Fix Point Implementation of Control Algorithms

Anton Cervin
Lund University
Outline

- A-D and D-A Quantization
- Computer arithmetic
 - Floating-point arithmetic
 - Fixed-point arithmetic
- Controller realizations
Finite-Wordlength Implementation

Control analysis and design usually assumes infinite-precision arithmetic, parameters/variables are assumed to be real numbers.

Error sources in a digital implementation with finite wordlength:

- Quantization in A-D converters
- Quantization of parameters (controller coefficients)
- Round-off and overflow in addition, subtraction, multiplication, division, function evaluation and other operations
- Quantization in D-A converters
The magnitude of the problems depends on

- The wordlength
- The type of arithmetic used (fixed or floating point)
- The controller realization
A-D and D-A Quantization

A-D and D-A converters often have quite poor resolution, e.g.

- A-D: 10–16 bits
- D-A: 8–12 bits

Quantization is a nonlinear phenomenon; can lead to limit cycles and bias. Analysis approaches:

- Nonlinear analysis
 - Describing function approximation
 - Theory of relay oscillations
- Linear analysis
 - Model quantization as a stochastic disturbance
Example: Control of the Double Integrator

Process:

\[P(s) = \frac{1}{s^2} \]

Sampling period:

\[h = 1 \]

Controller (PID):

\[C(z) = \frac{0.715z^2 - 1.281z + 0.580}{(z - 1)(z + 0.188)} \]
Simulation with Quantized A-D Converter ($\delta y = 0.02$)

Limit cycle in process output with period 28 s, amplitude 0.01
Simulation with Quantized D-A Converter \((\delta u = 0.01)\)

Limit cycle in controller output with period 39 s, amplitude 0.005
Describing Function Analysis

Limit cycle with frequency ω_1 and amplitude A_1 predicted if

$$H(e^{i\omega_1 h}) = -\frac{1}{Y_c(A_1)}$$
Describing Function of Roundoff Quantizer

\[Y_c(A) = \begin{cases}
0 & \text{if } 0 < A < \frac{\delta}{2} \\
\frac{4\delta}{\pi A} \sum_{i=1}^{n} \sqrt{1 - \left(\frac{2i - 1}{2A}\right)^2} & \text{if } \frac{2n - 1}{2} \delta < A < \frac{2n + 1}{2} \delta
\end{cases} \]
Nyquist Curve of Sampled Loop Transfer Function

First crossing at $\omega_1 = 0.162$ rad/s. Predicts limit cycle with period 39 s and amplitude $A_1 = \delta/2$.
Roundoff quantization: e_a uniformly distributed over $[-\delta/2, \delta/2]$, $V(e_a) = \delta^2 / 12$
Pulse-Width Modulation (PWM)

Poor D-A resolution (e.g. 1 bit) can often be handled by fast switching between levels + low-pass filtering

The new control variable is the duty-cycle of the switched signal
Floating-Point Arithmetic

Hardware-supported on modern high-end processors (FPUs)

Number representation:

\[\pm f \times 2^{\pm e} \]

- \(f \): mantissa, significand, fraction
- \(2 \): base
- \(e \): exponent

The binary point is variable (floating) and depends on the value of the exponent

Dynamic range and resolution

Fixed number of significant digits
IEEE 754 Binary Floating-Point Standard

Used by almost all FPUs; implemented in software libraries

Single precision (Java/C float):

- 32-bit word divided into 1 sign bit, 8-bit biased exponent, and 23-bit mantissa (≈ 7 decimal digits)
- Range: $2^{-126} - 2^{128}$

Double precision (Java/C double):

- 64-bit word divided into 1 sign bit, 11-bit biased exponent, and 52-bit mantissa (≈ 15 decimal digits)
- Range: $2^{-1022} - 2^{1024}$

Supports Inf and NaN
What is the output of this program?

```c
#include <stdio.h>

main() {

    float a[] = { 10000.0, 1.0, 10000.0 };  
    float b[] = { 10000.0, 1.0, -10000.0 }; 
    float sum = 0.0; 
    int i;

    for (i=0; i<3; i++)
        sum += a[i]*b[i];

    printf("sum = %f\n", sum);
}
```
Remarks:

- The result depends on the order of the operations
- Finite-wordlength operations are neither associative nor distributive
Arithmetic in Embedded Systems

Small microprocessors used in embedded systems typically do not have hardware support for floating-point arithmetic

Options:

- Software emulation of floating-point arithmetic
 - compiler/library supported
 - large code size, slow
- Fixed-point arithmetic
 - often manual implementation
 - fast and compact
Fixed-Point Arithmetic

Represent all numbers (parameters, variables) using **integers**

Use **binary scaling** to make all numbers fit into one of the integer data types, e.g.

- 8 bits (char, int8_t): \([-128, 127]\]
- 16 bits (short, int16_t): \([-32768, 32767]\]
- 32 bits (long, int32_t): \([-2147483648, 2147483647]\]
Challenges

• Must select data types to get sufficient numerical precision
• Must know (or estimate) the minimum and maximum value of every variable in order to select appropriate scaling factors
• Must keep track of the scaling factors in all arithmetic operations
• Must handle potential arithmetic overflows
Fixed-Point Representation

In fixed-point representation, a real number x is represented by an integer X with $N = m + n + 1$ bits, where

- N is the wordlength
- m is the number of integer bits (excluding the sign bit)
- n is the number of fractional bits

| 0 | 1 | 1 | 0 | 1 | 0 | 1 | 1 |

Sign bit | Integer bits | Fractional bits

“Q-format”: X is sometimes called a $Q_{m.n}$ or Q_n number
Conversion to and from fixed point

Conversion from real to fixed-point number:

\[X := \text{round}(x \cdot 2^n) \]

Conversion from fixed-point to real number:

\[x := X \cdot 2^{-n} \]

Example: Represent \(x = 13.4 \) using \(Q4.3 \) format

\[X = \text{round}(13.4 \cdot 2^3) = 107 \ (= 01101011_2) \]
A Note on Negative Numbers

In almost all CPUs today, negative integers are handled using **two’s complement**: A “1” in the sign bit means that 2^N should be subtracted.

Example ($N = 8$):

<table>
<thead>
<tr>
<th>Binary representation</th>
<th>Interpretation</th>
</tr>
</thead>
<tbody>
<tr>
<td>00000000</td>
<td>0</td>
</tr>
<tr>
<td>00000001</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>01111111</td>
<td>127</td>
</tr>
<tr>
<td>10000000</td>
<td>-128</td>
</tr>
<tr>
<td>10000001</td>
<td>-127</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>11111111</td>
<td>-1</td>
</tr>
</tbody>
</table>
Range vs Resolution for Fixed-Point Numbers

A $Q_{m.n}$ fixed-point number can represent real numbers in the range

$$[-2^m, 2^m - 2^n]$$

while the resolution is

$$2^{-n}$$

Fixed range and resolution

- n too small \Rightarrow poor resolution
- n too large \Rightarrow risk of overflow
Fixed-Point Addition/Subtraction

Two fixed-point numbers in the same $Q_{m.n}$ format can be added or subtracted directly.

The result will have the same number of fractional bits:

\[z = x + y \iff Z = X + Y \]

\[z = x - y \iff Z = X - Y \]

- The result will in general require $N + 1$ bits; risk of overflow.
Example: Addition with Overflow

Two numbers in $Q_{4.3}$ format are added:

\[x = 12.25 \quad \Rightarrow \quad X = 98 \]
\[y = 14.75 \quad \Rightarrow \quad Y = 118 \]

\[Z = X + Y = 216 \]

This number is however out of range and will be interpreted as

\[216 - 256 = -40 \quad \Rightarrow \quad z = -5.0 \]
Fixed-Point Multiplication and Division

If the operands and the result are in the same Q-format, multiplication and division are done as

\[z = x \cdot y \quad \Leftrightarrow \quad Z = (X \cdot Y)/2^n \]

\[z = x/y \quad \Leftrightarrow \quad Z = (X \cdot 2^n)/Y \]

- Double wordlength is needed for the intermediate result
- Division by \(2^n\) is implemented as a right-shift by \(n\) bits
- Multiplication by \(2^n\) is implemented as a left-shift by \(n\) bits
- The lowest bits in the result are truncated (round-off noise)
- Risk of overflow
Example: Multiplication

Two numbers in $Q5.2$ format are multiplied:

\[
\begin{align*}
 x &= 6.25 \quad \Rightarrow \quad X = 25 \\
 y &= 4.75 \quad \Rightarrow \quad Y = 19
\end{align*}
\]

Intermediate result:

\[X \cdot Y = 475\]

Final result:

\[
Z = \frac{475}{2^2} = 118 \quad \Rightarrow \quad z = 29.5
\]

(exact result is 29.6875)
Multiplication of Operands with Different Q-format

In general, multiplication of two fixed-point numbers $Qm_1.n_1$ and $Qm_2.n_2$ gives an intermediate result in the format

$$Qm_1 + m_2.n_1 + n_2$$

which may then be right-shifted $n_1 + n_2 - n_3$ steps and stored in the format

$$Qm_3.n_3$$

Common case: $n_2 = n_3 = 0$ (one real operand, one integer operand, and integer result). Then

$$Z = (X \cdot Y)/2^{n_1}$$
Implementation of Multiplication in C

Assume $Q_{4.3}$ operands and $Q_{4.3}$ result

```c
#include <inttypes.h>  /* define int8_t, etc. (Linux only) */
define n 3  /* number of fractional bits */
int8_t X, Y, Z;  /* Q4.3 operands and result */
int16_t temp;  /* Q9.6 intermediate result */
...
temp = (int16_t)X * Y;  /* cast operands to 16 bits and multiply */
temp = temp >> n;  /* divide by $2^n */
Z = temp;  /* truncate and assign result */
```
Implementation of Multiplication in C with Rounding and Saturation

```c
#include <inttypes.h> /* defines int8_t, etc. (Linux only) */
#define n 3 /* number of fractional bits */
int8_t X, Y, Z; /* Q4.3 operands and result */
int16_t temp; /* Q9.6 intermediate result */
...
temp = (int16_t)X * Y; /* cast operands to 16 bits and multiply */
temp = temp + (1 << n-1); /* add 1/2 to give correct rounding */
temp = temp >> n; /* divide by 2^n */
if (temp > INT8_MAX) /* saturate the result before assignment */
    Z = INT8_MAX;
else if (temp < INT8_MIN)
    Z = INT8_MIN;
else
    Z = temp;
```

Graduate Course on Embedded Control Systems – Pisa 8-12 June 2009
Implementation of Division in C with Rounding

```c
#include <inttypes.h> /* define int8_t, etc. (Linux only) */
#define n 3 /* number of fractional bits */
int8_t X, Y, Z; /* Q4.3 operands and result */
int16_t temp; /* Q9.6 intermediate result */
...

temp = (int16_t)X << n; /* cast operand to 16 bits and shift */
temp = temp + (Y >> 1); /* Add Y/2 to give correct rounding */
temp = temp / Y; /* Perform the division (expensive!) */
Z = temp; /* Truncate and assign result */
```
Example: Atmel mega8/16 instruction set

<table>
<thead>
<tr>
<th>Mnemonic</th>
<th>Description</th>
<th># clock cycles</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADD</td>
<td>Add two registers</td>
<td>1</td>
</tr>
<tr>
<td>SUB</td>
<td>Subtract two registers</td>
<td>1</td>
</tr>
<tr>
<td>MULS</td>
<td>Multiply signed</td>
<td>2</td>
</tr>
<tr>
<td>ASR</td>
<td>Arithmetic shift right (1 step)</td>
<td>1</td>
</tr>
<tr>
<td>LSL</td>
<td>Logical shift left (1 step)</td>
<td>1</td>
</tr>
</tbody>
</table>

- No division instruction; implemented in math library using expensive division algorithm
Example Evaluation of Execution Time and Code Size

- Atmel AVR ATmega16 microcontroller @14.7 MHz with 16K ROM controlling a rotating DC servo

- C program that implements simple state feedback controllers
 - velocity control (one state is measured)
 - position control (two states are measured)

- Comparison of floating-point and fixed-point implementations
Example Evaluation: Fixed-Point Implementation

The position controller (with integral action) is given by

\[
 u(k) = l_1 y_1(k) + l_2 y_2(k) + l_3 I(k)
 \]

\[
 I(k + 1) = I(k) + r(k) - y_2(k)
 \]

where

\[
 l_1 = -5.0693, \quad l_2 = -5.6855, \quad l_3 = 0.6054
 \]

Choose fixed-point representations assuming word length \(N = 16 \)

- \(y_1, y_2, u, r \) are integers in the interval \([-512, 511] \in Q_{10.0} \)
- Let \(I \in Q_{16.0} \) to simplify the addition
- Use \(Q_{4.12} \) for the coefficients, giving

\[
 L_1 = -20764, \quad L_2 = -23288, \quad L_3 = 2480
 \]
Example Evaluation: Pseudo-C Code

```c
#define L1 -20764 /* Q4.12 */
#define L2 -23288 /* Q4.12 */
#define L3 2480 /* Q4.12 */
#define QF 12 /* number of fractional bits in L1,L2,L3 */

int16_t y1, y2, r, u, I=0; /* Q16.0 variables */
for (;;) {
    y1 = readInput(1); /* read Q10.0, store as Q16.0 */
    y2 = readInput(2); /* read Q10.0, store as Q16.0 */
    r = readReference();
    u = ((int32_t)L1*y1 + (int32_t)L2*y2 + (int32_t)L3*I) >> QF;
    if (u >= 512) u = 511; /* saturate to fit into Q10.0 output */
    if (u < -512) u = -512;
    writeOutput(u); /* write Q10.0 */
    I += r - y2; /* TODO: saturation and tracking... */
    sleep();
}
```
Example Evaluation: Measurements

Floating-point implementation using floats:
- Velocity control: 950 μs
- Position control: 1220 μs
- Total code size: 13708 bytes

Fixed-point implementation using 16-bit integers:
- Velocity control: 130 μs
- Position control: 270 μs
- Total code size: 3748 bytes

One A-D conversion takes about 115 μs. This gives a 25–50 times speedup for fixed point math compared to floating point. The floating point math library takes about 10K (out of 16K available!)
Controller Realizations

A linear controller

\[H(z) = \frac{b_0 + b_1 z^{-1} + \ldots + b_n z^{-n}}{1 + a_1 z^{-1} + \ldots + a_n z^{-n}} \]

can be realized in a number of different ways with equivalent input-output behavior, e.g.

- Direct form
- Companion (canonical) form
- Series (cascade) or parallel form
Direct Form

The input-output form can be directly implemented as

\[u(k) = \sum_{i=0}^{n} b_i y(k - i) - \sum_{i=1}^{n} a_i u(k - i) \]

- Nonminimal (all old inputs and outputs are used as states)
- Very sensitive to roundoff in coefficients
- Avoid!
Companion Forms

E.g. controllable or observable canonical form

\[
x(k + 1) = \begin{pmatrix} -a_1 & -a_2 & \cdots & -a_{n-1} & -a_n \\ 1 & 0 & \cdots & 0 & 0 \\ 0 & 1 & \cdots & 0 & 0 \\ \vdots \\ 0 & 0 & \cdots & 1 & 0 \end{pmatrix} x(k) + \begin{pmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix} y(k)
\]

\[
u(k) = \begin{pmatrix} b_1 & b_2 & \cdots & b_n \end{pmatrix} x(k)
\]

- Same problem as for the Direct form
- Very sensitive to roundoff in coefficients
- Avoid!
Pole Sensitivity

How sensitive are the poles to errors in the coefficients?

Assume characteristic polynomial with distinct roots. Then

\[A(z) = 1 - \sum_{k=1}^{n} a_k z^{-k} = \prod_{j=1}^{n} (1 - p_j z^{-1}) \]

Pole sensitivity:

\[\frac{\partial p_i}{\partial a_k} \]
The chain rule gives

\[\frac{\partial A(z)}{\partial p_i} \frac{\partial p_i}{\partial a_k} = \frac{\partial A(z)}{\partial a_k} \]

Evaluated in \(z = p_i \) we get

\[\frac{\partial p_i}{\partial a_k} = \frac{p_i^{n-k}}{\prod_{j=1, j \neq i}^n (p_i - p_j)} \]

- Having poles close to each other is bad
- For stable filter, \(a_n \) is the most sensitive parameter
Better: Series and Parallel Forms

Divide the transfer function of the controller into a number of first- or second-order subsystems:

- Try to balance the gain such that each subsystem has about the same amplification
Example: Series and Parallel Forms

\[C(z) = \frac{z^4 - 2.13z^3 + 2.351z^2 - 1.493z + 0.5776}{z^4 - 3.2z^3 + 3.997z^2 - 2.301z + 0.5184} \]
(Direct)

\[= \left(\frac{z^2 - 1.635z + 0.9025}{z^2 - 1.712z + 0.81} \right) \left(\frac{z^2 - 0.4944z + 0.64}{z^2 - 1.488z + 0.64} \right) \]
(Series)

\[= 1 + \frac{-5.396z + 6.302}{z^2 - 1.712z + 0.81} + \frac{6.466z - 4.907}{z^2 - 1.488z + 0.64} \]
(Parallel)
Direct form with quantized coefficients ($N = 8$, $n = 4$):
Series form with quantized coefficients \((N = 8, n = 4)\):

![Bode Diagram](image)
Jackson’s Rules for Series Realizations

How to pair and order the poles and zeros?

Jackson’s rules (1970):

- Pair the pole closest to the unit circle with its closest zero. Repeat until all poles and zeros are taken.
- Order the filters in increasing or decreasing order based on the poles closeness to the unit circle.

This will push down high internal resonance peaks.
Well-Conditioned Parallel Realizations

Assume n_r distinct real poles and n_c distinct complex-pole pairs

Modal (a.k.a. diagonal/parallel/coupled) form:

\[
\begin{align*}
 z_i(k+1) &= \lambda_i z_i(k) + \beta_i y(k) & i = 1, \ldots, n_r \\
 v_i(k+1) &= \begin{pmatrix} \sigma_i & \omega_i \\ -\omega_i & \sigma_i \end{pmatrix} v_i(k) + \begin{pmatrix} \gamma_{i1} \\ \gamma_{i2} \end{pmatrix} y(k) & i = 1, \ldots, n_c \\
 u(k) &= Dy(k) + \sum_{i=1}^{n_r} \gamma_i z_i(k) + \sum_{i=1}^{n_c} \delta_i^T v_i(k)
\end{align*}
\]

Matlab: `sysm = canon(sys,'modal')`
Possible Pole Locations for Direct vs Modal Form
Short Sampling Interval Modification

In the state update equation

\[x(k + 1) = \Phi x(k) + \Gamma y(k) \]

the system matrix \(\Phi \) will be close to \(I \) if \(h \) is small. Round-off errors in the coefficients of \(\Phi \) can have drastic effects.

Better: use the modified equation

\[x(k + 1) = x(k) + (\Phi - I)x(k) + \Gamma y(k) \]

- Both \(\Phi - I \) and \(\Gamma \) are roughly proportional to \(h \)
 - Less round-off noise in the calculations
- Also known as the \(\delta \)-form

Graduate Course on Embedded Control Systems – Pisa 8-12 June 2009
Short Sampling Interval and Integral Action

Fast sampling and slow integral action can give roundoff problems:

\[I(k + 1) = I(k) + e(k) \cdot \frac{h}{T_i} \approx 0 \]

Possible solutions:

- Use a dedicated high-resolution variable (e.g. 32 bits) for the I-part
- Update the I-part at a slower rate

General problem for filters with very different time constants