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Lecture 2 outline

• Introduction

• Analysis of controller timing

• Scheduling to reduce delay and jitter
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Control system development today
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Problems

• The control engineer does not care about the implementa-

tion

– “trivial”

– “buy a fast computer”

• The software engineer does not understand controller

timing

– “τ i = (Ti, Di, Ci)”
– “hard deadlines”

• Control theory and real-time scheduling theory have
evolved as separate subjects for thirty years
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In the beginning. . .

Liu and Layland (1973): “Scheduling algorithms for multipro-

gramming in a hard-real-time environment.” Journal of the

ACM, 20:1.

• Rate-monotonic (RM) scheduling

• Earliest-deadline-first (EDF) scheduling

• Motivated by process control

– Samples “arrive” periodically

– Control response computed before end of period

– “Any control loops closed within the computer must be

designed to allow at least an extra unit sample delay.”
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Common assumptions about control tasks

In the simple task model, a task τ i is described by

• a fixed period Ti

• a fixed, known worst-case execution time Ci

• a hard relative deadline Di = Ti

Is this model suitable for control tasks?
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Fixed period?

Not necessarily:

• Different sampling periods could be appropriate for differ-

ent operating modes

• Some controllers are not sampled against time but are
invoked by events

• The sampling period could be adjusted on-line by a

resource manager (“feedback scheduling”)
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Fixed and known WCET?

Not always:

• WCET analysis is a very hard problem

– May have to use estimates or measurements

• Some controllers switch between modes with very different

execution times

– Hybrid controllers

• Some controllers can explicitly trade off execution time for

quality of control

– “Any-time” optimization algorithms, e.g. model-

predictive control (MPC)

– Long execution time [ high quality of control
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Hard deadlines?

Often not:

• Controller deadlines are often firm rather than hard

– Often OK to miss a few outputs, but not too many in a

row

– Depends on what happens when a deadline is missed:

∗ Task is allowed to complete late – often OK

∗ Task is aborted at the deadline – worse

• At the same time, meeting all deadlines does not guaran-

tee stability of the control loop

– Di = Ti is motivated by runability conditions only

Graduate Course on Embedded Control Systems – Pisa 8-12 June 2009



Inputs and outputs?

Completely missing from the simple task model:

• When are the inputs (measurement signals) read?

– Beginning of period?

– When the task starts?

• When are the outputs (control signals) written?

– When the task finishes?

– End of period?
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Inverted pendulum example

Control of three inverted pendulums using one CPU:
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The pendulums

l

y

u

A simple second-order model is given by

d2y

dt2
= ω 20 sin y+ uω 20 cos y

where ω 0 =
√�
l

is the natural frequency of the pendulum.

Lengths l = {1, 2, 3} cm [ ω 0 = {31, 22, 18} rad/s
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Control design

Linearization around the upright equilibrium gives the state-

space model

dx

dt
=




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
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• Model sampled using periods h = {10, 14.5, 17.5} ms

• Controllers based on state feedback from observer,

designed using pole placement
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Control design, Cont’d

• State feedback poles specified in continuous time as

s2 + 1.4ω cs+ω 2c = 0

ω c = {53, 38, 31} rad/s

• Observer poles specified in continuous time as

s2 + 1.4ω os+ω 2o = 0

ω o = {106, 75, 61} rad/s
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Implementation

• A periodic timer interrupt samples the plant output and

triggers control task

• Each controller i is implemented as a periodic task:

t = CurrentTime();

LOOP

y := AnalogIn();

u := CalculateControl(y);

AnalogOut(u);

t = t + h;

WaitUntil(t);

END

• Assumed execution time: C = 3.5 ms
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Simulation 1 – Ideal case

Each controller runs on a separate CPU.
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Schedulability analysis

• Assume Di = Ti
• CPU utilization U =

∑3

i=1
Ci
Ti
= 0.79

• Schedulable under EDF, since U < 1
• Schedulable under RM?

U > 3(21/3 − 1) = 0.78 [ Cannot say

Compute worst-case response times Ri:

Task T D C R

1 10 10 3.5 3.5

2 14.5 14.5 3.5 7.0

3 17.5 17.5 3.5 14.0

∀i : Ri < Di [ Yes
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Simulation 2 – Rate-monotonic scheduling
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• Loop 3 becomes unstable
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Simulation 3 – Earliest-deadline-first scheduling

0 0.1 0.2 0.3
−0.5

0

0.5

1

1.5

O
u
tp

u
t 
 y

Pendulum 1

0 0.1 0.2 0.3
−0.5

0

0.5

1

1.5
Pendulum 2

0 0.1 0.2 0.3
−0.5

0

0.5

1

1.5
Pendulum 3

0 0.1 0.2 0.3
−10

−5

0

5

Time

In
p
u
t 
 u

0 0.1 0.2 0.3
−10

−5

0

5

Time

0 0.1 0.2 0.3
−10

−5

0

5

Time

• All loops are OK
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Questions

• How can a loop become unstable even though the system

is schedulable?

• Why does EDF work better than RM?

Need to study control loop timing
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Lecture 2 outline

• Introduction

• Analysis of controller timing

• Scheduling to reduce delay and jitter
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Sampled-data (networked) control systems
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Ideal controller timing
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• Process output y sampled periodically at time instants tk = kh
• Control u applied after short and constant time delay τ
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Sources of nondeterminism

• Jitter in the sampling operation due to poor time resolution

or preemption

• Variable communication delay due to the medium access

control or the communication protocol

• Variable computational delay due to variable execution

time or preemption

• Jitter in the actuation
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More realistic controller timing

y(t)

u(t)

tk−1 tk tk+1

Lk−1s Lk−1
io Lks Lk

io Lk+1s Lk+1
io

sk−1 fk−1 sk fk sk+1 fk+1

Rk−1 Rk Rk+1

τ

t

t

• Control task τ released at periodic time instances tk = kh
• Output y sampled after time-varying sampling latency Ls

• Control u generated after time-varying input-output latency Lio
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Real-time and control analysis

Scheduling method,
(T, D, Priorities, 
Network parameters
Scheduling and

Protocol,...)

Control
Performance

(variance, rise time, 
overshoot, ...)

Loop Timing
Parameters
(latencies, jitter, ...)

Complex relationship Complex relationship
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Analysis of controller timing

1. Sampling period (h)

2. Control delay (average value of Lio)

3. Jitter (variability in Ls and Lio)
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1. Sampling interval

Theoretically, the shorter the sampling interval, the better the

performance

• When h→ 0, we approach continuous (analog) control

Practically, there is a limit as to how fast you can or want to

sample

• Hardware limitations

• Limited computational resources

• Numerical problems

• Diminishing returns
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Choice of sampling interval

Sampling frequency ω s = 2π/h
Nyquist frequency ω N = π/h

Nyquist’s sampling theorem:

We must sample at least twice as fast as the highest

frequency we are interested in

• What frequencies are we interested in?
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Typical loop transfer function P(iω )C(iω ):
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• ω c = cross-over frequency, ϕm = phase margin

• We should have Nyquist frequency ω N ≫ ω c
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Sampling interval rule of thumb

The sample-and-hold can be approximated by a delay of h/2:

GS&H(s) ( e−sh/2

This will decrease the phase margin by

argGS&H(iω c) = arg e−iω ch/2 = −ω ch/2

Assume we can accept a phase loss between 5○ and 15○.
Then

0.15 < ω ch < 0.5

This corresponds to a Nyquist frequency about 6 to 20 times

larger than the crossover frequency
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Example: control of inverted pendulum
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• Large ω ch may seem OK, but beware!

– Digital design assuming perfect model

– Controller perfectly synchronized with initial disturbance
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Pendulum with non-synchronized disturbance
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Recall that the controller runs in open loop between samples
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2. Control delay

The shorter the delay, the better the achievable performance

Sources of time delays:

• Deadtime in the process: tubes, pipes, conveyor belts

• Deadtime in the controller implementation: computational

delay, communication delay

From a theoretical perspective, all (constant) delays in the loop

can be lumped into a single control delay τ
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Control delay decreases the phase margin

Phase margin loss due to delay τ :

arg e−iω cτ = −ω cτ

Closed-loop system stable if

ω cτ < ϕm \ τ < ϕm

ω c

τm =
ϕm

ω c
is called the delay margin
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Example: delay margin for pendulum controller

Bode Diagram
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Pendulum controller with control delay
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• No delay compensation
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Delays in discrete time

Include the control delay in the process model:

dx(t)
dt

= Ax(t) + Bu(t− τ ), τ < h

Sampling gives

x(kh+ h) = Φx(kh) + Γ1u(kh− h) + Γ0u(kh)

where

Γ1 = eA(h−τ )
∫ τ

0

eAsB ds

Γ0 =
∫ h−τ

0

eAsB ds
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State-space model (with extra state z(kh) = u(kh− h)

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


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






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






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




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


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
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






+









Γ0

I








u(kh)

Can easily be extended to τ > h
Design:

• Apply arbitrary discrete time design using the augmented

model

• Remember that the delay imposes a fundamental perfor-

mance limitation

– Try to respect the rule of thumb 0.15 < ω (h+ 2τ ) < 0.5
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Pendulum controller with delay compensation
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• Shaky response, but stable

• ω c(h+ 2τ ) = 1.4
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Minimizing the computational delay

A general controller in state-space representation:

x(k+ 1) = Fx(k) + Gy(k) + Grr(k)
u(k) = Cx(k) + Dy(k) + Drr(k)

Do as little as possible between the input and the output:

r = ref.get();

y = yIn.get();

/* Calculate Output */

u := u1 + D*y + Dr*r;

uOut.put(u);

/* Update State */

x := F*x + G*y + Gr*r;

u1 := C*x;
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3. Jitter

More difficult to analyze and compensate for.

Some tools for jitter analysis:

• Robust (worst-case) analysis – e.g. the Jitter margin

• Stochastic (average-case) analysis – e.g. the Jitterbug

toolbox

• Simulation – e.g. the TrueTime simulator
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Comparison of the tools

Modeling
detail

Strength of
results

Jitterbug

Jitter margin

TrueTime
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The jitter margin

Stability result due to Kao and Lincoln (2004):

P(s)

C(s)

∆

Σ−

• Continuous-time plant P(s)
• Continuous-time controller C(s)
• Arbitrarily time-varying delay ∆ ∈ [0, J]
• Theorem: closed-loop system stable if

∣

∣

∣

∣

P(iω )C(iω )
1+ P(iω )C(iω )

∣

∣

∣

∣

< 1

Jω
∀ω ∈ [0,∞].
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Graphical test:

Bode Magnitude Diagram
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(Note that the theorem gives a sufficient but not necessary

condition for stability)
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Proof sketch

Rewrite the control output as one direct path and one error

path:

P(s)

C(s)

Σ−−

1
s

∆−1

s

Gain of left part: J

Gain of right part: max
ω

∣

∣

∣

∣

iω P(iω )C(iω )
1+ P(iω )C(iω )

∣

∣

∣

∣

The Small Gain Theorem then gives the result
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Stability under jitter – sampled-data case

Now assume continuous-time plant P(s), discrete-time con-

troller C(z) and time-varying delay ∆ ∈ [0, J]
The closed-loop system is stable if

∣

∣

∣

∣

Palias(ω )C(eiω )
1+ PZOH(eiω )C(eiω )

∣

∣

∣
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< 1√
J
∣

∣eiω − 1
∣

∣

, ∀ω ∈ [0,π ]

Here,

• Palias(ω ) =
√

∑∞
k=−∞

∣

∣P
(

i(ω + 2π k) 1
h

)∣

∣

2

• PZOH(z) is the ZOH-discretization of P(s)

(For small h, Palias(ω ) ( PZOH(eiω ))
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Jitter analysis – rate-monotonic scheduling

• Ri – worst-case response time of task i

Ri = Ci +
∑

j∈hp(i)

⌈

Ri

Tj

⌉

Cj

• Rbi – best-case response time of task i

Rbi = Ci +
∑

j∈hp(i)

⌈

Rbi
Tj
− 1

⌉

Cj

• Ji – worst-case input-output jitter of task i:

Ji = Ri − Rbi

(Analysis for earliest-deadline-first scheduling also exists)

Graduate Course on Embedded Control Systems – Pisa 8-12 June 2009



The pendulum example – RM scheduling

Task T C R Rb J

1 10 3.5 3.5 3.5 0

2 14.5 3.5 7.0 3.5 3.5

3 17.5 3.5 14.0 3.5 10.5
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The pendulum example – RM

• Compute the jitter margin Jm for each task

• J < Jm [ Stable

Task R L = Rb J Jm Stable

1 3.5 3.5 0 4.4 Yes

2 7.0 3.5 3.5 6.4 Yes

3 14.0 3.5 10.5 8.1 Can’t say
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The pendulum example – EDF

Task R L = Rb J Jm Stable

1 3.5 3.5 0 4.4 Yes

2 7.5 3.5 4.0 6.4 Yes

3 10.5 3.5 7.0 8.1 Yes

• In general, EDF distributes the jitter more evenly than RM.
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Limitations of the jitter margin

• No sampling jitter, only input-output jitter

• Only linear systems

• Sufficient condition only, can be conservative
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Coping with sampling jitter

Rule of thumb: Jitter that is less than 10% of the nominal

sampling period need not to be compensated for

Two approaches:

• Gain scheduling

• Robust design methods, e.g.

– H∞
– Quantitative Feedback Theory (QFT)

– µ-design
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Gain scheduling

Parametrize the controller parameters in terms of the actual

(measured) sampling period hk

For example:

dx(tk)
dt

( x(tk) − x(tk−1)
hk

Often works well for low order controllers, e.g., PID.

Ad hoc method with no formal guarantees
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Example: Control of DC servo with sampling jitter

• PD controller designed for h = 10 ms

• Actual sampling period varies randomly between 2 and

18 ms
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Example: Control of DC servo with sampling jitter

• D-part calculated according to actual sampling interval hk
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Almost no visible performance degradation
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Lecture 2 outline

• Introduction

• Analysis of controller timing

• Scheduling to reduce delay and jitter
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Subtask scheduling

A control algorithm normally consists of four distinct parts:

while (1) {

read_input();

calculate_output();

write_output();

update_state();

...

}

Idea: schedule the parts as separate (sub)tasks

• reduce delay

• reduce jitter
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Subtask scheduling with two subtasks

Assume a set of control tasks, where each control task τ is

divided into two subtasks:

• τCO – Read Input, Calculate Output, Write Output; execu-

tion time CCO

• τUS – Update State, execution time CUS

Many possible scheduling algorithms:

• Deadline-monotonic (DM) scheduling

• EDF scheduling

• . . .
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Deadline assignment under DM scheduling

0

0 DUS=T

DCO T

τCO

τUS

t

t

• Assign DUS = T for all control tasks

• Want to minimize DCO for each task. Iterative deadline
assignment algorithm:

1. Start by assigning DCO := T − CUS for all tasks

2. Assign deadline-monotonic priorities to all subtasks

3. Calculate the response time R of each subtask

4. Assign DCO := RCO for all tasks

5. Repeat from 2 until no further improvement.
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Inverted pendulum example (again)
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• The same design as before
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Simulation under RM scheduling
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Schedule under RM scheduling

Schedule (high=running, medium=ready, low=sleeping)
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• Large delay and jitter for controller 3
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Subtask scheduling analysis

Each pendulum controller is divided into two subtasks:

• Calculate Output: CCO = 1.5 ms

• Update State: CUS = 2.0 ms

First iteration of deadline assignment algorithm:

T D C R

τCO1 10.0 8.0 1.5 1.5

τUS1 10.0 10.0 2.0 3.5

τCO2 14.5 12.5 1.5 5.0

τUS2 14.5 14.5 2.0 7.0

τCO3 17.5 15.5 1.5 8.5

τUS3 17.5 17.5 2.0 14.0
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Subtask scheduling analysis

Third iteration (converged):

T D C R

τCO1 10.0 1.5 1.5 1.5

τUS1 10.0 10.0 2.0 6.5

τCO2 14.5 3.0 1.5 3.0

τUS2 14.5 14.5 2.0 8.5

τCO3 17.5 4.5 1.5 4.5

τUS3 17.5 17.5 2.0 14.0

New worst-case input-output latencies: 1.5, 3.0, 4.5 ms.

Graduate Course on Embedded Control Systems – Pisa 8-12 June 2009



Simulation under subtask scheduling
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Schedule under subtask scheduling

Schedule (high=running, medium=ready, low=sleeping)
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• More context switches
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