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Finite-Wordlength Implementation

Control analysis and design usually assumes infinite-precision

arithmetic, parameters/variables are assumed to be real numbers

Error sources in a digital implementation with finite wordlength:

• Quantization in A-D converters

• Quantization of parameters (controller coefficients)

• Round-off and overflow in addition, subtraction, multiplication,

division, function evaluation and other operations

• Quantization in D-A converters
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The magnitude of the problems depends on

• The wordlength

• The type of arithmetic used (fixed or floating point)

• The controller realization
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A-D and D-A Quantization

A-D and D-A converters often have quite poor resolution, e.g.

• A-D: 10–16 bits

• D-A: 8–12 bits

Quantization is a nonlinear phenomenon; can lead to limit cycles
and bias. Analysis approaches:

• Nonlinear analysis

– Describing function approximation

– Theory of relay oscillations

• Linear analysis

– Model quantization as a stochastic disturbance
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Example: Control of the Double Integrator

Process:

P(s) = 1/s2

Sampling period:

h = 1

Controller (PID):

C(z) =
0.715z2 − 1.281z+ 0.580

(z− 1)(z+ 0.188)
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Simulation with Quantized A-D Converter (δ y= 0.02)
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Limit cycle in process output with period 28 s, amplitude 0.01
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Simulation with Quantized D-A Converter (δ u = 0.01)
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Limit cycle in controller output with period 39 s, amplitude 0.005
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Describing Function Analysis
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Describing Function of Roundoff Quantizer
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Nyquist Curve of Sampled Loop Transfer Function
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Linear Analysis of Quantization Noise
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Pulse-Width Modulation (PWM)

Poor D-A resolution (e.g. 1 bit) can often be handled by fast

switching between levels + low-pass filtering

The new control variable is the duty-cycle of the switched signal
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Floating-Point Arithmetic

Hardware-supported on modern high-end processors (FPUs)

Number representation:

± f $ 2±e

• f : mantissa, significand, fraction

• 2: base

• e: exponent

The binary point is variable (floating) and depends on the value of

the exponent

Dynamic range and resolution

Fixed number of significant digits
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IEEE 754 Binary Floating-Point Standard

Used by almost all FPUs; implemented in software libraries

Single precision (Java/C float):

• 32-bit word divided into 1 sign bit, 8-bit biased exponent, and

23-bit mantissa (( 7 decimal digits)

• Range: 2−126 − 2128

Double precision (Java/C double):

• 64-bit word divided into 1 sign bit, 11-bit biased exponent, and

52-bit mantissa (( 15 decimal digits)

• Range: 2−1022 − 21024

Supports Inf and NaN
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What is the output of this program?

#include <stdio.h>

main() {

float a[] = { 10000.0, 1.0, 10000.0 };

float b[] = { 10000.0, 1.0, -10000.0 };

float sum = 0.0;

int i;

for (i=0; i<3; i++)

sum += a[i]*b[i];

printf("sum = %f\n", sum);

}
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Remarks:

• The result depends on the order of the operations

• Finite-wordlength operations are neither associative nor

distributive
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Arithmetic in Embedded Systems

Small microprocessors used in embedded systems typically do not

have hardware support for floating-point arithmetic

Options:

• Software emulation of floating-point arithmetic

– compiler/library supported

– large code size, slow

• Fixed-point arithmetic

– often manual implementation

– fast and compact
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Fixed-Point Arithmetic

Represent all numbers (parameters, variables) using integers

Use binary scaling to make all numbers fit into one of the integer

data types, e.g.

• 8 bits (char, int8_t): [−128, 127]

• 16 bits (short, int16_t): [−32768, 32767]

• 32 bits (long, int32_t): [−2147483648, 2147483647]
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Challenges

• Must select data types to get sufficient numerical precision

• Must know (or estimate) the minimum and maximum value of

every variable in order to select appropriate scaling factors

• Must keep track of the scaling factors in all arithmetic

operations

• Must handle potential arithmetic overflows
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Fixed-Point Representation

In fixed-point representation, a real number x is represented by an

integer X with N = m+ n+ 1 bits, where

• N is the wordlength

• m is the number of integer bits (excluding the sign bit)

• n is the number of fractional bits

Sign bit Integer bits Fractional bits

0 00 11111

“Q-format”: X is sometimes called a Qm.n or Qn number
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Conversion to and from fixed point

Conversion from real to fixed-point number:

X := round(x ⋅ 2n)

Conversion from fixed-point to real number:

x := X ⋅ 2−n

Example: Represent x = 13.4 using Q4.3 format

X = round(13.4 ⋅ 23) = 107 (= 011010112)
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A Note on Negative Numbers

In almost all CPUs today, negative integers are handled using

two’s complement: A “1” in the sign bit means that 2N should be

subtracted

Example (N = 8):

Binary representation Interpretation

00000000 0

00000001 1
...

...

01111111 127

10000000 -128

10000001 -127
...

...

1111111 -1
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Range vs Resolution for Fixed-Point Numbers

A Qm.n fixed-point number can represent real numbers in the

range

[−2m, 2m − 2n]

while the resolution is

2−n

Fixed range and resolution

• n too small [ poor resolution

• n too large [ risk of overflow
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Fixed-Point Addition/Subtraction

Two fixed-point numbers in the same Qm.n format can be added

or subtracted directly

The result will have the same number of fractional bits

z = x + y \ Z = X + Y

z = x − y \ Z = X − Y

• The result will in general require N + 1 bits; risk of overflow
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Example: Addition with Overflow

Two numbers in Q4.3 format are added:

x = 12.25 [ X = 98

y = 14.75 [ Y = 118

Z = X + Y = 216

This number is however out of range and will be interpreted as

216− 256 = −40 [ z = −5.0
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Fixed-Point Multiplication and Division

If the operands and the result are in the same Q-format,

multiplication and division are done as

z = x ⋅ y \ Z = (X ⋅ Y)/2n

z = x/y \ Z = (X ⋅ 2n)/Y

• Double wordlength is needed for the intermediate result

• Division by 2n is implemented as a right-shift by n bits

• Multiplication by 2n is implemented as a left-shift by n bits

• The lowest bits in the result are truncated (round-off noise)

• Risk of overflow
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Example: Multiplication

Two numbers in Q5.2 format are multiplied:

x = 6.25 [ X = 25

y = 4.75 [ Y = 19

Intermediate result:

X ⋅ Y = 475

Final result:

Z = 475/22 = 118 [ z = 29.5

(exact result is 29.6875)
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Multiplication of Operands with Different Q-format

In general, multiplication of two fixed-point numbers Qm1.n1 and

Qm2.n2 gives an intermediate result in the format

Qm1+m2.n1+n2

which may then be right-shifted n1+n2−n3 steps and stored in the

format

Qm3.n3

Common case: n2 = n3 = 0 (one real operand, one integer

operand, and integer result). Then

Z = (X ⋅ Y)/2n1
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Implementation of Multiplication in C

Assume Q4.3 operands and Q4.3 result

#include <inttypes.h> /* define int8_t, etc. (Linux only) */

#define n 3 /* number of fractional bits */

int8_t X, Y, Z; /* Q4.3 operands and result */

int16_t temp; /* Q9.6 intermediate result */

...

temp = (int16_t)X * Y; /* cast operands to 16 bits and multiply */

temp = temp >> n; /* divide by 2^n */

Z = temp; /* truncate and assign result */
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Implementation of Multiplication in C with Rounding

and Saturation

#include <inttypes.h> /* defines int8_t, etc. (Linux only) */

#define n 3 /* number of fractional bits */

int8_t X, Y, Z; /* Q4.3 operands and result */

int16_t temp; /* Q9.6 intermediate result */

...

temp = (int16_t)X * Y; /* cast operands to 16 bits and multiply */

temp = temp + (1 << n-1); /* add 1/2 to give correct rounding */

temp = temp >> n; /* divide by 2^n */

if (temp > INT8_MAX) /* saturate the result before assignment */

Z = INT8_MAX;

else if (temp < INT8_MIN)

Z = INT8_MIN;

else

Z = temp;
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Implementation of Division in C with Rounding

#include <inttypes.h> /* define int8_t, etc. (Linux only) */

#define n 3 /* number of fractional bits */

int8_t X, Y, Z; /* Q4.3 operands and result */

int16_t temp; /* Q9.6 intermediate result */

...

temp = (int16_t)X << n; /* cast operand to 16 bits and shift */

temp = temp + (Y >> 1); /* Add Y/2 to give correct rounding */

temp = temp / Y; /* Perform the division (expensive!) */

Z = temp; /* Truncate and assign result */
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Example: Atmel mega8/16 instruction set

Mnemonic Description # clock cycles

ADD Add two registers 1

SUB Subtract two registers 1

MULS Multiply signed 2

ASR Arithmetic shift right (1 step) 1

LSL Logical shift left (1 step) 1

• No division instruction; implemented in math library using

expensive division algorithm
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Example Evaluation of Execution Time and Code

Size

• Atmel AVR ATmega16 microcontroller @14.7 MHz with

16K ROM controlling a rotating DC servo

ø 0.8� ø 0.8

ø 0‚95

øּ0,3

ø 0,8

ø 0,8

ø 0,8

ø 0,8

ø 0‚8

ø 0,8

øּ0,65

ø 0,8� ø 0,8

ø 0,95

øּ0,3

ø 0.8� ø 0.8

ø 0‚8

ø 0‚95

øּ0,3

øּ0,65

øּ0,65ø 0,5 ø 0,5�ø 0,5 øּ0,65

øּ0,65

ø 0‚8

1

s

k

Js +ּdΣ
ωω

gnd

FRICTION

COMPENSATION

ON

POWER� SAT. OVL.�RESET POS.RESET

LTH ReglerteknikּR/B 88

θ
x0,1

x0,2

x0,1

x0,2

-1-1-1

Current

magnitude

4V/A

Ext. in

Moment

Ext. Int. +

LTH Reglerteknik RB 88

Int

OffOff

Reference

Ref out

• C program that implements simple state feedback controllers

– velocity control (one state is measured)

– position control (two states are measured)

• Comparison of floating-point and fixed-point implementations
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Example Evaluation: Fixed-Point Implementation

The position controller (with integral action) is given by

u(k) = l1y1(k) + l2y2(k) + l3 I(k)

I(k+ 1) = I(k) + r(k) − y2(k)

where

l1 = −5.0693, l2 = −5.6855, l3 = 0.6054

Choose fixed-point representations assuming word length N = 16

• y1, y2, u, r are integers in the interval [−512, 511] ∈ Q10.0

• Let I ∈ Q16.0 to simplify the addition

• Use Q4.12 for the coefficients, giving

L1 = −20764, L2 = −23288, L3 = 2480
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Example Evaluation: Pseudo-C Code

#define L1 -20764 /* Q4.12 */

#define L2 -23288 /* Q4.12 */

#define L3 2480 /* Q4.12 */

#define QF 12 /* number of fractional bits in L1,L2,L3 */

int16_t y1, y2, r, u, I=0; /* Q16.0 variables */

for (;;) {

y1 = readInput(1); /* read Q10.0, store as Q16.0 */

y2 = readInput(2); /* read Q10.0, store as Q16.0 */

r = readReference();

u = ((int32_t)L1*y1 + (int32_t)L2*y2 + (int32_t)L3*I) >> QF;

if (u >= 512) u = 511; /* saturate to fit into Q10.0 output */

if (u < -512) u = -512;

writeOutput(u); /* write Q10.0 */

I += r - y2; /* TODO: saturation and tracking... */

sleep();

}
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Example Evaluation: Measurements

Floating-point implementation using float s:

• Velocity control: 950 µs

• Position control: 1220 µs

• Total code size: 13708 bytes

Fixed-point implementation using 16-bit integers:

• Velocity control: 130 µs

• Position control: 270 µs

• Total code size: 3748 bytes

One A-D conversion takes about 115 µs. This gives a 25–50

times speedup for fixed point math compared to floating point. The

floating point math library takes about 10K (out of 16K available!)
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Controller Realizations

A linear controller

H(z) =
b0 + b1z

−1 + . . .+ bnz
−n

1+ a1z−1 + . . .+ anz−n

can be realized in a number of different ways with equivalent input-

output behavior, e.g.

• Direct form

• Companion (canonical) form

• Series (cascade) or parallel form
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Direct Form

The input-output form can be directly implemented as

u(k) =

n∑

i=0

biy(k− i) −

n∑

i=1

aiu(k− i)

• Nonminimal (all old inputs and outputs are used as states)

• Very sensitive to roundoff in coefficients

• Avoid!
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Companion Forms

E.g. controllable or observable canonical form

x(k+ 1) =





−a1 −a2 ⋅ ⋅ ⋅ −an−1 −an

1 0 0 0

0 1 0 0
...

0 0 1 0





x(k) +





1

0
...

0





y(k)

u(k) =


 b1 b2 ⋅ ⋅ ⋅ bn



 x(k)

• Same problem as for the Direct form

• Very sensitive to roundoff in coefficients

• Avoid!
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Pole Sensitivity

How sensitive are the poles to errors in the coefficients?

Assume characteristic polynomial with distinct roots. Then

A(z) = 1−

n∑

k=1

akz
−k =

n∏

j=1

(1− pj z
−1)

Pole sensitivity:
�pi
�ak
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The chain rule gives

�A(z)

�pi

�pi
�ak

=
�A(z)

�ak

Evaluated in z = pi we get

�pi
�ak

=
pn−ki

∏n

j=1, j ,=i(pi − pj)

• Having poles close to each other is bad

• For stable filter, an is the most sensitive parameter
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Better: Series and Parallel Forms

Divide the transfer function of the controller into a number of first-

or second-order subsystems:

+

Direct Form Series Form

Parallel Form

H(z)

H1(z)

H1(z)

H2(z)

H2(z)

• Try to balance the gain such that each subsystem has about

the same amplification
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Example: Series and Parallel Forms

C(z) =
z4 − 2.13z3 + 2.351z2 − 1.493z+ 0.5776

z4 − 3.2z3 + 3.997z2 − 2.301z+ 0.5184
(Direct)

=
( z2 − 1.635z+ 0.9025

z2 − 1.712z+ 0.81

)( z2 − 0.4944z+ 0.64

z2 − 1.488z+ 0.64

)

(Series)

= 1+
−5.396z+ 6.302

z2 − 1.712z+ 0.81
+
6.466z− 4.907

z2 − 1.488z+ 0.64
(Parallel)
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Direct form with quantized coefficients (N = 8, n = 4):

Bode Diagram
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Pole−Zero Map
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Series form with quantized coefficients (N = 8, n = 4):

Bode Diagram
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Pole−Zero Map
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Jackson’s Rules for Series Realizations

How to pair and order the poles and zeros?

Jackson’s rules (1970):

• Pair the pole closest to the unit circle with its closest zero.

Repeat until all poles and zeros are taken.

• Order the filters in increasing or decreasing order based on

the poles closeness to the unit circle.

This will push down high internal resonance peaks.

Graduate Course on Embedded Control Systems – Pisa 8-12 June 2009



Well-Conditioned Parallel Realizations

Assume nr distinct real poles and nc distinct complex-pole pairs

Modal (a.k.a. diagonal/parallel/coupled) form:

zi(k+ 1) = λ izi(k) + β iy(k) i = 1, . . . ,nr

vi(k+ 1) =




σ i ω i

−ω i σ i



 vi(k) +




γ i1

γ i2



 y(k) i = 1, . . . ,nc

u(k) = Dy(k) +

nr∑

i=1

γ izi(k) +

nc∑

i=1

δ Ti vi(k)

Matlab: sysm = canon(sys,’modal’)
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Possible Pole Locations for Direct vs Modal Form
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Short Sampling Interval Modification

In the state update equation

x(k+ 1) = Φx(k) + Γy(k)

the system matrix Φ will be close to I if h is small. Round-off

errors in the coefficients of Φ can have drastic effects.

Better: use the modified equation

x(k+ 1) = x(k) + (Φ − I)x(k) + Γy(k)

• Both Φ − I and Γ are roughly proportional to h

– Less round-off noise in the calculations

• Also known as the δ -form
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Short Sampling Interval and Integral Action

Fast sampling and slow integral action can give roundoff problems:

I(k+ 1) = I(k) + e(k) ⋅ h/Ti
︸ ︷︷ ︸

(0

Possible solutions:

• Use a dedicated high-resolution variable (e.g. 32 bits) for the

I-part

• Update the I-part at a slower rate

General problem for filters with very different time constants
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