## artirt

## ARTIST Summer School in Europe 2009 Autrans (near Grenoble), France September 7-11, 2009

# Techniques for multiprocessor real-time scheduling

Invited Speaker: Sanjoy Baruah
The University of North Carolina



## Techniques for multiprocessor real-time scheduling

Sanjoy Baruah

The University of North Carolina at Chapel Hill

Supported by the US National Science Foundation, the US Army Research Office, the US Air Force Office of Scientific Research, Northrop Grumman Corp., and Intel Corp.

## Techniques for multiprocessor real-time scheduling

Why multiprocessors?

- provide greater computing capacity, at lower cost
- many real-time applications are inherently parallelizable
- uniprocessor systems are becoming obsolete

-(multicore CPU's)

Goal: A theory of multiprocessor real-time scheduling

# Techniques for multiprocessor Deadline First heduling

## Earliest

Why multiprocessors?

- provide greater computing capacity, at lower cost
- many real-time applications are inherently parallelizable
- uniprocessor systems are becoming obsolete

-(multicore CPU's)

Goal: A theory of multiprocessor real-time scheduling

#### Why Earliest Deadline First (EDF)?

- more widely studied on multiprocessors
- analysis techniques (appear to) generalize

# Techniques for multiprocessor Earliest Deadline Firstcheduling

### Overview of presentation

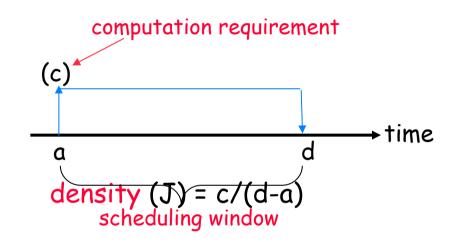
- \* Task and machine model
  - · Sporadic tasks; partitioned and global scheduling
- \* The demand bound function (DBF)
- \* Overview of theoretical results
  - Algorithms and lower bounds
- \* Pragmatic considerations

#### Task model

#### Jobs executing on m > 1 identical processors

Job J = (a, c, d)

- Preemptable
- Not parallelizable



#### Recurring tasks or processes

- finite (a priori known) number of them
- generate the jobs
- represent code within an infinite loop
- different tasks are assumed independent

## The sporadic task model

#### Task $\tau_i = (C_i, D_i, T_i)$

- worst-case execution requirement
- relative deadline
- minimum inter-arrival separation ("period")

#### Jobs

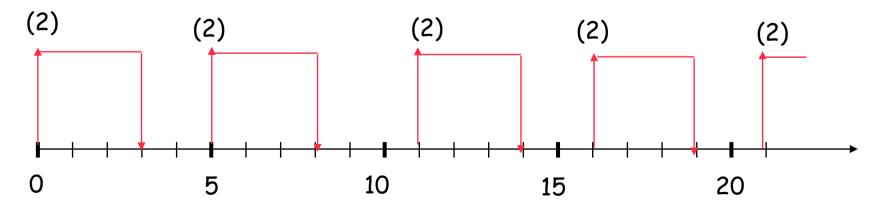
- first job arrives at any t
- consecutive arrivals ≥ T
- each job has execution r
- each job has its deadline

#### NOTATION

- 
$$\tau = \{\tau_1, \tau_2, ..., \tau_n\};$$
( $D_i \le T_i$  for all i)

- 
$$\operatorname{dens}_{\max}(\tau) = \max_{\text{all } \tau_i \text{ in } \tau} \left( C_i / D_i \right)$$

#### Example: $\tau_i = (2, 3, 5)$



## Global and partitioned scheduling

#### 1.PARTITIONED

- Each task <u>assigned</u> to a processor

#### 2. GLOBAL

- A job may execute on any processor
- A preempted job may resume on any processor

Global schedulability dominates partitioned schedulability

Global scheduling may have higher run-time overhead

 $DBF(\tau_i, t) = maximum cumulative execution requirement of jobs of sporadic task <math>\tau_i$  in any interval of length t

$$load(\tau) = max_{all t} \left( \sum_{\tau_i \in \tau} DBF(\tau_i, t) / t \right) DBF(\tau_i, t) = c_i \times max \left( 0, \left\lfloor \frac{t - D_i}{T_i} \right\rfloor + 1 \right)$$

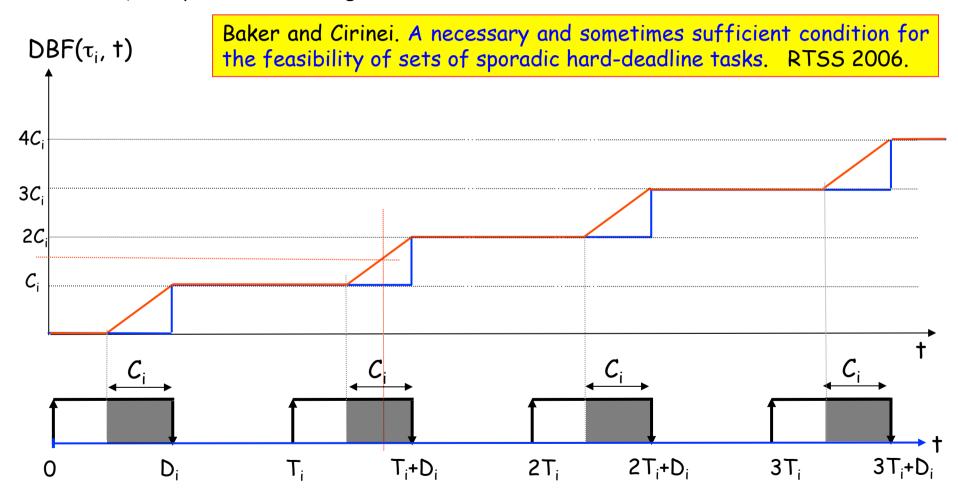
RESULT: Any spandic task system τ is EDE schedulable on a preemptive Maximum total execution requirement by jobs of sporadic task system τ over any time-interval of length t

RÉSULT: Any L&L task system  $\tau$  is RM-schedulable on a preemptive uniprocessor if load( $\tau$ )  $\leq$  ln<sub>e</sub> 2

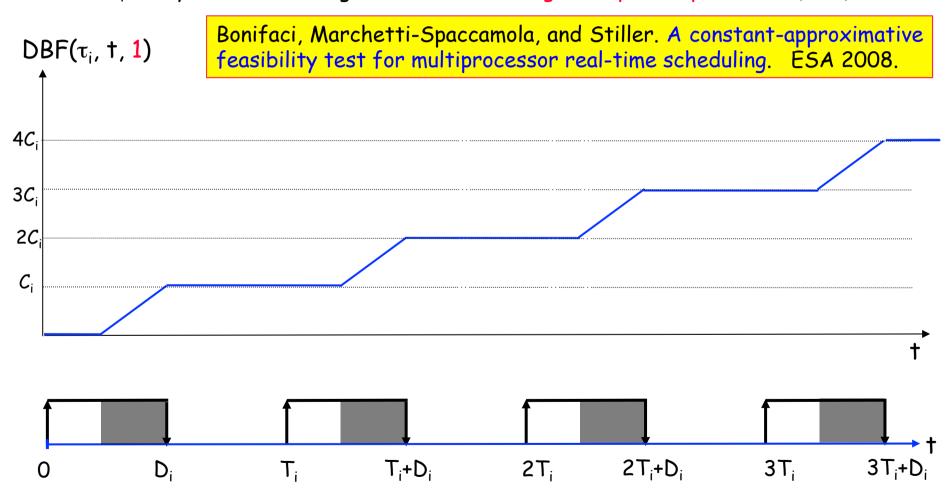
RESULT: Any sporadic task system  $\tau$  is DM-schedulable on a preemptive uniprocessor if load( $\tau$ )  $\leq 0.567...$ 

 $\Omega$ , the solution to the equation  $x = \ln_e(1/x)$ 

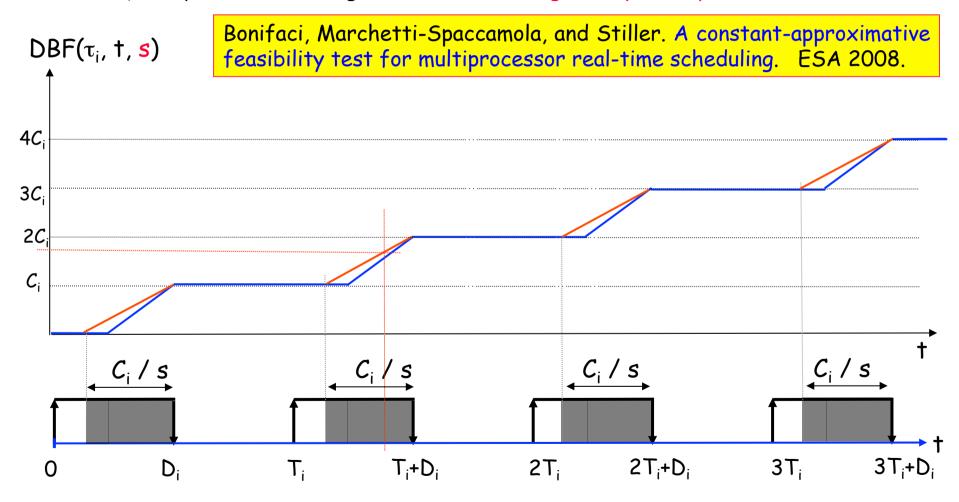
 $DBF(\tau_i, t) = maximum cumulative execution requirement of jobs of sporadic task <math>\tau_i$  in any interval of length t



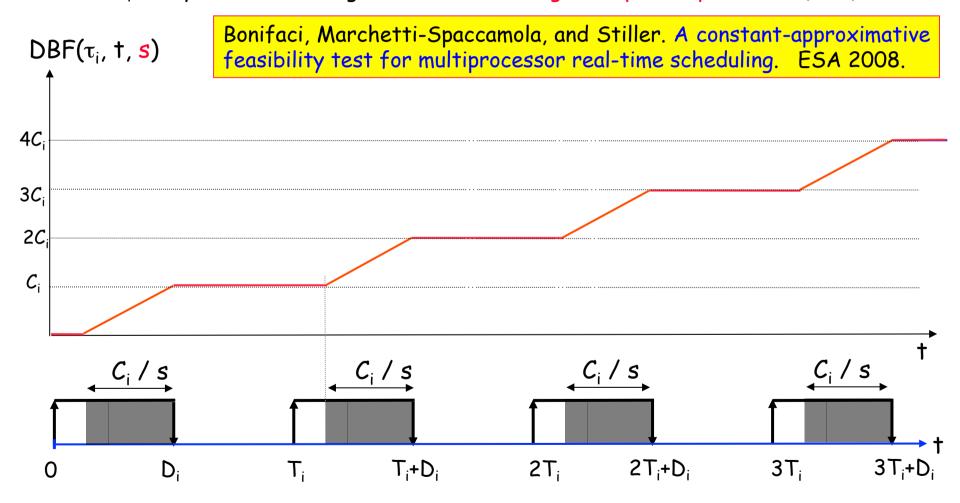
DBF( $\tau_i$ , t, s) = maximum cumulative execution requirement of jobs of sporadic task  $\tau_i$  in any interval of length t, when executing on a speed-s processor (s \le 1)



DBF( $\tau_i$ , t, s) = maximum cumulative execution requirement of jobs of sporadic task  $\tau_i$  in any interval of length t, when executing on a speed-s processor (s \le 1)



DBF( $\tau_i$ , t, s) = maximum cumulative execution requirement of jobs of sporadic task  $\tau_i$  in any interval of length t, when executing on a speed-s processor (s \le 1)



DBF( $\tau_i$ , t, s) = maximum cumulative execution requirement of jobs of sporadic task  $\tau_i$  in any interval of length t, when executing on a speed-s processor (s \le 1)

$$load(\tau,s) = max_{all t} \left( \sum_{\tau_i \in \tau} DBF(\tau_i, t, s) / t \right)$$

RESULT: A <u>necessary</u> condition for  $\tau$  to be [EDF-]schedulable on m speed-s processors: load( $\tau$ ,s)  $\leq$  m  $\leq$ 

#### GLOBAL EDF SCHEDULING

On m > 1 processors

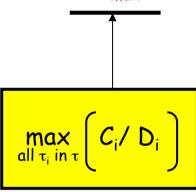
At each instant, schedule m active jobs with the earliest deadlines

- (fewer active jobs than processors: idle remaining processors)

## A global EDF schedulability test

**RESULT**: A sufficient condition for  $\tau$  to be EDF-schedulable on

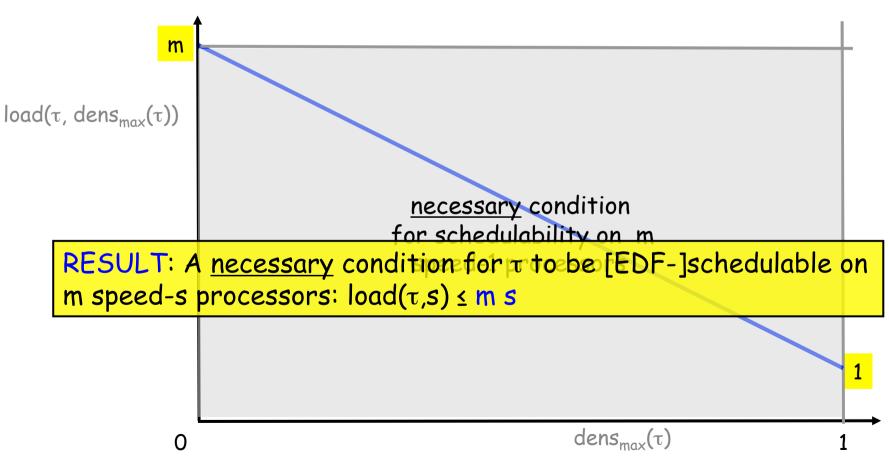
m speed-1 processors:  $load(\tau, dens_{max}(\tau)) \leq [m - (m-1) \times dens_{max}(\tau)]$ 



## A global EDF schedulability test

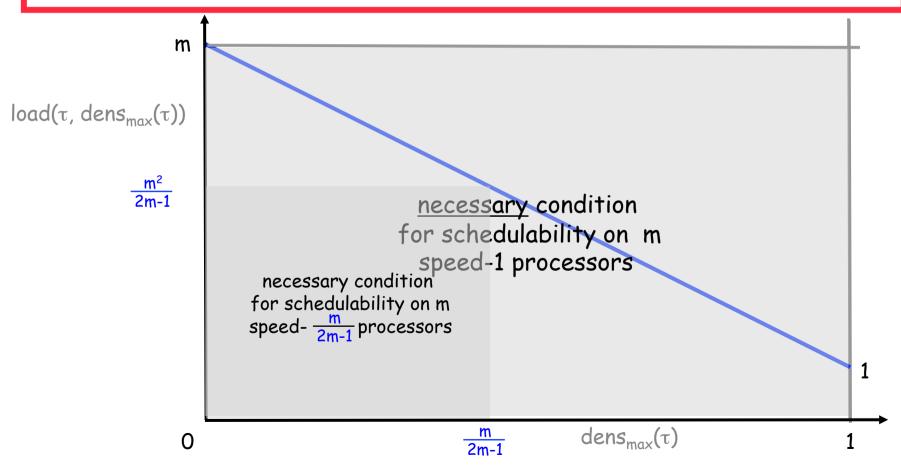
RESULT: A sufficient condition for  $\tau$  to be EDF-schedulable on

m speed-1 processors:  $load(\tau, dens_{max}(\tau)) \leq [m - (m-1) \times dens_{max}(\tau)]$ 



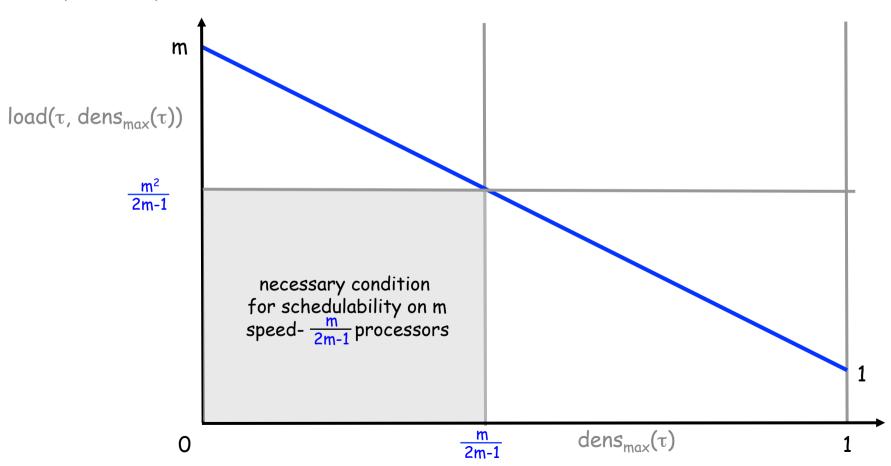
## A global EDF schedulability test

Any sporadic task system schedulable upon m processors is global EDF schedulable on m processors that are each (2 - 1/m) times as fast



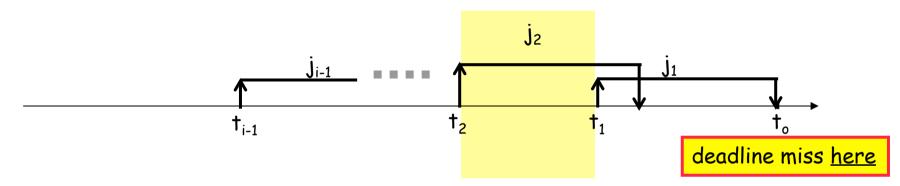
RESULT: A sufficient condition for  $\tau$  to be EDF-schedulable on

m speed-1 processors:  $load(\tau, dens_{max}(\tau)) \le [m - (m-1) \times dens_{max}(\tau)]$ 



RESULT: A sufficient condition for  $\tau$  to be EDF-schedulable on

m speed-1 processors:  $load(\tau, dens_{max}(\tau)) \le [m - (m-1) \times dens_{max}(\tau)]$ 



#### Job j<sub>2</sub>:

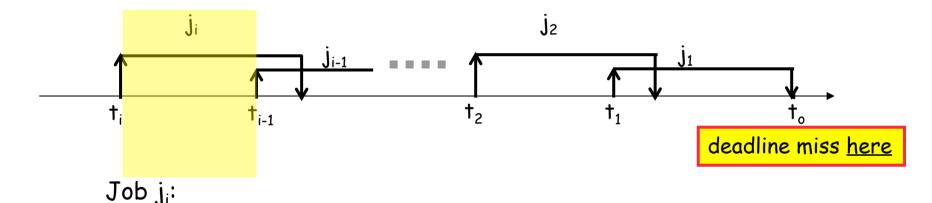
- arrives at t<sub>2</sub> < t<sub>1</sub>
- is active at t<sub>1</sub>
- has executed for  $\langle (t_1 t_2) \times dens_{max}(\tau)$  by  $t_1$

```
⇒All m procs are busy for > (t_1 - t_2) \times (1 - \text{dens}_{\text{max}}(\tau)) over [t_2, t_1)

\equiv Total idled capacity over [t_2, t_1) \cdot (\text{m-1}) \times (t_1 - t_2) \times \text{dens}_{\text{max}}(\tau)
```

RESULT: A sufficient condition for  $\tau$  to be EDF-schedulable on

m speed-1 processors:  $load(\tau, dens_{max}(\tau)) \le [m - (m-1) \times dens_{max}(\tau)]$ 

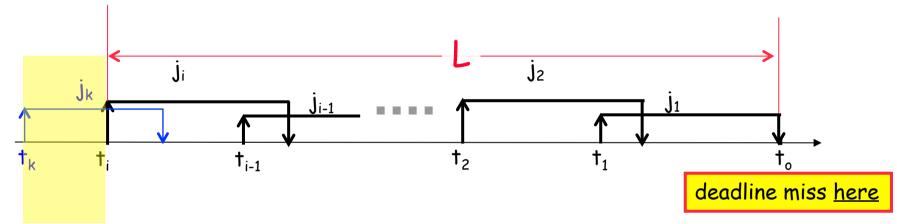


- arrives at t<sub>i</sub> < t<sub>i-1</sub>
- is active at t<sub>i-1</sub>
- has executed for  $\langle (t_{i-1} t_i) \times dens_{max}(\tau)$  by  $t_{i-1}$

 $\Rightarrow$  Total idled capacity over  $[t_i, t_{i-1}] < (m-1) \times (t_{i-1} - t_i) \times dens_{max}(\tau)$ 

RESULT: A sufficient condition for  $\tau$  to be EDF-schedulable on

m speed-1 processors:  $load(\tau, dens_{max}(\tau)) \leq [m - (m-1) \times dens_{max}(\tau)]$ 

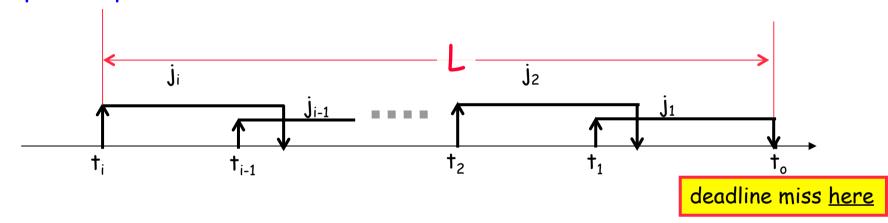


Repeat until no further such jobs

- Any job arriving at  $t_k < t_i$  has executed for at least  $(t_i - t_k) \times dens_{max}(\tau)$  over  $[t_k, t_i)$ 

RESULT: A sufficient condition for  $\tau$  to be EDF-schedulable on

m speed-1 processors:  $load(\tau, dens_{max}(\tau)) \leq [m - (m-1) \times dens_{max}(\tau)]$ 



#### Repeat until no further such jobs

```
1. total exec. requirement over [t_i, t_o) is \leq dbf(\tau, L, dens_{max}(\tau))

2. total work done over [t_i, t_o) is = mL - total idle time over [t_i, t_o)

\geq mL - (m-1) \times L \times dens_{max}(\tau)

dbf(\tau, L, dens_{max}(\tau)) > [m - (m-1) \times dens_{max}(\tau)] \times L
```

load(
$$\tau$$
, dens<sub>max</sub>( $\tau$ )) > [m - (m-1) x dens<sub>max</sub>( $\tau$ )]

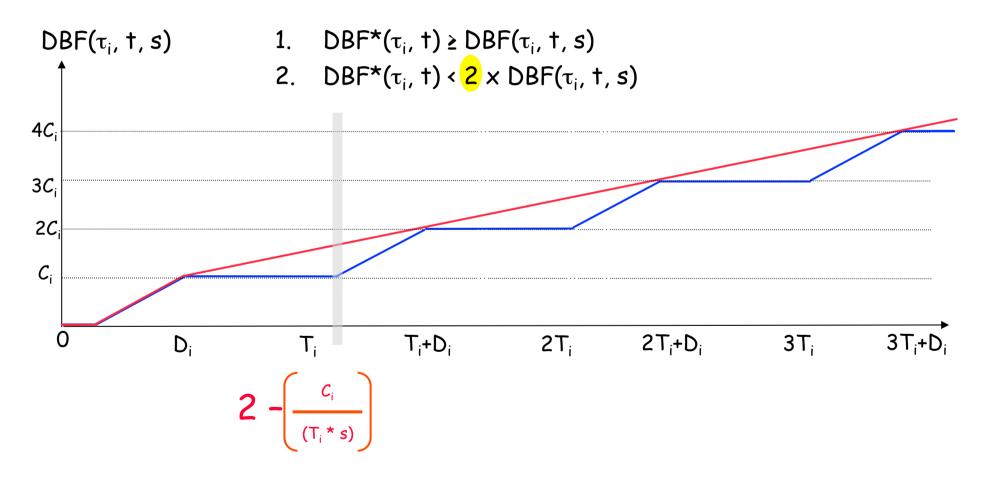
#### PARTITIONED EDF SCHEDULING

- 1. partitioning algorithm Must be defined
- 2. uniproc. EDF scheduling

Can reuse results for uniproc EDF

## 

 $DBF(\tau_i, t, s) = maximum cumulative execution requirement of jobs of sporadic$ task  $\tau_i$  in any interval of length t, when executing on a speed-s processor (s  $\leq$  1)



```
Sporadic task system \tau = \{\tau_1, \tau_2, ..., \tau_n\}, on m speed-1 processors assume D_i \leq D_{i+1} for all i for i := 1 to n - assign \tau_i to any processor j such that \tau_i \text{ "fits" on processor j}
```

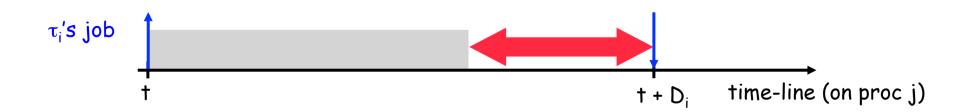
Sporadic task system  $\tau = {\tau_1, \tau_2, ..., \tau_n}$ , on m speed-1 processors

```
assume D_i \leq D_{i+1} for all i for i := 1 to n - assign \tau_i to any processor j such that D_i = \begin{pmatrix} D_i & D_j & T_k & D_j \\ T_k & D_j & T_k \end{pmatrix} = \begin{pmatrix} D_j & T_k & D_j \\ T_k & T_k & T_k \end{pmatrix} (Upper bound on) execution already allocated over [t, t + D_i]
```



Sporadic task system  $\tau = \{\tau_1, \tau_2, ..., \tau_n\}$ , on m speed-1 processors

```
assume D_i \leq D_{i+1} for all i for i := 1 to n  
- assign \tau_i to any processor j such that D_i = DB \sum_{\tau_k \text{ assigned to proc j}}^{\star} (\tau_k, D_i) \geq C_i
```



Sporadic task system  $\tau = {\tau_1, \tau_2, ..., \tau_n}$ , on m speed-1 processors

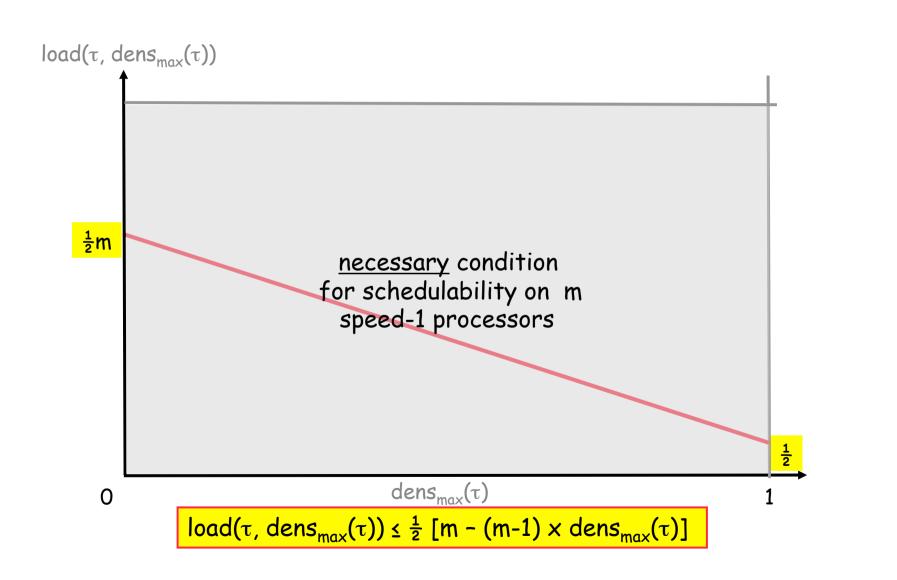
```
assume D_i \leq D_{i+1} for all i for i := 1 to n  
- assign \tau_i to any processor j such that D_i - \left( \begin{array}{c} DBD \\ \tau_k \text{ assigned to proc j} \end{array} \right) \geq C_i - if no such processor j, then return failure
```

Runtime complexity: O(n2)

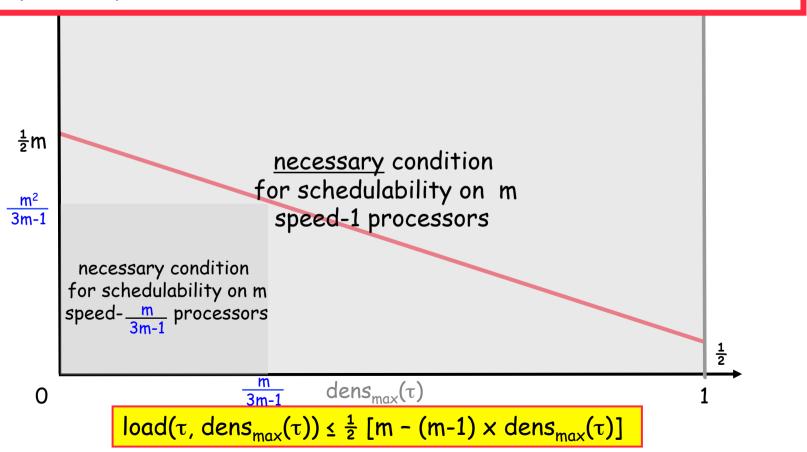
Schedulability test: Run the partitioning algorithm!

A property: this algorithm schedules any system satisfying

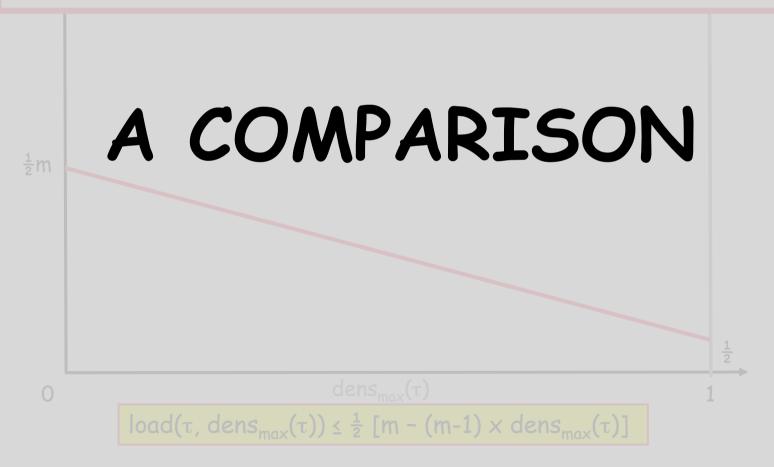
load(
$$\tau$$
, dens<sub>max</sub>( $\tau$ ))  $\leq \frac{1}{2}$  [m - (m-1) x dens<sub>max</sub>( $\tau$ )]



Any sporadic task system schedulable upon m processors is partitioned-EDF schedulable on m processors that are each (3-1/m) times as fast

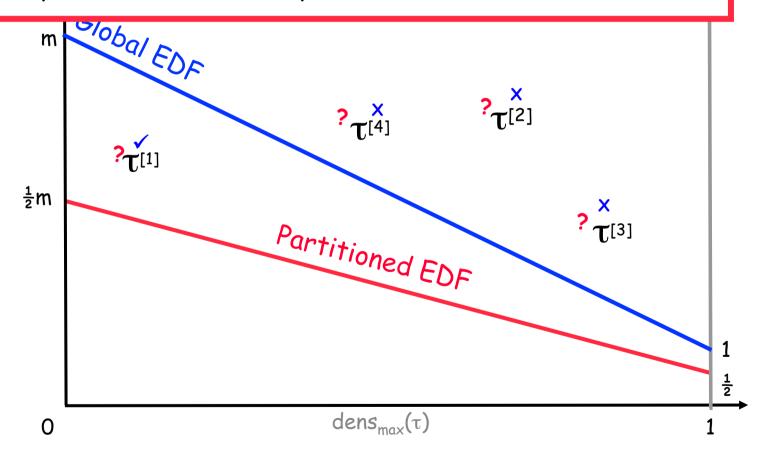


Any sporadic task system schedulable upon m processors is partitioned-EDF schedulable on m processors that are each (3-1/m) times as fast



## Comparing Global and Partitioned EDF

BOTTOM LINE: Partitioned EDF and Global EDF offer comparable schedulability (to random tasksets)



### Context and conclusions

Multiprocessor systems are increasingly important

need a theory of multiprocessor RT scheduling

Some breakthroughs recently...

- sporadic tasks on identical multiprocessors, scheduled using EDF
- other models, other algorithms

Multiprocessor RT scheduling theory today

pprox

Uniprocessor RT scheduling theory in mid-1980's

⇒ significant progress soon??