level QoS support may give better control on latency+bandwidth

IP
(HM) In

te
rfa

ce

•  Module with variable
response time (e.g. DRAM)

–  Request channel buffers
may fill-up

–  Congestion propagates to all
the network (wormhole)

•  All guarantees are lost!

A Plumbing Problem: Hot Module

•  Many flows to the same
end-point (e.g. memory
controller)

Addressing the Hot Module Problem

●  E2E control [WalterNOCS06,AkessonCODES07]
–  Memory controllers supports fair memory allocation
–  Backpressure at the initiator NIs (prevent clogging)

●  Distributed control [YooDATE09,JangDAC09]
–  Packets are prioritized according to MEM sequencing
–  Network buffers exploited to reduce MemCTRL buffers

NIm

NIm NIm

NIs

Summing up

●  Predictable NoCs do exist
–  Several mechanisms are available

●  Predictable NoC abstraction
–  Given a set of flows for each flow provides max delivery time and

min bandwidth guarantees

–  Requires global analysis takes time – issues in doing it on-line
–  Assumes well-behaved initiators and targets
–  Resource underutilization is a price to be paid

●  Predictability is a “max-min” property: as strong as its
weakest component!

–  Currently external (DRAM) memory interface is the weakest
component

Help from technology
Bandwidth hungry, even more so for predictability

Through-silicon vias are at the technology bleeding edge today
Industry interest is growing: http://www.emc3d.org/

MEM MEM MEM MEM
MEM MEM MEM MEM

MEM MEM MEM MEM

MEM MEM MEM MEM
MEM MEM MEM MEM

MEM MEM MEM MEM

3D-Network on-chip

• Packet-based
communication with QoS
support (TDMA/priorities/
regulated traffic)

• Architecturally scalable: more
nodes, more bandwidth

• Physically scalable:
segmented P2P links

Scalable & predictable 3D-platform

TS
V

s

TS
V

s

TS
V

s

PE PE

PE

TS
V

s

PE

TS
V

s

SW

PE
TS

V
s

SW

PE
SW SW SW

SW SW

PE

TS
V

s

SW

Vertically Integrated main memory

• TSV main-memory communication from 10pJ/bit to 10fJ/bit

• 105 interconnect density increase

• Priority/Bandwidth reservation (mainly for low-latency memory neighborhood)

System Bridge

STM Platform 2012: Architecture Template

Core

Core

Core

Core

L1

L1

L1

L1

L2

Core

Core

Core

Core

L1

L1

L1

L1

Synchronizer

XFC NI

Core

Core

Core

Core

L1

L1

L1

L1

L2

Core

Core

Core

Core

L1

L1

L1

L1

Synchronizer

XFC NI

Core

Core

Core

Core

L1

L1

L1

L1

L2

Core

Core

Core

Core

L1

L1

L1

L1

Synchronizer

XFC NI

Core

Core

Core

Core

L1

L1

L1

L1

L2

Core

Core

Core

Core

L1

L1

L1

L1

Synchronizer

XFC NI

Core

Core

Core

Core

L1

L1

L1

L1

L2

Core

Core

Core

Core

L1

L1

L1

L1

Synchronizer

XFC NI

Core

Core

Core

Core

L1

L1

L1

L1

L2

Core

Core

Core

Core

L1

L1

L1

L1

Synchronizer

XFC NI

Core

Core

Core

Core

L1

L1

L1

L1

L2

Core

Core

Core

Core

L1

L1

L1

L1

Synchronizer

XFC NI

Core

Core

Core

Core

L1

L1

L1

L1

L2

Core

Core

Core

Core

L1

L1

L1

L1

Synchronizer

XFC NI

Core

Core

Core

Core

L1

L1

L1

L1

L2

Core

Core

Core

Core

L1

L1

L1

L1

Synchronizer

XFC NI

Core

Core

Core

Core

L1

L1

L1

L1

L2

Core

Core

Core

Core

L1

L1

L1

L1

Synchronizer

XFC NI

Core

Core

Core

Core

L1

L1

L1

L1

L2

Core

Core

Core

Core

L1

L1

L1

L1

Synchronizer

XFC NI

Core

Core

Core

Core

L1

L1

L1

L1

L2

Core

Core

Core

Core

L1

L1

L1

L1

Synchronizer

XFC NI

Core

Core

Core

Core

L1

L1

L1

L1

L2

Core

Core

Core

Core

L1

L1

L1

L1

Synchronizer

XFC NI

Core

Core

Core

Core

L1

L1

L1

L1

L2

Core

Core

Core

Core

L1

L1

L1

L1

Synchronizer

XFC NI

Core

Core

Core

Core

L1

L1

L1

L1

L2

Core

Core

Core

Core

L1

L1

L1

L1

Synchronizer

XFC NI

Core

Core

Core

Core

L1

L1

L1

L1

L2

Core

Core

Core

Core

L1

L1

L1

L1

Synchronizer

XFC NI

Core

Core

Core

Core

L1

L1

L1

L1

L2

Core

Core

Core

Core

L1

L1

L1

L1

Synchronizer

XFC NI

Core

Core

Core

Core

L1

L1

L1

L1

L2

Core

Core

Core

Core

L1

L1

L1

L1

Synchronizer

XFC NI

Core

Core

Core

Core

L1

L1

L1

L1

L2

Core

Core

Core

Core

L1

L1

L1

L1

Synchronizer

XFC NI

Core

Core

Core

Core

L1

L1

L1

L1

L2

Core

Core

Core

Core

L1

L1

L1

L1

Synchronizer

XFC NI

•  Synchronous Computing
Domain. Redundant Grain
•  SMP Cluster
•  Voltage & Frequency
Island. Isolatable

•  Decoupled Domains
•  Data Flow Programming
Model

•  Decoupled Domains

L3 L3 L3

L3 L3 L3

L3 L3 L3

•  Large Stacked Memory
•  Multi Way Access (one per
domain) using TSV

•  Packet Based (NoC) regular
Communication Infrastructure
•  Packet Based (NoC) regular
Communication Infrastructure
•  Packet Based (NoC) regular
Communication Infrastructure

System Bridge

Fabric
Controller

Core

[STM, CEA]

“Reconciling” scalability & predictability

●  Sharing cannot be fully avoided
–  But it should be made explicit (existance & cost) you can

access foreign memory neighborhoods, but with an explicit (and
deterministically bounded) cost

–  Strict access policies for shared resources can be enforced (e.g.
no starvation) at a modest hardware cost

●  Scalability is required for predictability
–  Bottlenecks kill average and worst-case performance
–  Scalability implies some “marginal over-design”, but it pays off

●  Complete design-time knowledge is not required
–  Safe assumptions at design time + slack reclamation at run time
–  This goes hand-in-hand with (possibly significant) over-design

ACK: FP7 Predator, Genesys, Share

