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Control of computer systems

General idea: Apply control as a technique to manage uncertainty
and achieve performance and robustness in computer and commu-
nication systems.

One of the strongest increasing areas in real-time computing
(adaptive/flexible scheduling) and networking.

Applications in

• Internet protocols (TCP and its extensions)

• Internet servers (HTTP, Email)

• Cellular phone systems (power control, . . . )

• CPU scheduling (feedback scheduling)
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Control of computer systems

New area

• however, feedback has been applied in ad hoc ways for long
without always understanding that it is control

Textbook published a few years ago:

• “Feedback Control of Computer Systems”, Hellerstein, Diao,
Parekh, Tilbury. IEEE Computer Society Press, 2004.
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Example: Transport Control Protocol

The congestion control in TCP is one of the major reasons why
Internet has been able to expand at the current high rate and still
work properly.

• Congestion window cw decides how many un-ack’ed packets
a host can have

• When cw below threshold it grows exponentially

• When cw above threshold it grows linearly

• Whenever there is a timeout the threshold is set to half the cw
and cw is set to 1.

• Nonlinear behavior
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Example: Internet protocols

Controller
RED Network

Router

Reference
buffer fill level

probability
Drop

Measured
buffer fill level

Random Early Detection (RED) of Router Overloads

• Prevent router buffers from overflowing

• Random drops of packets before the buffer is full

A lot of ongoing work on improvements of IP based on models and
theory rather than on ad hoc fixes
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Example: queuing systems

Work requests (customers) arrive and are buffered

Service level objectives (e.g., response time for request belonging
to class X should be less than Y time units)

Reduce the delay caused by other requests, i.e., adjust the buffer
size and redirect or block other requests

Admission control
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Example: queue length control

Assume an M/M/1 queuing system:

• Random arrivals (requests), Poisson distributed with average
λ per second

• Random service times, exponentially distributed with average
1/μ

• Queue containing x requests

Intuition: x →∞ if λ > μ
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Queue length control: simulation

λ = 0.5, μ = 1:
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Queue length control: model

Approximate the system with a nonlinear flow model (Tipper’s
model from queuing theory)

The expectation of the future queue length x is given by

ẋ = λ − μ x
x + 1

Graduate Course on Embedded Control Systems – Pisa 8-12 June 2009



Queue length control: model

λ = 0.5, μ = 1:

0 5 10 15 20 25 30 35 40 45 50
0

1

2

3

4

5

Time

Q
ue

ue
 le

ng
th

λ = 2.0, μ = 1:

0 5 10 15 20 25 30 35 40 45 50
0

20

40

60

Time

Q
ue

ue
 le

ng
th

Graduate Course on Embedded Control Systems – Pisa 8-12 June 2009



Queue length control: model

Control the queue length by only admitting a fraction u (between 0
and 1) of the requests

ẋ = λu− μ x
x + 1

Admission control
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Queue length control: linearization

Linearize around x = x○

Let y = x − x○

ẏ = λ y− μ
1

(x○ + 1)2 y = λu− μay
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Queue length control: P-control

u = K (r − y)

ẏ= λK (r − y) − μay

(s+ λK + μa)Y(s) = λKR(s)

Gcl(s) = λK
s+ λK + μa

With K the closed loop pole can be placed arbitrarily
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Queue length control: P-control

Simulations for λ = 2,μ = 1, x○ = 20 and different values of K
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Queue length control: PI-control

GP(s) = λ
s+ μa

GR(s) = K (1+ 1
sTi
)

Gcl(s) = GPGR
1+ GPGR =

λK (s+ 1
Ti )

s(s+ μa) + λK (s+ 1
Ti )

With K and Ti the closed loop poles can be placed arbitrarily
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Queue length control: PI-control

Simulations for λ = 2,μ = 1, x○ = 20, K = 0.1 and different values
of Ti
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PI-control on event-based simulation model
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Example: Feedback Control EDF Scheduling

Stankovic et al (Univ of Virginia)
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Example: numerical integration

The automatic step-size adjustment in numerical integration
routines for ODEs (ordinary differential equations) can be cast as a
control problem

Ordinary PI/PID control works well

PhD thesis by Kjell Gustafsson, Dept of Automatic Control, Lund
1992
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General observations

The plant under control rarely has any real dynamics or only very
simple dynamics

• static nonlinearities + time delays (possibly time-varying)

• first or (maybe) second-order dynamics

Dynamics introduced through the sensors

• Time averages

Event-based control seems a more natural approach than time-
based (though very have tried to apply it)
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General observations

Seldom any measurement noise

• High-gain feedback (deadbeat control) a possibility

Simple controllers work well for the examples studied to far

• P, I, PI + feedforward, PD

• anti-windup to achieve good performance

Lack of first principles knowledge that can be used to derive
models

• queuing systems an exception

– however, the models here are long time averages
– how use these for control?

• models often derived from input-output data
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Outline

• Overview

• Feedback scheduling of control tasks

– Heuristic
– LQ-optimal
– MPC

• Control of web servers
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Feedback scheduling of control tasks

Dynamically handle control tasks with varying execution demands

Adjust sampling rates or execution times according to the current
system state
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A feedback scheduling structure

Feedback
scheduler

Control
Tasks

Resources

Feedforward

Feedback

• Possible measurement signals: CPU utilization, execution
times, control performance

• Possible control signals: sampling rates, execution budgets

• Feedforward: e.g. mode changes
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Outline

• Overview

• Feedback control of Linux

• Feedback scheduling of control tasks

– Heuristic
– LQ-optimal
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• Control of web servers
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Heuristic feedback scheduling of control tasks

• Idea: On-line adjust sampling rates of a set of controllers to
maximize CPU utilization and hence performance.

• Assume that nominal sampling periods hnom are wisely chosen

• On-line estimate the total utilization U
• Periodically assign new sampling periods to meet the utiliza-

tion setpoint Usp:
hnew = hnomUUsp

• Possibly add feedforward to help with the estimation of U
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Case study: set of hybrid controllers

The double-tank process: Use

pump, u(t), to control level of
lower tank, y(t)

Pump

Hybrid control strategy:

• PID control in steady state

• Time-optimal control for setpoint changes
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PID controller

P(t) = K (ysp(t) − y(t))
I(t) = I(t−h) + ai(ysp(t) − y(t))
D(t) = adD(t−h) + bd(y(t−h) − y(t))
u(t) = P(t) + I(t) + D(t)

Average execution time: C = 2.0 ms
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Time-optimal controller

Computation of switching criterion:

x2(x1) = 1a((ax1 − bu)(1+ ln(
axR1 − bu
ax1 − bu )) + bu)

Vclose =
[
xR1 − x1
xR2 − x2

]T
P(θ ,γ )

[
xR1 − x1
xR2 − x2

]
+ more . . .

Average execution time: C = 10.0 ms
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Nominal behavior, h = 21 ms

0 0.5 1 1.5 2 2.5 3 3.5 4

0.1

0.15

O
ut

pu
t

0 0.5 1 1.5 2 2.5 3 3.5 4

0

0.5

1

In
pu

t

0 0.5 1 1.5 2 2.5 3 3.5 4
0

1

2

Time

U
til

iz
at

io
n

Graduate Course on Embedded Control Systems – Pisa 8-12 June 2009



Scheduling experiments

• Three hybrid controllers execute on one CPU

• Nominal sampling periods: (h1,h2,h3) = (21, 18, 15) ms

• Potential problem: All controllers in Optimal mode � U =∑ C
h = 170%

Compare strategies:

1. Open-loop scheduling

2. Feedback scheduling

3. Feedback + feedforward scheduling

• Co-simulation of scheduler, controllers, and double tanks

• Focus on the lowest-priority controller
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Open-loop scheduling
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Open-loop scheduling
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Feedback scheduler

• A high-priority task, TFBS = 100 ms, CFBS = 2 ms

• Setpoint: Usp = 80%
• Estimate execution times using first-order filters

• Control U by adjusting the sampling periods:

hnew = hnomUUsp
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Feedback scheduling
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Feedback scheduling

0.4 0.5 0.6 0.7 0.8 0.9

T
as

k 
1

Time

0.4 0.5 0.6 0.7 0.8 0.9

T
as

k 
2

0.4 0.5 0.6 0.7 0.8 0.9

T
as

k 
3

0.4 0.5 0.6 0.7 0.8 0.9

F
B

S

Graduate Course on Embedded Control Systems – Pisa 8-12 June 2009



Feedforward

• Controller notifies feedback scheduler when switching from
PID to Optimal mode

• Scheduler is released immediately

• Separate execution-time estimators in different modes
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Feedback + feedforward scheduling
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Feedback + feedforward scheduling
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Control performance evaluation
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Limitations

• Heuristic resource allocation

• Does not take the plant states into account

• The feedback scheduler period is not taken into account
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Outline

• Overview

• Feedback control of Linux

• Feedback scheduling of control tasks

– Heuristic
– LQ-optimal
– MPC

• Control of web servers
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Feedback scheduling with LQ-optimal cost

Assume that the performance of each controller i can be de-
scribed by a cost function Ji(xi, hi, TFBS)

• xi – the current state of plant i
• hi – the sampling period of controller i
• TFBS – the optimization horizon of the feedback scheduler

The objective is to minimize the combined performance with
respect to the utilization bound:

min
h1... hn

n∑
i=1
Ji(xi,hi,TFBS)

subj. to
n∑
i=1

Ci
hi
≤ Usp
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Optimal period assignment

• The period assignment problem is convex if Ji(xi, 1/ fi, TFBS)
are convex in fi.

• Explicit solution if all cost functions have the same shape,

Ji = α i + β ihν
i

– ν = 1:
hi =

(Ci
β i

)1/2∑n
j=1(Cjβ j)1/2
Usp

– ν = 2:
hi =

(Ci
β i

)1/3 ∑n
j=1 C

2/3
j β 1/3j
Usp

• Linear cost functions (ν=1) are often good approximations
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Linear-Quadratic controllers

The cost function for an LQ controller is given by

J(x,h,Tfbs) = xTS(h)x + Tfbsh
(
tr S(h)R1(h) + Jv(h)

)

• S(h) – solution to the LQ Riccati equation

• R1(h) – sampled process noise variance

• Jv(h) – inter-sample cost term
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Example: integrator process

• Process: dx = u dt+ dvc
– vc – Wiener process with unit incremental variance

• Design cost function: J = ∫ Tfbs0 x2(t) dt
• Resulting cost:

J(x,h,Tfbs) =
(
x2
√
3
6 + Tfbs

√
3+ 3
6

)
h

– Linear in h
– Explicit solution for multiple controllers:

hi ∝
√

Ci
x2i + Tfbs(1+

√
3)
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Simulation example 1

• Two integrator processes with different initial conditions

– x1(0) = 10, x2(0) = 0, C1 = C2 = 0.5, Usp = 1, Tfbs = 5
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Simulation example 2

• Three first-order plants with a = −1, a = 0, and a = 1
• Load disturbance affecting plant 3 at time t = 5
• x1(0) = 0, x2(0) = 10, x3(0) = 0, C = 0.1, Usp = 1, Tfbs = 2
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Outline

• Overview

• Feedback control of Linux

• Feedback scheduling of control tasks

– Heuristic
– LQ-optimal
– MPC

• Control of web servers
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Anytime controllers

Model-Predictive Control (MPC) is an example of an anytime controller

• On-line convex optimization problem solved each sample

• Highly varying execution times

• For fast processes the latency may effect the control performance
considerably

• The control algorithm is based on a quality-of-service type cost
measure, cp instantaneous cost

• As long as a feasible control signal has been found the iterative
search can be aborted before it has reached completion

• Maps well to the imprecise task model

– Mandatory part
– Optional part
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Model predictive control

z(k)

u(k)

r(k)
ẑ(k)

û(k)

tk k+ Hu k+ Hp

In each sample, find Δû(k) . . . Δû(k+ Hu − 1) minimizing the cost

V (k) =
Hp∑
i=1
	ẑ(k+ i) − r(k+ i)	2Q +

Hu−1∑
i=0

	Δû(k+ i)	2R

given constraints on control signals and controlled variables.Graduate Course on Embedded Control Systems – Pisa 8-12 June 2009



Model predictive control

z(k)

u(k)

r(k)
ẑ(k)

û(k)

tk k+ Hu k+ Hp

The formulation leads to a quadratic programming problem with linear
inequality constraints

minimize ΔUT(k)H ΔU(k) − ΔUT(k)G(k) +C
subject to Ω ΔU(k) ≤ ω (k)

being solved for ΔU(k) = [ Δû(k) . . .Δû(k+ Hu − 1) ].Graduate Course on Embedded Control Systems – Pisa 8-12 June 2009



Execution-time properties

• Convex optimization problem solved each sample

• Highly varying execution times → worst-case pessimistic

• Execution time depends on external factors such as reference
signals and disturbances
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Early termination

• Optimization may be aborted any time after a feasible solution
has been obtained

• Based on recent stability results [Scocaert et. al. 1999]

• A solution is feasible if it fulfills the constraints and obtains a
lower cost than in the previous sample
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Trade-off cost vs delay

• Assuming a constant process delay, τ < h, over the prediction
horizon

• Leads to an augmented process model

• The matrices in the cost function are computed as functions of
the delay, τ

Jd(ΔU i,τ ) = ΔUTi H (τ )ΔU i − ΔUTi G(τ ) +C (τ )

• The optimization algorithm is terminated based on this delay-
dependent cost
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Trade-off cost vs delay
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Full optimization
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Exploiting the trade-off
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Iteration comparison
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Scheduling of multiple MPCs
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QP-iteration

• Mandatory part consists of finding a feasible solution

• Remaining QP-iterations scheduled using the cost functions
as dynamic priorities

• Reflects the relative importance of the tasks
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Fixed-priority scheduling
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Feedback scheduling
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Outline

• Overview

• Feedback control of Linux

• Feedback scheduling of control tasks

– Heuristic
– LQ-optimal
– MPC

• Control of web servers
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What to control?

• Temporal

– local (at server)
– global (End-to-End/TCP)

• Spatial (routing)

We will focus on temporal control issues at the server.
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Web service performance control

Request
DequeuingCPU Ready Queue

Scheduler

Server
threads

Resource

Access
I/O Queue

Network I/O

Output to Clients

Client Request
Queue

Web Server
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Control objective

• The main objective is to control the service delay of individual
requests.

• Can be controlled directly or indirectly by manipulating the
server queue lengths.

• The stochastic nature of the system requires averaging
(inherent in the non-linear flow model).

• Want to be able to control both long-term averages and
transient responses.
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Actuator mechanisms

• The difference between the service rate, μ, and the arrival
rate, λ , determines the delay experienced by the requests.

• Changing the arrival rate, admission control:

• Changing the service rate:

– Number of server threads
– Quality adaptation
– Dynamic voltage scaling
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Absolute delay control

Queuing Model Based Absolute Delay Control

• L. Sha, X. Liu, UIUC and Y. Lu, T. Abdelzaher, UVa
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Control objective

• Want to keep the average timing delay experienced by users
close to a desired value, Dr.

• The delay specification, Dr, relates to the QoS agreement with
the end user.

• Delays consistently longer than the specification are unaccept-
able to the users,

• and delays consistently shorter than the specification indicate
over-provisioning of resources.
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Absolute delay control

Controller Actuator

Server

Measured delay, D

RequestsQueuing
Model

Δμ

Arrival rate, λ

μ f f

ΔD

Delay ref, Dr

μ
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Key ideas

• Use queuing theory to model the non-linear behavior of the
web server.

• Use the steady-state solution of the queuing model as feed-
forward control to bring the system to an equilibrium point
near the desired delay set-point.

• Example: M/M/1 queuing model where D̂ = 1
μ−λ . Use feed-

forward control, μ f f = 1
Dr + λ .

• Use linear feedback control to suppress approximation errors
and transient errors around the operating point.
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Problems

• Queuing theory predicts delay as a function of arrival and
service rates.

• The prediction applies only to long-term averages.

• Insensitive to sudden load changes and does not handle
transient responses very well.

• Internet load is very bursty and may change abruptly in a
frequent manner.

• Inaccurate assumptions in the queuing model, e.g., Poisson
distributed arrival and service processes.
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Improved feed-forward prediction

Improved Feed-forward Prediction

• Y. Lu, T. Abdelzaher, UVa and D. Henriksson, LTH
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Improved feed-forward predictor

Controller Actuator

Server

Measured delay, D

RequestsImproved
Predictor

Δμ

Arrival rate, λ

μ f f

ΔD

Delay ref, Dr

μ

• Based on instantaneous measurements instead of long-term
averages.
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Notation

Ĉ = average number of processor cycles required by a request

μ = server speed

N = number of waiting requests

D̂ = average delay experience by the N requests

ND̂ = total delay experienced by the N requests

Âi = 1
N
∑i+N−1
k=i Ak = the average arrival time

Qi = tnow − Âi = average queuing time for the requests being
dequeued in the i’th sample
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The predictor
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BECF = ABCD + BEC − ABFD

ND̂ = N ⋅ tnow+ N ⋅ (NĈ/μ)
2 −

i+N−1∑
k=i
Ak
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The predictor
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D̂ = tnow− Â+ NĈ2μ
= Q̂ + NĈ2μ

μ f f = NĈ
2(Dr − Q̂)
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The feedback controller

• Event-triggered PI-controller with sliding window action.

• Need a long observation window, Nobs, to accurately estimate
the average values of arrival rates and processing times of
requests.

• Long observation window does not imply slow control action.
Control updated every N < Nobs event (request departure).

• Quick update steps reduce the variance and control efforts in
each sample.

• The PI-controller is implemented using gain-scheduling

– tuned for different operating points (arrival rate and delay
set-point, Dr).

• Anti-windup crucial.
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Simulations
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c) d)

• a: M/M/1, b: M/M/1 + PI, c: Predictor d: Predictor + PI
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