
http://www.artist-embedded.org/ 



- 2 - 

Hard Real-Time Systems 
•  Embedded controllers are expected to finish their tasks 

reliably within time bounds. 
•  Task scheduling must be performed. 
•  Essential: upper bound on the execution times of all tasks 

statically known (Commonly called the Worst-Case 
Execution Time, WCET ). 

•  Deadlines are often in the order of mS and down to µS 
•  Timing Analysis provides the abstraction for Scheduling. 



- 3 - 

Deriving Run-Time Guarantees for  
Hard Real-Time Systems 

Given: 
1.  required reaction time, 
2. a software to produce the reaction,  
3. a hardware platform, on which to execute 

the software. 
Derive: a guarantee for timeliness. 



- 4 - 

What does Execution Time Depend on? 

•  the input, 

•  the initial and intermediate 
execution states of the 
platform, 

•  interferences from the 
environment – this depends 
on whether the system 
design admits it (preemptive 
scheduling, interrupts). 

Caused by 
caches, 

pipelines, 
speculation etc. 
⇒ Explosion of 

state space 

“external” interference as 
seen from analyzed task, 
see Jan’s lecture 

Architecture 

Software 

Input 

initial 
state 



- 5 - 

Architecture 

Timing Analysis 

• Sounds methods determine upper bounds 
for all execution times. 

• They have to explore a huge space  
of transition paths 
– all control-flow paths – stemming from  
possible inputs 

– all paths through the architecture –  
resulting from the potential initial   
and assumed intermediate architectural  
states - enforced by the existence of timing  
anomalies. 

Software 

Input 

initial 
state 



- 6 - 

Structure of the Talk 
1.  Timing Analysis – the Problem 
2.  Timing Analysis – a Sketch of our Approach 
3.  Results and experience 
4.  Our Approach in more details 

•  the overall approach, tool architecture 
5.  Caches (Jan Reineke) 

•  cache analysis,  
•  cache predictability,  
•  cache sensitivity, 
•  cache interference 

6.  Pipeline analysis 
7.  Bounds analysis 
8.  Timing Predictability 
9.  Predictable multi-core architectures (on the way to…) 
10. Conclusion 



- 7 - 

Timing Analysis – the Alternatives 
•  End-to-end measurement – execute or simulate 

the program 
–  a couple of times – most of industry’s “best practice”, 

but unsafe         
–  exhaustively – too costly    

•  Piecewise measurement and structured 
composition of the results – how to do it?  

•  Static analysis – safe       
  but costly to implement  

Note: we have no decidability problem, but a complexity problem! 
The architecture is finite, the input domain is, in general, finite, 
loops and recursion are bounded. 
But the search space is too large to explore it  exhaustively! 



- 8 - 

Piecewise Measurement 

A 

B 

Program snippets A and B have  
many execution times depending  

on the execution state 

1. measure A 
(many times) 

not sure to hit 
the worst case! 

2. measure B 
(many times) 

not sure to hit 
the worst case! 

3. How to combine the results? 
- add worst-case times: too pessimistic 
-  alternatives? 



- 9 - 

Another Piecewise Process 

A 

B 

Assume to know  Information  
about all potential execution  
states before A; 
analyze A in this context; 
determine how A transforms  
these states; 
analyze B in the new context. 

Result:  
more precise 
results for A  
and B; 
addition of 
times less 
pessimistic! 

Requires: knowing the transitons between execution states, 
i.e. an operational semantics including the platform. 



- 10 - 

What makes the problem hard (and 
interesting)? 

Execution time t of machine instructions i 
•  in the good old times:   

t(i) = c  (c  to be found in a table)  
•  in modern, high-performance processors: 

execution time depends  on the execution state, 
so is   t(i,s) 

•  The execution times of i  may range between  
min{t(i,s) | s ∈ S}  and  max{t(i,s) | s ∈ S}  

•  The execution state results from the execution 
history. 



- 11 - And the Variability of Execution Times 
is large! 

LOAD     r2, _a!

LOAD     r1, _b!

ADD      r3,r2,r1!

PPC 755 

x = a + b; 

In most cases, execution 
will be fast. 
So, assuming the worst case 
is safe, but very pessimistic! 



- 12 - 

Modern Hardware Features 

•  Modern processors increase (average-case) 
performance by using: Caches, Pipelines, Branch 
Prediction, Speculation 

•  These features make timing analysis difficult: 
Execution times of instructions vary widely 
–  Best case - everything goes smoothly: no cache miss, 

operands ready, needed resources free, branch correctly 
predicted 

–  Worst case - everything goes wrong: all loads miss the 
cache, resources needed are occupied, operands are not 
ready 

–  Span may be several hundred cycles 



- 13 - 

Notions in Timing Analysis 
Hard or 

impossible to 
determine 

Determine 
upper bounds 

instead  



- 14 - High-Level Requirements for 
Timing Analysis 

•  Upper bounds must be safe, i.e. not underestimated 
•  Upper bounds should be tight, i.e. not far away 

from real execution times 
•  Analogous for lower bounds 
•  Analysis effort must be tolerable. 

Later on, we look at the predictability of 
architectures: 
Designs will occupy points in a 3-dimensional 
space:   
worst-case performance, 

degree of overestimation, 
required analysis effort. 



- 15 - 

Timing Accidents and Penalties 
Timing Accident – cause for an increase 

of the execution time of an instruction 
Timing Penalty – the associated increase 
•  Types of timing accidents 

–  Cache misses 
–  Pipeline stalls 
–  Branch mispredictions 
–  Bus collisions 
– Memory refresh of DRAM 
–  TLB miss 



- 16 - 

Our Approach 

•  Static Analysis of Programs for 
their behavior on the execution 
platform 

•  computes invariants about the 
set of all potential execution 
states at all program points, 

•  the execution states result from 
the execution history, 

•  static analysis explores all 
execution histories 

semantics state: 
values of variables 

execution state: 
occupancy of  
resources 

state 



- 17 - 

Deriving Run-Time Guarantees 

•  Our method and tool derives Safety 
Properties from these invariants :  
Certain timing accidents will never happen. 
Example: At program point p, instruction 
fetch will never cause a cache miss. 

•  The more accidents excluded, the lower 
the upper bound. 

Murphy’s 
invariant 

Fastest   Variance of execution times  Slowest 



- 18 - 

Overall Approach: Natural Modularization 
1.  Control-Flow Analysis 

•  determines infeasible paths, 
•  computes loop bounds, 
•  missing information as annotation by user 

2.  Micro-architecture Analysis:  
•  Uses static program analysis 
•  Excludes as many Timing Accidents as possible 
•  Determines upper bounds for basic blocks 

3.  Global-Bounds Analysis 
•  Maps control flow to integer linear program 
•  Determines upper bound for the whole program 

and an associated path 



- 19 - 

Tool Architecture 

Abstract Interpretations 

Abstract Interpretation Integer Linear 
Programming 

combined cache  
and pipeline  

analysis 

determines 
enclosing intervals 

for the values in 
registers and local 

variables 

determines loop 
bounds determines 

infeasible 
paths 

derives invariants about 
architectural execution states, 

computes bounds on execution 
times of basic blocks 

determines a worst-
case path and an 

upper bound 



- 20 - 

Semantics for Timing Analysis 

•  Abstract Interpretation uses an abstraction of 
the semantics of the language. 

•  Timing Analysis:  
–  Analyzes executables; source programs don’t talk about 

the machine, machine cycles, etc. 
–  We need concrete semantics of the Instruction Set 

Architecture (ISA), more precisely, one semantics for 
each realization (processor, even fabrication) of the 
ISA. 

–  The abstract semantics must contain an abstract 
architecture model that is conservative with respect to 
the timing behavior. 



- 21 - 

The Architectural Abstraction inside 
the Timing Analyzer 

Timing analyzer 

Architectural abstractions 

Cache 
Abstraction 

Pipeline  
Abstraction 

Value  
Analysis,  
Control-Flow 
Analysis, 
Loop-Bound 
Analysis 



- 22 - 

AbsInt‘s WCET Analyzer  aiT  
IST Project DAEDALUS final 

review report:  
"The AbsInt tool is probably the 
best of its kind in the world and it  
is justified to consider this result  
as a breakthrough.” 

Several time-critical subsystems of the Airbus A380  
have been certified using aiT; 
aiT is the only validated tool for these applications. 



- 23 - 

Tremendous Progress 
during the past 12 Years 

1995 2002 2005 

ov
er

-e
st

im
at

io
n 

20-30% 
15% 

30-50% 

4 

25 

60 

200 

ca
ch

e-
m

is
s p

en
al

ty
 

Lim et al. Thesing et al. Souyris et al. 

The explosion of penalties has been  compensated  
by the improvement of the analyses! 

10% 

25% 



- 24 - 

Everything You (n)ever Wanted to Know 
about Caches 

Jan Reineke 



- 25 - 

Pipelines 

Ideal Case: 1 Instruction per Cycle 

Fetch 
Decode 

Execute 

WB 

Fetch 
Decode 

Execute 

WB 

Inst 1 Inst 2 Inst 3 Inst 4 

Fetch 
Decode 

Execute 
WB 

Fetch 
Decode 

Execute 

WB 

Fetch 
Decode 

Execute 

WB 



- 26 - 

CPU as a (Concrete) State Machine 

•  Processor (pipeline, cache, memory, inputs)  
viewed as a big  state machine,  
performing transitions every clock cycle 

•  Starting in an initial state for an 
instruction,  
transitions are performed,  
until a final state is reached: 
–  End state: instruction has left the pipeline 
– # transitions: execution time of instruction 



- 27 - 

Pipeline Analysis 

•  simulates the concrete pipeline on 
abstract states 

•  counts the number of steps until an 
instruction retires 

•  non-determinism results from 
abstraction – more non-determinism 
from “stronger” abstractions 

•  timing anomalies require exhaustive 
exploration of paths. 

•  We didn’t find nice abstractions as 
we did for the caches ⇒ large search 
space 



- 28 - 

A Concrete Pipeline Executing a Basic Block 

function exec (b : basic block, s : concrete pipeline state) 
t: trace 

interprets instruction stream of b  starting in state  s 
producing trace t. 

Successor basic block is interpreted starting in initial 
state  last(t) 

length(t) gives number of cycles 



- 29 - 

An Abstract Pipeline Executing a Basic Block 

function exec (b : basic block, s : abstract pipeline state) 
t: trace 

interprets instruction stream of  b  (annotated 
with cache information) starting in state  s 
producing trace t 

length(t)  gives number of cycles 



- 30 - 

What is different? 

•  Abstract states may lack information, e.g. about cache 
contents. 

•  Traces may be longer (but never shorter). 
•  Starting state for successor basic block?  

In particular, if there are several predecessor blocks. 

s2 s1 
s? 

Alternatives: 
•  sets of states 
•  combine by least upper bound (join), 
so far none found that  

•  preserves information and 
•  has a compact representation. 



- 31 - 

Non-Locality of Local Contributions 

•  Interference between processor components 
produces Timing Anomalies:  
–  Assuming local best case leads to higher overall 

execution time. 
–  Assuming local worst case leads to shorter overall 

execution time 
Ex.: Cache miss in the context of branch prediction 

•  Treating components in isolation may be unsafe 
•  Implicit assumptions are not always correct: 

–  Cache miss is not always the worst case! 
–  The empty cache is not always the worst-case 

start! 



- 32 - 

An Abstract Pipeline Executing a Basic Block 
- processor with timing anomalies - 

function analyze (b : basic block, S : analysis state) T: set 
of trace 

Analysis states = 2PS x CS   
PS = set of abstract pipeline states 
CS = set of abstract cache states 

interprets instruction stream of b (annotated with cache 
information) starting in state S producing set of traces 
T 

max(length(T)) - upper bound for execution time 
last(T) - set of initial states for successor block 
Union for blocks with several predecessors.  

S2 S1 S3 =S1 ∪S2 



- 33 - 

Integrated Analysis: Overall Picture 

Basic Block 

s1 

s10 

s2 s3 

s11 s12 

s1 

s13 

Fixed point iteration over Basic Blocks (in 
context)  {s1, s2, s3} abstract state 

move.1 (A0,D0),D1 

Cyclewise evolution of  processor model 
for instruction 

s1            s2        s3 



- 34 - 

Classification of Pipelined Architectures 

•  Fully timing compositional architectures: 
–  no timing anomalies. 
–  analysis can safely follow local worst-case paths only,  
–  example: ARM7. 

•  Compositional architectures with constant-bounded 
effects:  
–  exhibit timing anomalies, but no domino effects, 
–  example: Infineon TriCore 

•   Non-compositional architectures:  
–  exhibit domino effects and timing anomalies. 
–  timing analysis always has to follow all paths, 
–  example: PowerPC 755 



- 35 - 

•  Execution time of a program = 
      ∑    Exec_Time(b) x Exec_Count(b) 

•  ILP solver maximizes this function to determine 
the WCET 

•  Program structure described by linear 
constraints 
–  automatically created from CFG structure 
–  user provided loop/recursion bounds 
–  arbitrary additional linear constraints to exclude 

infeasible paths 

Basic_Block b  

Path Analysis  
by Integer Linear Programming (ILP) 



- 36 - 

if  a  then  
    b 
elseif  c  then 
    d 
else 
    e 
endif 
f 

a 

b 
c 

d 

f 

e 

10t 

4t 

3t 

2t 

5t 

6t 

max: 4 xa + 10 xb + 3 xc + 
          2 xd + 6 xe   + 5 xf 
where  xa  =  xb  +  xc 

 xc  =  xd  +  xe 
 xf   =  xb  +  xd  +  xe 
 xa  =  1 

Value of objective function: 19 
xa  1 
xb  1 
xc  0 
xd  0 
xe  0 
xf  1 

Example (simplified constraints) 



- 37 - 

Structure of the Talk 
1.  Timing Analysis – the Problem 
2. Timing Analysis – a Sketch of our Approach 
3. Results and experience 
4. Our Approach in more details 

•  the overall approach, tool architecture 
5. Caches (Jan Reineke) 

•  cache analysis,  
•  cache predictability,  
•  cache sensitivity, 
•  cache interference 

6.  Pipeline analysis 
7. Bounds Analysis 
8.  Predictable multi-core architectures (on the way to…) 
9. Conclusion 



- 38 - 

Timing Predictability 

Experience has shown that the precision of results depend 
on system characteristics  

•  of the underlying hardware platform and  
•  of the software layers. 
•  We will concentrate on the influence of the HW 

architecture on the predictability. 
Cache predictability (see Jan’s talk) argues over all memory-

access sequences, is independent of the software to 
analyze.  

Can we influence the set of access sequences to caches or, 
in general, to shared resources? 
Design issue: reduce the set of possible access sequences! 



- 39 - 

Making Life Easier 

Goal: Reconcile (average-case) performance with 
(worst-case) predictability. 

Simplify the semantics, more precisely the 
architecture, if it is too complex:  

•  hard to provide sound timing analyses for ever 
more complex architectures, 

•  they are optimized for the wrong target, 
anyway. 

Scalability of analyses and precision of the results 
are often correlated. 



- 40 - 

Objectives of PREDATOR 

Identify good points in the 3-dimensional space of 
•  performance (in the worst case), 
•  efficiency and precision of verification methods. 
Develop design methods for timing-predictable and 

performant systems 



- 41 - 

Processor Features of the MPC 7448 
(just to show how bad things are getting) 

•  Single e600 core, 
600MHz-1,7GHz core clock 

•  32 KB L1 data and instruction 
caches 

•  1 MB unified L2 cache with ECC 
•  Up to 12 instructions in 

instruction queue 
•  Up to 16 instructions in parallel 

execution 
•  7 stage pipeline 
•  3 issue queues, GPR, FPR, 

AltiVec 
•  11 independent execution units 



- 42 - Processor Features (cont.) 
•  Branch Processing Unit 

–  Static and dynamic branch prediction 
–  Up to 3 outstanding speculative branches 
–  Branch folding during fetching 

•  4 Integer Units 
–  3 identical simple units (IU1s), 1 for complex operations (IU2) 

•  1 Floating Point Unit with 5 stages 
•  4 Vector Units 
•  1 Load Store Unit with 3 stages 

–  Supports hits under misses 
–  5 entry L1 load miss queue 
–  5 entry outstanding store queue 
–  Data forwarding from outstanding stores to dependent loads 

•  Rename buffers (16 GPR/16 FPR/16 VR) 
•  16 entry Completion Queue 

–  Out-of-order execution but In-order completion 



- 43 - 

Challenges and Predictability 
•  Speculative Execution 

– Up to 3 level of speculation due to unknown branch 
prediction 

•  Cache Prediction 
– Different pipeline paths for L1 cache hits/misses 
– Hits under misses 
–  PLRU cache replacement policy for L1 caches 

•  Arbitration between different functional units 
–  Instructions have different execution times on IU1 

and IU2 
•  Connection to the Memory Subsystem 

– Up to 8 parallel accesses on MPX bus 
•  Several clock domains 

–  L2 cache controller clocked with half core clock 
– Memory subsystem clocked with 100 – 200 MHz 



- 44 - 

Architectural Complexity implies 
Analysis Complexity 

Every hardware component whose state has an 
influence on the timing behavior 

•  must be conservatively modeled,  
•  may contribute a multiplicative factor to the 

size of the search space 
•  Exception: Caches  

–  some have good abstractions providing for highly 
precise analyses (LRU), cf. Diss. of J. Reineke 

–  some have abstractions with compact 
representations, but not so precise analyses 



- 45 - 

The Predictability Notion 
•  Hypothesis: Predictability = Analyzability 
•  Analyzability means  

–  efficiently analyzable with 
–  precise results, i.e. small overestimation 

•  How does this match the cache-predictability 
notion? 
The cache-predictability metrics  
–  give bounds on what can be found out, 
–  correlate with the existence of compact abstract 

domains supporting efficient analyses.  

Further dimension (beyond precision and efficiency): 
Worst-case performance – should not suffer too much. 
Yet another dimension: Cost 



- 46 - 

The Main Culprit: 
 Interference on Shared Resources 

•  They come in many flavors: 
–  instructions interfere on the caches, 
–  bus masters interfere on the bus, 
–  several threads interfere on shared caches. 

•  some directly cause variability of execution times, 
e.g. different bus access times in case of collision, 

•  some allow for different interleavings of control 
or architectural flow resulting in different 
execution states and subsequently different 
timings. 
NB: The problem is not interference changing the semantics,  
but interference leading to different timing behaviors! 



- 47 - 

Analysis of the Interference on Caches 

•  Out-of-order processor executes an instruction sequence ⇒  
–  several different memory access sequences 
–  with different intermediate and final cache contents and  
–  different execution times. 

•  Preemptive scheduling ⇒  
–  many different interleavings of preempted and preempting tasks ⇒  
–  uncertainty about cache contents ⇒ large overestimation. 

•  Multithreading with shared caches ⇒  
–  many different interleavings, 
–  larger search space, 
–  less precision. 



- 48 - 

Taking Constructive Influence 
- the PROMPT Approach - 

Making applications running on multi-core / multi-
processor systems analyzable  

•  Remember the metrics for Cache-Predictability:  
independent of the software to analyze, defined 
over all memory-access sequences. 

•  Monotonicity: less access sequences ⇒ better 
values under these metrics. 

•  In analogy, reduced interference on shared 
resources ⇒ less interleavings ⇒  
–  smaller analysis effort, 
–  higher precision. 

Multi-core implementations require mapping  
applications to cores – one point of attack. 



- 49 - 

Restriction to Embedded System in the 
Avionics and Automotive Domains 

•  Goal is not the general purpose multi-core 
architecture with good predictability 



- 50 - 

Traditional System Design Process 

Design of execution 
platform 

Software 
development 

Timing 
Analysis 

Schedulability 
Analysis 

One application 
as a set of tasks 

Yes No 



- 51 - System Design Process with Integration of 
Applications 

Design of distributed 
execution platform 

Software 
development 

Timing 
Analysis 

Integration: 
Mapping and 

Schedulability 

Several applications 
as sets of sets of tasks 

Yes No 

Software 
development Software 

development 

Timing 
Analysis Timing 

Analysis 



- 52 - 

Application Domains I 
•  Architectures for safety- and time-critical 

avionics and automotive systems 
•  system characteristics:  

–  combination of control loops and finite-state control 
–  each control loop fully contained in one application 
–  little shared code 
–  global (finite) state partly shared between 

applications; 
–  state transitions influence control parameters, 
–  control loops trigger state transitions 
–  reading from and writing to shared state happens only 

at the beginning and at the end of task activations 
–  some applications require high performance, but share 

little with the control applications 



- 53 - 

Application Domains II 

•  Similar integration trends, IMA and AUTOSAR, 
integrating applications on powerful platforms 
instead of 1-application-per-platform/ECU 

•  More complex development process – Mapping a 
set of applications to nodes of a platform. 

•  Goal is Composability: 
timing behavior of one task is independent of that 
of the other tasks integrated on the same 
platform. 
–  IMA: incremental qualification, i.e. modification of one 

application integrated with a set of other applications 
only requires re-certification of the modified 
component. 



- 54 - 

IMA and AUTOSAR - New safety problems 

•  IMA  
–  ensures logical non-interference by temporal 

and spatial partitioning, 
–  but no consideration of resource interference, 
⇒ no incremental qualification! 

–  resource interference must be avoided to 
achieve predictability 

•  AUTOSAR 
–  composability only achievable on predictable 

platforms 



- 55 - 

Observations II 

Performance of many control computers is dominated by 
the performance of the memory subsystem 

•  holds for many safety-critical avionics applications, 
•  many automotive applications are executed out of 

FLASH memory, limiting performance. 
Consequences: 
•  extremely complex pipelines, e.g. out-of-order, highly 

parallel, speculating, essentially wait! 
•  pipeline modeling is the most complex task in the 

construction of an instance of aiT! 
•  adding more cores speeds up waiting! 



- 56 - 

Dealing with Shared Resources 

Alternatives: 
•  Avoiding them, 
•  Bounding their effects on timing 

variability 



- 57 - 

The PRET Architecture (Edwards/Lee et al.) 

Characteristics: 
•  software-managed scratchpad memories – no caches! 
•  thread-interleaved pipelines with no bypassing –  
  predictable timing of instruction execution 
•  explicit timing control at the ISA level - deadline instruction 
•  time-triggered communication with global time synchronization 
•  high-level languages with explicit timing 

Unclear: 
•  memory management 
•  which performance loss 



- 58 - 

Character of PRET 

PRET will have 
•  overestimation 0 – due to 

predictable/repeatable 
timing 

•  small analysis effort – due to 
local determinism 

•  (I guess) bad worst-case 
performance 



- 59 - 

CoMPSoC (NXP) 

•  templates for predictable multi-
processor-on-chip architectures 

(copyright NXP) 



- 60 - 

The PROMPT Principle: 
Architecture Follows Application 

Starting with a generic multi-node architecture,  
the PROMPT architecture, 
•  parametric in the ISAs, the hierarchy of “nodes”, 

the memory hierarchies, the interconnect, etc. 
•  nodes may be  

–  atomic processing units with their private resources or  
–  if performance requires with shared resources, 

•  nodes on each hierarchy level should be 
predictable 

•  we start with predictable cores, i.e., fully 
compositional architectures 



- 61 - 

The PROMPT Design Process 

The generic PROMPT architecture is 
instantiated for a given set of 
applications with their resource 
requirements 

The design process works in multiple phases 
1.  hierarchical privatization 
2.  sharing of lonely resources 
3.  controlled socialization 



- 62 - 

Principles for the PROMPT 
Architecture and Design Process 

•  No shared resources where not needed 
for performance, 

•  Harmonious integration of applications: 
not introducing interferences on shared 
resources not existing in the applications. 



- 63 - 

The PROMPT System Design Process 
Generic PROMPT 
architecture 

I 
N 
S 
T 
A 
N 
T 
I 
A 
T 
I 
O 
N 

Core Design 

Implement 
Timing Analysis 

Derivation of 
Timing Guarantees 

Timing Analysis 

Software development 

Sets of applications 
as sets of set of tasks 

Multi-core Design 

Analysis of  
Applications 

 

  



- 64 - 

Steps of the Design Process 

1.  Hierarchical privatization 
–  decomposition of the set of applications according to the 

sharing relation on the global state 
–  allocation of private resources for non-shared code and state 
–  allocation of the shared global state to non-cached memory, 

e.g. scratchpad, 
–  sound (and precise) determination of delays for accesses to 

the shared global state 
2.  Sharing of lonely resources – seldom accessed 

resources, e.g. I/O devices 
3.  Controlled socialization 

•  introduction of sharing to reduce costs 
•  controlling loss of predictability 



- 65 - 

Sharing of Lonely Resources 

•  Costly lonely resources will be shared. 
•  Accesses rate is low compared to CPU and 

memory bandwidth. 
•  The access delay contributes little to the 

overall execution time because accesses 
happen infrequently. 



- 66 - 

Dealing with Shared Resources 
Shared resources may introduce cyclic 

dependences between threads/tasks: 
T1 

T2 

req 

req req 

req 

How to deal with the cycle? 
•  analyze it and determine a TDMA slot assignment, 
•  abstract the resource consumption of the threads to    
bound functions and determine bounds on the delays, 
•  cut it by an arbitration protocol with guaranteed delay 
bounds 



- 67 - 

TDMA Protocol 

Determine a TDMA access 
protocol, cf. J. Rosen et al. 
2007 

1.  Nested fixed point iterations: 
–   inner loop: WCET analysis, 

assuming access times, 
–  outer loop: determining access 

times increasing WCET bounds 

2.  Derivation of a slot assignment 
for the TDMA protocol 

WCET 

access delays 

Promising because of the reading/writing bursts at the begin 
and end of tasks. 



- 68 - 

Conclusions 
•  The determination of safe and precise upper 

bounds on execution times by static program 
analysis  and Integer Linear Programming 
essentially solves the problem.  
Ongoing work: 
–  semi-automatic derivation of abstract processor 

models 
–  extension to multicore platforms 

•  Precision greatly depends on predictability 
properties of the system 
–  notion needs further clarification, criteria to be used 

in design 



- 69 - 

PROMPT Design Principles  
for Predictable Systems 

•  reduce interference on shared resources in 
architecture design 

•  avoid introduction of interferences in mapping 
application to target architecture 

Applied to Predictable Multi-Core Systems 
•  Private resources for non-shared components of 

applications 
•  Deterministic regime for the access to shared 

resources 



- 70 - 

Some Relevant Publications from my Group 
•  C. Ferdinand et al.: Cache Behavior Prediction by Abstract Interpretation. 

Science of Computer Programming 35(2): 163-189 (1999) 
•  C. Ferdinand et al.: Reliable and Precise WCET Determination of a Real-Life 

Processor, EMSOFT 2001  
•  R. Heckmann et al.: The Influence of Processor Architecture on the Design and 

the Results of WCET Tools, IEEE Proc. on Real-Time Systems, July 2003 
•  St. Thesing et al.: An Abstract Interpretation-based Timing Validation of Hard 

Real-Time Avionics Software, IPDS 2003 
•  L. Thiele, R. Wilhelm: Design for Timing Predictability,  Real-Time Systems, Dec. 

2004 
•  R. Wilhelm: Determination of Execution Time Bounds, Embedded Systems 

Handbook, CRC Press, 2005 
•  St. Thesing: Modeling a System Controller for Timing Analysis, EMSOFT 2006 
•  J. Reineke et al.: Predictability of Cache Replacement Policies,  Real-Time 

Systems, Springer, 2007 
•  R. Wilhelm et al.:The Determination of Worst-Case Execution Times - Overview 

of the Methods and Survey of Tools. ACM Transactions on Embedded Computing 
Systems (TECS) 7(3), 2008.  

•  R.Wilhelm et al.: Memory Hierarchies, Pipelines, and Buses for Future 
Architectures in Time-critical Embedded Systems,  IEEE TCAD, July 2009 

•  R. Wilhelm et al.: Designing Predictable Multicore Architectures for Avionics 
and Automotive Systems, RePP Workshop, Grenoble, Oct. 2009 



- 71 - 

Some other Publications dealing with 
Predictability 

•  R. Pellizzoni, M. Caccamo: Toward the Predictable Integration of Real-Time 
COTS Based Systems. RTSS 2007: 73-82 

•  J. Rosen, A. Andrei, P. Eles, and Z. Peng: 
Bus access optimization for predictable implementation of real-time applications 
on multiprocessor systems-on-chip, RTSS 2007 

•  B. Lickly, I. Liu, S. Kim, H. D. Patel, S. A. Edwards and E. A. Lee: Predictable 
Programming on a Precision Timed Architecture, CASES 2008 

•  M. Schoeberl, A Java processor architecture for embedded real-time systems, 
Journal of Systems Architecture, 54/1--2:265--286, 2008 

•  M. Paolieri et al.: Hardware Support for WCET Analysis of Hard Real-Time 
Multicore Systems, ISCA 2009 

•  A. Hansson et al.: CompSoC: A Template for Composable and Predictable Multi-
Processor System on Chips, ACM Trans. Des. Autom. Electr. Systems, 2009 


