

Integrated Control and Scheduling

Anton Cervin & Karl-Erik Årzén Lund University

Lecture 2 outline

- Introduction
- Analysis of controller timing
- Scheduling to reduce delay and jitter

Control system development today

Control Department Software Department Requirements **Functional Test** Control Unit/Structural Test Algorithm Design Design plant/algorithm models Software Design

Problems

- The control engineer does not care about the implementation
 - "trivial"
 - "buy a fast computer"
- The software engineer does not understand controller timing
 - " $au_i = (T_i, D_i, C_i)$ "
 - "hard deadlines"
- Control theory and real-time scheduling theory have evolved as separate subjects for thirty years

In the beginning...

Liu and Layland (1973): "Scheduling algorithms for multiprogramming in a hard-real-time environment." *Journal of the ACM*, **20**:1.

- Rate-monotonic (RM) scheduling
- Earliest-deadline-first (EDF) scheduling
- Motivated by process control
 - Samples "arrive" periodically
 - Control response computed before end of period
 - "Any control loops closed within the computer must be designed to allow at least an extra unit sample delay."

Common assumptions about control tasks

In the simple task model, a task τ_i is described by

- a fixed period T_i
- ullet a fixed, known worst-case execution time C_i
- a hard relative deadline $D_i = T_i$

Is this model suitable for control tasks?

Fixed period?

Not necessarily:

- Different sampling periods could be appropriate for different operating modes
- Some controllers are not sampled against time but are invoked by events
- The sampling period could be adjusted on-line by a resource manager ("feedback scheduling")

Fixed and known WCET?

Not always:

- WCET analysis is a very hard problem
 - May have to use estimates or measurements
- Some controllers switch between modes with very different execution times
 - Hybrid controllers
- Some controllers can explicitly trade off execution time for quality of control
 - "Any-time" optimization algorithms, e.g. modelpredictive control (MPC)
 - Long execution time ⇒ high quality of control

Hard deadlines?

Often not:

- Controller deadlines are often firm rather than hard
 - Often OK to miss a few outputs, but not too many in a row
 - Depends on what happens when a deadline is missed:
 - * Task is allowed to complete late often OK
 - * Task is aborted at the deadline worse
- At the same time, meeting all deadlines does not guarantee stability of the control loop
 - $D_i = T_i$ is motivated by runability conditions only

Inputs and outputs?

Completely missing from the simple task model:

- When are the inputs (measurement signals) read?
 - Beginning of period?
 - When the task starts?
- When are the outputs (control signals) written?
 - When the task finishes?
 - End of period?

Inverted pendulum example

Control of three inverted pendulums using one CPU:

The pendulums

A simple second-order model is given by

$$\frac{d^2y}{dt^2} = \omega_0^2 \sin y + u \,\omega_0^2 \cos y$$

where $\omega_0 = \sqrt{\frac{g}{l}}$ is the natural frequency of the pendulum.

Lengths
$$l = \{1, 2, 3\}$$
 cm $\Rightarrow \omega_0 = \{31, 22, 18\}$ rad/s

Control design

Linearization around the upright equilibrium gives the statespace model

$$\frac{dx}{dt} = \begin{pmatrix} 0 & 1 \\ \omega_0^2 & 0 \end{pmatrix} x + \begin{pmatrix} 0 \\ \omega_0^2 \end{pmatrix} u$$
$$y = \begin{pmatrix} 1 & 0 \end{pmatrix} x$$

- Model sampled using periods $h = \{10, 14.5, 17.5\}$ ms
- Controllers based on state feedback from observer, designed using pole placement

Control design, Cont'd

State feedback poles specified in continuous time as

$$s^2 + 1.4\omega_c s + \omega_c^2 = 0$$

$$\omega_c = \{53, 38, 31\} \text{ rad/s}$$

Observer poles specified in continuous time as

$$s^2 + 1.4\omega_o s + \omega_o^2 = 0$$

$$\omega_o = \{106, 75, 61\}$$
 rad/s

Implementation

- A periodic timer interrupt samples the plant output and triggers control task
- Each controller *i* is implemented as a periodic task:

```
t = CurrentTime();
LOOP
    y := AnalogIn();
    u := CalculateControl(y);
    AnalogOut(u);
    t = t + h;
    WaitUntil(t);
END
```

• Assumed execution time: C = 3.5 ms

Simulation 1 – Ideal case

Each controller runs on a separate CPU.

Schedulability analysis

- Assume $D_i = T_i$
- ullet CPU utilization $U=\sum_{i=1}^3 rac{C_i}{T_i}=0.79$
- ullet Schedulable under EDF, since U < 1
- Schedulable under RM?

$$U > 3(2^{1/3} - 1) = 0.78 \implies \text{Cannot say}$$

Compute worst-case response times R_i :

Task	T	D	C	R
1	10	10	3.5	3.5
2	14.5	14.5	3.5	7.0
3	17.5	17.5	3.5	14.0

Simulation 2 – Rate-monotonic scheduling

• Loop 3 becomes unstable

Simulation 3 – Earliest-deadline-first scheduling

All loops are OK

Questions

- How can a loop become unstable even though the system is schedulable?
- Why does EDF work better than RM?

Need to study control loop timing

Lecture 2 outline

- Introduction
- Analysis of controller timing
- Scheduling to reduce delay and jitter

Sampled-data (networked) control systems

Ideal controller timing

- Process output y sampled periodically at time instants $t_k = kh$
- ullet Control u applied after short and constant time delay au

Sources of nondeterminism

- Jitter in the sampling operation due to poor time resolution or preemption
- Variable communication delay due to the medium access control or the communication protocol
- Variable computational delay due to variable execution time or preemption
- Jitter in the actuation

More realistic controller timing

- Control task τ released at periodic time instances $t_k = kh$
- ullet Output y sampled after time-varying sampling latency L_s
- ullet Control u generated after time-varying input-output latency L_{io}

Real-time and control analysis

Analysis of controller timing

- 1. Sampling period (h)
- 2. Control delay (average value of L_{io})
- 3. Jitter (variability in L_s and L_{io})

1. Sampling interval

Theoretically, the shorter the sampling interval, the better the performance

• When $h \to 0$, we approach continuous (analog) control

Practically, there is a limit as to how fast you can or want to sample

- Hardware limitations
- Limited computational resources
- Numerical problems
- Diminishing returns

Choice of sampling interval

Sampling frequency $\omega_s = 2\pi/h$

Nyquist frequency $\omega_N = \pi/h$

Nyquist's sampling theorem:

We must sample at least twice as fast as the highest frequency we are interested in

What frequencies are we interested in?

Typical loop transfer function $P(i\omega)C(i\omega)$:

- ullet $\omega_c=$ cross-over frequency, $arphi_m=$ phase margin
- We should have Nyquist frequency $\omega_N \gg \omega_c$

Sampling interval rule of thumb

The sample-and-hold can be approximated by a delay of h/2:

$$G_{S\&H}(s)pprox e^{-sh/2}$$

This will decrease the phase margin by

$$rg G_{S\&H}(i\omega_c) = rg e^{-i\omega_c h/2} = -\omega_c h/2$$

Assume we can accept a phase loss between 5° and 15°. Then

$$0.15 < \omega_c h < 0.5$$

This corresponds to a Nyquist frequency about 6 to 20 times larger than the crossover frequency

Example: control of inverted pendulum

- Large $\omega_c h$ may seem OK, but beware!
 - Digital design assuming perfect model
 - Controller perfectly synchronized with initial disturbance

Pendulum with non-synchronized disturbance

Recall that the controller runs in open loop between samples

2. Control delay

The shorter the delay, the better the achievable performance

Sources of time delays:

- Deadtime in the process: tubes, pipes, conveyor belts
- Deadtime in the controller implementation: computational delay, communication delay

From a theoretical perspective, all (constant) delays in the loop can be lumped into a single control delay τ

Control delay decreases the phase margin

Phase margin loss due to delay τ :

$$\arg e^{-i\omega_c au} = -\omega_c au$$

Closed-loop system stable if

$$\omega_c au < arphi_m \quad \Leftrightarrow \quad au < rac{arphi_m}{\omega_c}$$

$$au_m = rac{arphi_m}{arphi_c}$$
 is called the **delay margin**

Example: delay margin for pendulum controller

$$arphi_m=32^\circ$$
, $\omega_c=2.8$ rad/s \Rightarrow $au_m=rac{32\pi}{180\cdot 2.8}=0.2$

Pendulum controller with control delay

No delay compensation

Delays in discrete time

Include the control delay in the process model:

$$\frac{dx(t)}{dt} = Ax(t) + Bu(t - \tau), \qquad \tau < h$$

Sampling gives

$$x(kh+h) = \Phi x(kh) + \Gamma_1 u(kh-h) + \Gamma_0 u(kh)$$

where

$$\Gamma_1 = e^{A(h- au)} \int_0^ au e^{As} B \ ds$$
 $\Gamma_0 = \int_0^{h- au} e^{As} B \ ds$

State-space model (with extra state z(kh) = u(kh - h)

$$\begin{pmatrix} x(kh+h) \\ z(kh+h) \end{pmatrix} = \begin{pmatrix} \Phi & \Gamma_1 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} x(kh) \\ z(kh) \end{pmatrix} + \begin{pmatrix} \Gamma_0 \\ I \end{pmatrix} u(kh)$$

Can easily be extended to $\tau > h$

Design:

- Apply arbitrary discrete time design using the augmented model
- Remember that the delay imposes a fundamental performance limitation
 - Try to respect the rule of thumb $0.15 < \omega(h+2\tau) < 0.5$

Pendulum controller with delay compensation

- Shaky response, but stable
- $\omega_c(h+2\tau) = 1.4$

Minimizing the computational delay

A general controller in state-space representation:

$$x(k+1) = Fx(k) + Gy(k) + G_r r(k)$$

$$u(k) = Cx(k) + Dy(k) + D_r r(k)$$

Do as little as possible between the input and the output:

```
r = ref.get();
y = yIn.get();
/* Calculate Output */
u := u1 + D*y + Dr*r;
uOut.put(u);
/* Update State */
x := F*x + G*y + Gr*r;
u1 := C*x;
```


3. Jitter

More difficult to analyze and compensate for.

Some tools for jitter analysis:

- Robust (worst-case) analysis e.g. the Jitter margin
- Stochastic (average-case) analysis e.g. the Jitterbug toolbox
- Simulation e.g. the TrueTime simulator

Comparison of the tools

The jitter margin

Stability result due to Kao and Lincoln (2004):

- Continuous-time plant P(s)
- Continuous-time controller C(s)
- ullet Arbitrarily time-varying delay $\Delta \in [0, J]$
- Theorem: closed-loop system stable if

$$\left|\frac{P(i\omega)C(i\omega)}{1+P(i\omega)C(i\omega)}\right| < \frac{1}{J\omega} \quad \forall \omega \in [0,\infty].$$

Graphical test:

(Note that the theorem gives a sufficient but not necessary condition for stability)

Proof sketch

Rewrite the control output as one direct path and one error path:

Gain of left part: J

Gain of right part:
$$\max_{\omega} \left| \frac{i\omega P(i\omega)C(i\omega)}{1 + P(i\omega)C(i\omega)} \right|$$

The Small Gain Theorem then gives the result

Stability under jitter – sampled-data case

Now assume continuous-time plant P(s), discrete-time controller C(z) and time-varying delay $\Delta \in [0, J]$

The closed-loop system is stable if

$$\left|rac{P_{ ext{alias}}(\omega)C(e^{i\omega})}{1+P_{ ext{ZOH}}(e^{i\omega})C(e^{i\omega})}
ight|<rac{1}{\sqrt{J}|e^{i\omega}-1|},\quadorall\omega\in[0,\pi]$$

Here,

•
$$P_{
m alias}(\omega) = \sqrt{\sum_{k=-\infty}^{\infty} \left| P\left(i(\omega+2\pi k) rac{1}{h}
ight)
ight|^2}$$

ullet $P_{\mathrm{ZOH}}(z)$ is the ZOH-discretization of P(s)

(For small h, $P_{\rm alias}(\omega) \approx P_{\rm ZOH}(e^{i\omega})$)

Jitter analysis – rate-monotonic scheduling

• R_i – worst-case response time of task i

$$R_i = C_i + \sum_{j \in hp(i)} \left\lceil rac{R_i}{T_j}
ight
ceil C_j$$

• R_i^b – best-case response time of task i

$$R_i^b = C_i + \sum_{j \in hp(i)} \left\lceil rac{R_i^b}{T_j} - 1
ight
ceil C_j$$

• J_i – worst-case input-output jitter of task i:

$$J_i = R_i - R_i^b$$

(Analysis for earliest-deadline-first scheduling also exists)

The pendulum example – RM scheduling

Task	T	\boldsymbol{C}	R	R^b	J
1	10	3.5	3.5	3.5	0
2	14.5	3.5	7.0	3.5	3.5
3	17.5	3.5	14.0	3.5	10.5

The pendulum example – RM

- ullet Compute the jitter margin J_m for each task
- $J < J_m \Rightarrow \text{Stable}$

Task	R	$L = R^b$	\boldsymbol{J}	J_m	Stable
1	3.5	3.5	0	4.4	Yes
2	7.0	3.5	3.5	6.4	Yes
3	14.0	3.5	10.5	8.1	Can't say

The pendulum example – EDF

Task	R	$L = R^b$	J	J_m	Stable
1	3.5	3.5	0	4.4	Yes
2	7.5	3.5	4.0	6.4	Yes
3	10.5	3.5	7.0	8.1	Yes

• In general, EDF distributes the jitter more evenly than RM.

Limitations of the jitter margin

- No sampling jitter, only input-output jitter
- Only linear systems
- Sufficient condition only, can be conservative

Coping with sampling jitter

Rule of thumb: Jitter that is less than 10% of the nominal sampling period need not to be compensated for

Two approaches:

- Gain scheduling
- Robust design methods, e.g.
 - H_{∞}
 - Quantitative Feedback Theory (QFT)
 - μ -design

Gain scheduling

Parametrize the controller parameters in terms of the actual (measured) sampling period h_k

For example:

$$rac{dx(t_k)}{dt} pprox rac{x(t_k) - x(t_{k-1})}{h_k}$$

Often works well for low order controllers, e.g., PID.

Ad hoc method with no formal guarantees

Example: Control of DC servo with sampling jitter

- ullet PD controller designed for $h=10~\mathrm{ms}$
- Actual sampling period varies randomly between 2 and 18 ms

Example: Control of DC servo with sampling jitter

ullet D-part calculated according to actual sampling interval h_k

Almost no visible performance degradation

Lecture 2 outline

- Introduction
- Analysis of controller timing
- Scheduling to reduce delay and jitter

Subtask scheduling

A control algorithm normally consists of four distinct parts:

```
while (1) {
  read_input();
  calculate_output();
  write_output();
  update_state();
  ...
}
```

Idea: schedule the parts as separate (sub)tasks

- reduce delay
- reduce jitter

Subtask scheduling with two subtasks

Assume a set of control tasks, where each control task τ is divided into two subtasks:

- au_{CO} Read Input, Calculate Output, Write Output; execution time C_{CO}
- $au_{
 m US}$ Update State, execution time $C_{
 m US}$

Many possible scheduling algorithms:

- Deadline-monotonic (DM) scheduling
- EDF scheduling

• . . .

Deadline assignment under DM scheduling

- ullet Assign $D_{\mathrm{US}}=T$ for all control tasks
- ullet Want to minimize D_{CO} for each task. Iterative deadline assignment algorithm:
 - 1. Start by assigning $D_{\mathrm{CO}} := T C_{\mathrm{US}}$ for all tasks
 - 2. Assign deadline-monotonic priorities to all subtasks
 - 3. Calculate the response time R of each subtask
 - 4. Assign $D_{\rm CO}:=R_{\rm CO}$ for all tasks
 - 5. Repeat from 2 until no further improvement.

Inverted pendulum example (again)

• The same design as before

Simulation under RM scheduling

Schedule under RM scheduling

Schedule (high=running, medium=ready, low=sleeping)

• Large delay and jitter for controller 3

Subtask scheduling analysis

Each pendulum controller is divided into two subtasks:

• Calculate Output: $C_{\rm CO}=1.5~{\rm ms}$

• Update State: $C_{\rm US}=2.0~{\rm ms}$

First iteration of deadline assignment algorithm:

	T	D	\boldsymbol{C}	R
$\overline{ au_{ m CO1}}$	10.0	8.0	1.5	1.5
$ au_{\mathrm{US}1}$	10.0	10.0	2.0	3.5
$ au_{ m CO2}$	14.5	12.5	1.5	5.0
$ au_{ ext{US}2}$	14.5	14.5	2.0	7.0
$ au_{\mathrm{CO}3}$	17.5	15.5	1.5	8.5
$ au_{ ext{US}3}$	17.5	17.5	2.0	14.0

Subtask scheduling analysis

Third iteration (converged):

	T	D	C	R
$ au_{\mathrm{CO}1}$	10.0	1.5	1.5	1.5
$ au_{\mathrm{US}1}$	10.0	10.0	2.0	6.5
$ au_{ m CO2}$	14.5	3.0	1.5	3.0
$ au_{ ext{US}2}$	14.5	14.5	2.0	8.5
$ au_{\mathrm{CO}3}$	17.5	4.5	1.5	4.5
$ au_{ ext{US}3}$	17.5	17.5	2.0	14.0

New worst-case input-output latencies: 1.5, 3.0, 4.5 ms.

Simulation under subtask scheduling

Schedule under subtask scheduling

Schedule (high=running, medium=ready, low=sleeping)

More context switches

