Synchronous Modelling
of Complex Systems

Nicolas Halbwachs
Verimag, Grenoble

joint work with
L. Mandel — LRI
E. Jahier, P. Raymond, X. Nicollin — Verimag
and D. Lesens — Astrium Space Transportation

() 1/45



The Synchronous Paradigm

@ The Synchronous Paradigm

. Synchrony and Asynchrony

. Synchronous Modelling of Asynchrony
. A case study

. Quasi-synchrony

. Translating AADL concepts

. Current work and conclusion

() 2/45



The Synchronous Paradigm (1/8)

Synchronous machines

Basic components: generalized Mealy machines

X SN
f

0!

|~

_y/: fY(;(aé)

S =f5(X,S)

Behaviour: (§0,)?0,\70),(§1,)?1,\71),...,(§n,)?n, \7,7),...,
with ¥, = fy(Xs, Sp) and S,y 1 = fs(Xn, Sp)
Deterministic!

3/45



The Synchronous Paradigm (2/8)

Basic components, simple examples

o unit delay 6: outputs the value received at the previous
reaction

4

fo(X,8)=8 , fg(X,S)=

o sampler B(b): outputs the current input if b is true, the
previous output otherwise

fo(b,X,S) = f5(b,X,S) = if bthen X else S

() 4/45



The Synchronous Paradigm (3/8)

Example: an integrator

Outputs the sum of inputs received so far

fr(x,5) = fo(X.8) = §+ X

() 5/45



The Synchronous Paradigm (3/8)

Example: an integrator

Outputs the sum of inputs received so far

fr(x,5) = fo(X.8) = §+ X

In Lustre:

Yy = X+S ;
s =0 —>pre(y) ;

() 5/45



The Synchronous Paradigm (3/8)

Example: an integrator

Outputs the sum of inputs received so far

fr(x,5) = fo(X.8) = §+ X

In Lustre:

Y = X+S ;

s = 0 ->pre(y) : or y=x+(0->pre(y));

() 5/45



The Synchronous Paradigm (3/8)

Example: an integrator

Outputs the sum of inputs received so far

fr(x,5) = fo(X.8) = §+ X

In Lustre:
Y = X+S ; B - _
s = 0 ->pre(y) : or y=x+(0->pre(y));
step| 0| 1 | 2 | 3 ...

X x| x | Xo | X3 ...

() 5/45



The Synchronous Paradigm

The Synchronous Paradigm (3/8)
Example: an integrator

Outputs the sum of inputs received so far

fr(x,5) = fo(X.8) = §+ X

In Lustre:
Y = X+S ; B - _
s = 0 ->pre(y) : or y=x+(0->pre(y));
step| O 1 2 3
X X0 Xq X2 X3
Y Xo | Xo+X1 | Xo+X1+Xo | Xo+X1 +Xo+X3

() 5/45



The Synchronous Paradigm (4/8)

Example: a counter of events

Detect a “minute” every 60 “second”

ns:=0
In Lustre:
ns =0 -> if second then second?  second?
if pre(ns) < 59 ns=597? ns<59?
then pre(ns)+1 else 0 %ﬁnzcgel ns+-+

else pre(ns) ;
minute = (second and ns=0) ;

In Esterel

every 60 second do emit minute ;

() 6/45



The Synchronous Paradigm

The Synchronous Paradigm (5/8)

Synchronous machines

Parallel composition:
S S

X 14

() 7145



The Synchronous Paradigm (5/8)

Synchronous machines

Parallel composition:
(8,Y)=1(X,5,2)
(T.2)=g(W.T.Y)

(deterministic, provided there is
no combinational loop)

() 7145



The Synchronous Paradigm (6/8)

Parallel composition, example

every 60 second do emit minute ;

']
every 60 second do emit minute ;

second minute hour
— < count -~ count ——

() 8/45



The Synchronous Paradigm (7/8)

Parallel composition, example
ns:=0 nm:=0

second? second? minute? minute?
ns=597? ns<59? nm=597? nm<59?
ns:=0 ns—+-+ nm:=0 nm+-+
minute! hour!

second?
ns<59?
ns++

() 9/45



The Synchronous Paradigm (8/8)

Synchronous languages are well accepted as description
formalisms

o precise, formally defined
o match the way of thinking of users

O various, complementary, compatible paradigms
(imperative/data-flow, textual/graphical)

Powerful associated tools
o efficient code generation (for centralized, statically
scheduled applications)
0 precise and inexpensive modelling, no overhead in analysis
and verification
o can be used for expressing properties (observers)
Industrial environments:
Esterel Studio, Lustre-Scade, Signal-Sildex

() 10/45



. The Synchronous Paradigm

@ Synchrony and Asynchrony

. Synchronous Modelling of Asynchrony
. A case study

. Quasi-synchrony

. Translating AADL concepts

. Current work and conclusion

() 11/45



Synchrony and Asynchrony (1/3)

Synchronous languages and associated tools are
well-established for centralized, statically scheduled applications

What about more complex situations?

o Need for dynamic scheduling:
urgent sporadic events, multiple periods

o Need for distribution:
redundancy, performances, physical constraints

() 12/45



Synchrony and Asynchrony (2/3)

First remark: In real-time systems, purely asynchronous
situations are rare

Partial synchrony, or strongly constrained asynchrony: e.g.,
o known periods
o known clock drift
o quite precise WCET

() 13/45



Synchrony and Asynchrony (3/3)

Related works:

() 14/45



Synchrony and Asynchrony (3/3)

Related works:
0 extend the synchronous model
CRP [Berry-Shyamasundar-Ramesh],
Multiclock-Esterel [Berry-Sentovitch],
n-synchrony [Cohen-Duranton-Eisenbeis-Pagetti-Plateau-Pouzet],
GALS [Metropolis], [Polychrony],
Tag machines [Benveniste-Caillaud-Carloni-Sangiovanni]

() 14/45



Synchrony and Asynchrony (3/3)

Related works:

0 extend the synchronous model
CRP [Berry-Shyamasundar-Ramesh],
Multiclock-Esterel [Berry-Sentovitch],
n-synchrony [Cohen-Duranton-Eisenbeis-Pagetti-Plateau-Pouzet],
GALS [Metropolis], [Polychrony],
Tag machines [Benveniste-Caillaud-Carloni-Sangiovanni]

0 less synchronous implementations
Multi-task implementations [SYNDEX], [Caspi-Scaife],
Distributed code [Caspi-Girault],[Caspi-Salem], [Potop-Caillaud]

() 14/45



Synchrony and Asynchrony (3/3)

Related works:

0 extend the synchronous model
CRP [Berry-Shyamasundar-Ramesh],
Multiclock-Esterel [Berry-Sentovitch],
n-synchrony [Cohen-Duranton-Eisenbeis-Pagetti-Plateau-Pouzet],
GALS [Metropolis], [Polychrony],
Tag machines [Benveniste-Caillaud-Carloni-Sangiovanni]

0 less synchronous implementations
Multi-task implementations [SYNDEX], [Caspi-Scaife],
Distributed code [Caspi-Girault],[Caspi-Salem], [Potop-Caillaud]
o model asynchrony within the synchronous framework
SafeAir, SafeAir-1l projects [Baufreton et-all,
Polychrony [Le Guernic-Talpin-Le Lann], [Gamatié-Gautier],
this talk (same approach, in the ctxt of the Assert project)

() 14/45



The ASSERT Project (1/2)

European “Integrated Project” (2005-08) on model-driven
design of embbedded systems

Main application domain: aerospace applications

() 15/45



The ASSERT Project (1/2)

European “Integrated Project” (2005-08) on model-driven
design of embbedded systems

Main application domain: aerospace applications

Target Software
architecture components
(AADL) (UML, Scade, C)

( Targetcode )

() 15/45



Synchrony and Asynchrony

The ASSERT Project (2/2)

What this talk is abou

t:

Target ) Software
architecture components
(AADL) (Scade)

~N

J/

J
Automatik‘
translation

(Behavioural model)
of the architecture

L (

Scade-Lustre) )

Simulation
Verification

16/45



. The Synchronous Paradigm

. Synchrony and Asynchrony

@ Synchronous Modelling of Asynchrony
. A case study

. Quasi-synchrony

. Translating AADL concepts

. Current work and conclusion

() 17 /45



Synchronous Modelling of Asynchrony (1/5)

Need to
o prevent a component from reacting (sporadic reactions)
0 non-determinism
© model execution time

() 18/45



Synchronous Modelling of Asynchrony (2/5)

Prevent a component from reacting
0 available in all synchronous languages:
o clocks in Lustre and Signal

o activation conditions in Scade
o suspend statement in Esterel

() 19/45



Synchronous Modelling of Asynchrony

Synchronous Modelling of Asynchrony (3/5)

Activation condition in Scade Y

- \ 4

A distinguished Boolean input, say ¢, de- X
cides if the component must react. Eﬁ

[<t

() 20/45



Synchronous Modelling of Asynchrony

Synchronous Modelling of Asynchrony (3/5)

Activation condition in Scade Y

- v
A distinguished Boolean input, say ¢, de- X
cides if the component must react. Eﬁ

o when ¢ =1 the normal reaction occurs

|<:

0 20/45



Synchronous Modelling of Asynchrony

Synchronous Modelling of Asynchrony (3/5)

Activation condition in Scade Y

- v

A distinguished Boolean input, say ¢, de- X
cides if the component must react. Eﬁ
o when ¢ = 1 the normal reaction occurs

o whenc=0
o the state does not change

|<:

() 20/45



Synchronous Modelling of Asynchrony

Synchronous Modelling of Asynchrony (3/5)

Activation condition in Scade Y

- v

A distinguished Boolean input, say ¢, de- X
cides if the component must react. Eﬁ
o when ¢ = 1 the normal reaction occurs

o whenc=0
o the state does not change

|<:

o the output keeps its previous value

() 20/45



Synchronous Modelling of Asynchrony(4/5)

Non determinism
o Just by adding auxiliary inputs (oracles)
o Restriction of non-determinism:

o constraints/assumptions on oracles ensured by “assertions”
or transducer (scheduler)

() 21/45



A task in the synchronous world

—&

—

() 22/45



A task in the synchronous world

LA

() 22/45



A task in the synchronous world

—&

X

&

—

| I N I I I I Y

() 22/45



A task in the synchronous world

—&

X

&

—

| I N I I I I Y

() 22/45



A sporadic or periodic task

() 23/45



A sporadic or periodic task

L A

() 23/45



A sporadic or periodic task

() 23/45



A sporadic or periodic task

X
e
e
T
- - - - - - - - - - >

X |

() 23/45



Synchronous Modelling of Asynchrony

A sporadic or periodic task
period T

V
X
| o
—
T
- - - - - - - -

X |

() 23/45



Execution time

period T

() 24 /45



Execution time

period T

L A

() 24 /45



Execution time

period T ]
—e
—
4————M——-> 4————M——-> 4————M——->
<——n7,—> <——n7,—> <——n7,—>
I | | | I | | | I | | | I L

() 24/45



Execution time

period T ]
—e
—
4————M——-> 4————M——-> 4————M——->
<——n7,—> <——n7,—> <——n7,—>
I | | | I | | | I | | | I L

() 24/45



Execution time

o__
|period T! g

e
—e

4————M——-> 4————M——-> 4————M——->

P T T

I | | | I | | | I | | | I L

() 24/45



Synchronous Modelling of Asynchrony (5/5)

A quite general structure:

L4

[}

() 25/45



Synchronous Modelling of Asynchrony (5/5)

A quite general structure:

L4

[}

() 25/45



Synchronous Modelling of Asynchrony

Synchronous Modelling of Asynchrony (5/5)

A quite general structure:

Sched.

[}

Q

1130

- &

-

25/45



Synchronous Modelling of Asynchrony

Synchronous Modelling of Asynchrony (5/5)

A quite general structure:

0 25/45



Synchronous Modelling of Asynchrony

Synchronous Modelling of Asynchrony (5/5)

A quite general structure:

8/3—»
Q—e
Q Sched.
qu_’
gp—e|
—e p - Q e

0 25/45



A case study

. The Synchronous Paradigm

. Synchrony and Asynchrony

. Synchronous Modelling of Asynchrony
@ A case study

. Quasi-synchrony

. Translating AADL concepts

. Current work and conclusion

0 26/ 45



The PFS case study (1/5)

o Proximity Flight Safety (PFS), part of the Automatic Transfer
Vehicule (ATV), spacecraft in charge of supplying the
International Space Station (ISS) ESA, Astrium-ST

o Ensures the safety of the approach of the ATV to the ISS
(most safety critical part of the mission)

() 27/45



Collision
Avoidance
Manoeuvre

o A
Sun Pomfmg vdb
£y

When anything goes wrong, the PFS is in charge of safely
moving the ATV apart from the ISS, and to orient it towards the
sun (“Collision Avoidance Manoeuvre”, CAM)

0 28/45



The PFS case study (3/5)

The system is made of two redundant “Monitoring and Safety
Units” (MSU): one master, one backup

Each MSU:

0 detects anomalies: failures of the main computer, abnormal
state of the bus, erroneous position or speed of the ATV,
“red button” pressed from inside the ISS

o detects its own failures (master change)
0 is able to perform a CAM

() 29/45



A case study

The PFS case study (4/5)

At each instant, one of the MSU is the master. If the master

detects its own failure, it transmits its mastership to the other
MSU.

However,

o such a master change can only occur once in a mission
o master change is forbidden during a CAM

() 30/45



The PFS case study (5/5)

Distribution: Two computers (one for each MSU) running in
quasi-synchrony

Multitasking: Each MSU consists of two periodic tasks (one fast,
one slow). Each task specified in Scade

31/45



The PFS case study (5/5)

Distribution: Two computers (one for each MSU) running in
quasi-synchrony

Multitasking: Each MSU consists of two periodic tasks (one fast,
one slow). Each task specified in Scade

Fast thread Fast thread
Slow thread Slow thread
| SP1 | [ SP2 | | SP1 | [ SP2 ]

Processor 1 Processor 2

31/45



. The Synchronous Paradigm

. Synchrony and Asynchrony

. Synchronous Modelling of Asynchrony
. A case study

(8) Quasi-synchrony

. Translating AADL concepts

. Current work and conclusion

0 32/ 45



Quasi-synchrony (1/2)

[Caspi et al, FTRTFT’'00, Safecomp’01]
Several periodic processes on different computers Supposed to
run with the same clock Small clock drift, under which the
following assumption can be made:
Between two successive activations of one periodic
process, each other process is activated either 0, or 1,
or at most 2 times

| | N N | -
P, H W | | m

0 33/45



Quasi-synchrony (2/2)

In case of simple communication (e.g., by shared memory),
each process can only miss or duplicate at most one output in a
row from any other process:

() 34/45



Quasi-synchrony

Modeling quasi-synchrony (1/2)

2 processes P and Q, activated by conditions Cp, Cq

Assumption: between 2 occurrences of C; there are at most 2
occurrences of G;

Ambiguous, because of simultaneity...

Precise assumption: Each condition cannot be true alone more
than twice in a row. If a condition occurs alone twice in a row,
the other condition must follow alone

35/45



Modeling quasi-synchrony (2/2)

Non-deterministic quasi-synchronous scheduler

Qp o

Q0 o

Y 07

. Co

36/45



Quasi-synchronous scheduler ~ §#$%a/Cr.Ca

®

() 37/45



Quasi-synchronous scheduler ~ §#$%a/Cr.Ca

() 37/45



Quasi-synchronous scheduler ~ §#$%a/Cr.Ca

() 37/45



Quasi-synchrony

Quasi-synchronous scheduler ~ §#$%a/Cr.Ca

1/11 Q & 00/00

01/01 0/10

() 37/45



Quasi-synchrony

Qp,Qq/Cp.Cq

Quasi-synchronous scheduler

11/11 Q &00/00

() 37/45



Quasi-synchrony

Qp,Qq/Cp.Cq

Quasi-synchronous scheduler

11/11 Q &00/00

() 37/45



Quasi-synchrony

Qp,Qq/Cp.Cq

Quasi-synchronous scheduler

11/11 Q &00/00

() 37/45



Quasi-synchrony

Quasi-synchronous scheduler ~ §#$%a/Cr.Ca

1/11 (:i} fﬁj) 00/00

00,00

00/00 9710
A
11/10

() 37/45



Quasi-synchrony

Quasi-synchronous scheduler ~ §#$%a/Cr.Ca

11/11 Q & 00/00

01/01

00,00 00/00

00,00 00,00
=g 10/10 01

01/10 10/01
11/10 11/01

() 37/45



Translating AADL concepts

. The Synchronous Paradigm

. Synchrony and Asynchrony

. Synchronous Modelling of Asynchrony
. A case study

. Quasi-synchrony

@ Translating AADL concepts

. Current work and conclusion

() 38/45



Processes: actual clocks

Proc4 Proc,
Fast_Th Fast_Th
[
Slow_Th S P4 SPQ
||

() 39/45



Processes: actual clocks

B R B B R

Proc4 Proc,
Fast_Th Fast_Th
[
S|OW,Th S P1 SPQ
||

“Quasi-synchronous” clocks
used to count periods and deadlines

() 39/45



Threads: sharing the processor

SIO\INI,Th
||

() 40/45



Threads: sharing the processor

SIO\INI,Th
||

() 40/45



Threads: sharing the processor

|||||||||||||||||A
|||||||||||||||||v

SIO\INI,Th
||

Activity clocks, used to count execution times

() 40/45



Subprograms: sequencing

() 41/45



Translating AADL concepts

Subprograms: sequencing

1

[

41/45



Translating AADL concepts

Subprograms: sequencing

e;i% ezﬂ

() 41/45



Translating AADL concepts

Final model

QS

v

[

SCH|

SCH

I

it
||

42 /45



Applications

0 extensive simulation
(using the tool LURETTE to generate oracles automatically)
0 automatic verification

o Example of property of the PFS:
“at each instant, one and only one MSU is the master”

() 43/45



Applications

0 extensive simulation
(using the tool LURETTE to generate oracles automatically)
0 automatic verification
o Example of property of the PFS:
“at each instant, one and only one MSU is the master”
Wrong, because of asynchrony.
Right property:
“at each instant, there is at most one master”
“there are at most two clock cycles without master”

() 43/45



Current work and conclusion

. The Synchronous Paradigm

. Synchrony and Asynchrony

. Synchronous Modelling of Asynchrony
. A case study

. Quasi-synchrony

. Translating AADL concepts

@ Current work and conclusion

() 44 /45



Other works

o deterministic communication [ACSD2006]
o scheduling policies and resource management [FASE2009]

() 45/ 45



Other works

o deterministic communication [ACSD2006]
o scheduling policies and resource management [FASE2009]

Conclusion

o Gives precise semantics to AADL
o Makes it executable (early simulation/validation)
© One more non-synchronous application of synchrony

() 45/ 45



	The Synchronous Paradigm
	Synchrony and Asynchrony
	Synchronous Modelling of Asynchrony
	A case study
	Quasi-synchrony
	Translating AADL concepts
	Current work and conclusion

