
Integrated Control and
S h d liScheduling

Anton Cer in & Karl Erik År énAnton Cervin & Karl-Erik Årzén
Lund University

Lecture 2 outline

• Introduction

• Analysis of controller timing

• Scheduling to reduce delay and jitter

Graduate Course on Embedded Control Systems – Pisa 8-12 June 2009

Control system development today

Graduate Course on Embedded Control Systems – Pisa 8-12 June 2009

Problems

• The control engineer does not care about the implementa-

tion

– “trivial”

– “buy a fast computer”

• The software engineer does not understand controller

timing

– “τ i = (Ti, Di, Ci)”
– “hard deadlines”

• Control theory and real-time scheduling theory have
evolved as separate subjects for thirty years

Graduate Course on Embedded Control Systems – Pisa 8-12 June 2009

In the beginning. . .

Liu and Layland (1973): “Scheduling algorithms for multipro-

gramming in a hard-real-time environment.” Journal of the

ACM, 20:1.

• Rate-monotonic (RM) scheduling

• Earliest-deadline-first (EDF) scheduling

• Motivated by process control

– Samples “arrive” periodically

– Control response computed before end of period

– “Any control loops closed within the computer must be

designed to allow at least an extra unit sample delay.”

Graduate Course on Embedded Control Systems – Pisa 8-12 June 2009

Common assumptions about control tasks

In the simple task model, a task τ i is described by

• a fixed period Ti

• a fixed, known worst-case execution time Ci

• a hard relative deadline Di = Ti

Is this model suitable for control tasks?

Graduate Course on Embedded Control Systems – Pisa 8-12 June 2009

Fixed period?

Not necessarily:

• Different sampling periods could be appropriate for differ-

ent operating modes

• Some controllers are not sampled against time but are
invoked by events

• The sampling period could be adjusted on-line by a

resource manager (“feedback scheduling”)

Graduate Course on Embedded Control Systems – Pisa 8-12 June 2009

Fixed and known WCET?

Not always:

• WCET analysis is a very hard problem

– May have to use estimates or measurements

• Some controllers switch between modes with very different

execution times

– Hybrid controllers

• Some controllers can explicitly trade off execution time for

quality of control

– “Any-time” optimization algorithms, e.g. model-

predictive control (MPC)

– Long execution time [high quality of control

Graduate Course on Embedded Control Systems – Pisa 8-12 June 2009

Hard deadlines?

Often not:

• Controller deadlines are often firm rather than hard

– Often OK to miss a few outputs, but not too many in a

row

– Depends on what happens when a deadline is missed:

∗ Task is allowed to complete late – often OK

∗ Task is aborted at the deadline – worse

• At the same time, meeting all deadlines does not guaran-

tee stability of the control loop

– Di = Ti is motivated by runability conditions only

Graduate Course on Embedded Control Systems – Pisa 8-12 June 2009

Inputs and outputs?

Completely missing from the simple task model:

• When are the inputs (measurement signals) read?

– Beginning of period?

– When the task starts?

• When are the outputs (control signals) written?

– When the task finishes?

– End of period?

Graduate Course on Embedded Control Systems – Pisa 8-12 June 2009

Inverted pendulum example

Control of three inverted pendulums using one CPU:

y1

y1

y2

y2

y3

y3

u1

u1

u2

u2

u3

u3

CPU
+

RTOS

Graduate Course on Embedded Control Systems – Pisa 8-12 June 2009

The pendulums

l

y

u

A simple second-order model is given by

d2y

dt2
= ω 20 sin y+ uω 20 cos y

where ω 0 =
√�
l

is the natural frequency of the pendulum.

Lengths l = {1, 2, 3} cm [ω 0 = {31, 22, 18} rad/s

Graduate Course on Embedded Control Systems – Pisa 8-12 June 2009

Control design

Linearization around the upright equilibrium gives the state-

space model

dx

dt
=









0 1

ω 20 0








x +









0

ω 20








u

y=


 1 0



 x

• Model sampled using periods h = {10, 14.5, 17.5} ms

• Controllers based on state feedback from observer,

designed using pole placement

Graduate Course on Embedded Control Systems – Pisa 8-12 June 2009

Control design, Cont’d

• State feedback poles specified in continuous time as

s2 + 1.4ω cs+ω 2c = 0

ω c = {53, 38, 31} rad/s

• Observer poles specified in continuous time as

s2 + 1.4ω os+ω 2o = 0

ω o = {106, 75, 61} rad/s

Graduate Course on Embedded Control Systems – Pisa 8-12 June 2009

Implementation

• A periodic timer interrupt samples the plant output and

triggers control task

• Each controller i is implemented as a periodic task:

t = CurrentTime();

LOOP

y := AnalogIn();

u := CalculateControl(y);

AnalogOut(u);

t = t + h;

WaitUntil(t);

END

• Assumed execution time: C = 3.5 ms

Graduate Course on Embedded Control Systems – Pisa 8-12 June 2009

Simulation 1 – Ideal case

Each controller runs on a separate CPU.

0 0.1 0.2 0.3
−0.5

0

0.5

1

1.5

O
u
tp

u
t
 y

Pendulum 1

0 0.1 0.2 0.3
−0.5

0

0.5

1

1.5
Pendulum 2

0 0.1 0.2 0.3
−0.5

0

0.5

1

1.5
Pendulum 3

0 0.1 0.2 0.3
−10

−5

0

5

Time

In
p
u
t
 u

0 0.1 0.2 0.3
−10

−5

0

5

Time

0 0.1 0.2 0.3
−10

−5

0

5

Time

Graduate Course on Embedded Control Systems – Pisa 8-12 June 2009

Schedulability analysis

• Assume Di = Ti
• CPU utilization U =

∑3

i=1
Ci
Ti
= 0.79

• Schedulable under EDF, since U < 1
• Schedulable under RM?

U > 3(21/3 − 1) = 0.78 [Cannot say

Compute worst-case response times Ri:

Task T D C R

1 10 10 3.5 3.5

2 14.5 14.5 3.5 7.0

3 17.5 17.5 3.5 14.0

∀i : Ri < Di [Yes

Graduate Course on Embedded Control Systems – Pisa 8-12 June 2009

Simulation 2 – Rate-monotonic scheduling

0 0.1 0.2 0.3
−0.5

0

0.5

1

1.5

O
u
tp

u
t
 y

Pendulum 1

0 0.1 0.2 0.3
−0.5

0

0.5

1

1.5
Pendulum 2

0 0.1 0.2 0.3
−4

−2

0

2

4
Pendulum 3

0 0.1 0.2 0.3
−10

−5

0

5

Time

In
p
u
t
 u

0 0.1 0.2 0.3
−10

−5

0

5

Time

0 0.1 0.2 0.3
−10

−5

0

5

10

Time

• Loop 3 becomes unstable

Graduate Course on Embedded Control Systems – Pisa 8-12 June 2009

Simulation 3 – Earliest-deadline-first scheduling

0 0.1 0.2 0.3
−0.5

0

0.5

1

1.5

O
u
tp

u
t
 y

Pendulum 1

0 0.1 0.2 0.3
−0.5

0

0.5

1

1.5
Pendulum 2

0 0.1 0.2 0.3
−0.5

0

0.5

1

1.5
Pendulum 3

0 0.1 0.2 0.3
−10

−5

0

5

Time

In
p
u
t
 u

0 0.1 0.2 0.3
−10

−5

0

5

Time

0 0.1 0.2 0.3
−10

−5

0

5

Time

• All loops are OK

Graduate Course on Embedded Control Systems – Pisa 8-12 June 2009

Questions

• How can a loop become unstable even though the system

is schedulable?

• Why does EDF work better than RM?

Need to study control loop timing

Graduate Course on Embedded Control Systems – Pisa 8-12 June 2009

Lecture 2 outline

• Introduction

• Analysis of controller timing

• Scheduling to reduce delay and jitter

Graduate Course on Embedded Control Systems – Pisa 8-12 June 2009

Sampled-data (networked) control systems

uk

uk

k
y

k
y

Communication network

Computer

Process

y(t).
u(t)

t

.

and
D−A

Hold

Sampler

A−D
and

y(t)u(t)

. . . .
t

. .
. .

.. . .
t

t

Graduate Course on Embedded Control Systems – Pisa 8-12 June 2009

Ideal controller timing

y

 y(tk−1)

 y(tk)

 y(tk+1)

Time

u

 t k−1 t k tk+1

 u(tk− 1)

 u(t k)

Time
C

o
n

tr
o
l

V
a

ri
a

b
le

M
e
a

su
re

d
 V

a
ri

a
b

le

Computa-
tional
lag τ

• Process output y sampled periodically at time instants tk = kh
• Control u applied after short and constant time delay τ

Graduate Course on Embedded Control Systems – Pisa 8-12 June 2009

Sources of nondeterminism

• Jitter in the sampling operation due to poor time resolution

or preemption

• Variable communication delay due to the medium access

control or the communication protocol

• Variable computational delay due to variable execution

time or preemption

• Jitter in the actuation

Graduate Course on Embedded Control Systems – Pisa 8-12 June 2009

More realistic controller timing

y(t)

u(t)

tk−1 tk tk+1

Lk−1s Lk−1
io Lks Lk

io Lk+1s Lk+1
io

sk−1 fk−1 sk fk sk+1 fk+1

Rk−1 Rk Rk+1

τ

t

t

• Control task τ released at periodic time instances tk = kh
• Output y sampled after time-varying sampling latency Ls

• Control u generated after time-varying input-output latency Lio

Graduate Course on Embedded Control Systems – Pisa 8-12 June 2009

Real-time and control analysis

Scheduling method,
(T, D, Priorities,
Network parameters
Scheduling and

Protocol,...)

Control
Performance

(variance, rise time,
overshoot, ...)

Loop Timing
Parameters
(latencies, jitter, ...)

Complex relationship Complex relationship

Graduate Course on Embedded Control Systems – Pisa 8-12 June 2009

Analysis of controller timing

1. Sampling period (h)

2. Control delay (average value of Lio)

3. Jitter (variability in Ls and Lio)

Graduate Course on Embedded Control Systems – Pisa 8-12 June 2009

1. Sampling interval

Theoretically, the shorter the sampling interval, the better the

performance

• When h→ 0, we approach continuous (analog) control

Practically, there is a limit as to how fast you can or want to

sample

• Hardware limitations

• Limited computational resources

• Numerical problems

• Diminishing returns

Graduate Course on Embedded Control Systems – Pisa 8-12 June 2009

Choice of sampling interval

Sampling frequency ω s = 2π/h
Nyquist frequency ω N = π/h

Nyquist’s sampling theorem:

We must sample at least twice as fast as the highest

frequency we are interested in

• What frequencies are we interested in?

Graduate Course on Embedded Control Systems – Pisa 8-12 June 2009

Typical loop transfer function P(iω)C(iω):

10
−1

10
0

10
−2

10
−1

10
0

10
1

F
ö
rs

tä
rk

n
in

g

10
−1

10
0

−250

−200

−150

−100

−50

F
a
s

Frekvens [rad/s]

ω c

ϕm

• ω c = cross-over frequency, ϕm = phase margin

• We should have Nyquist frequency ω N ≫ ω c

Graduate Course on Embedded Control Systems – Pisa 8-12 June 2009

Sampling interval rule of thumb

The sample-and-hold can be approximated by a delay of h/2:

GS&H(s) (e−sh/2

This will decrease the phase margin by

argGS&H(iω c) = arg e−iω ch/2 = −ω ch/2

Assume we can accept a phase loss between 5○ and 15○.
Then

0.15 < ω ch < 0.5

This corresponds to a Nyquist frequency about 6 to 20 times

larger than the crossover frequency

Graduate Course on Embedded Control Systems – Pisa 8-12 June 2009

Example: control of inverted pendulum

0 5
−1

0

1

2

0 5
−20

−10

0

10

Time

0 5
−1

0

1

2

0 5
−20

−10

0

10

Time

0 5
−1

0

1

2

0 5
−20

−10

0

10

Time

y
u

h = 0.1,
ω ch = 0.28

h = 0.3,
ω ch = 0.78

h = 0.5,
ω ch = 1.12

• Large ω ch may seem OK, but beware!

– Digital design assuming perfect model

– Controller perfectly synchronized with initial disturbance
Graduate Course on Embedded Control Systems – Pisa 8-12 June 2009

Pendulum with non-synchronized disturbance

0 5
−1

0

1

2

0 5
−20

−10

0

10

Time

0 5
−1

0

1

2

0 5
−20

−10

0

10

Time

0 5
−1

0

1

2

0 5
−20

−10

0

10

Time

y
u

h = 0.1,
ω ch = 0.28

h = 0.3,
ω ch = 0.78

h = 0.5,
ω ch = 1.12

Recall that the controller runs in open loop between samples

Graduate Course on Embedded Control Systems – Pisa 8-12 June 2009

2. Control delay

The shorter the delay, the better the achievable performance

Sources of time delays:

• Deadtime in the process: tubes, pipes, conveyor belts

• Deadtime in the controller implementation: computational

delay, communication delay

From a theoretical perspective, all (constant) delays in the loop

can be lumped into a single control delay τ

Graduate Course on Embedded Control Systems – Pisa 8-12 June 2009

Control delay decreases the phase margin

Phase margin loss due to delay τ :

arg e−iω cτ = −ω cτ

Closed-loop system stable if

ω cτ < ϕm \ τ < ϕm

ω c

τm =
ϕm

ω c
is called the delay margin

Graduate Course on Embedded Control Systems – Pisa 8-12 June 2009

Example: delay margin for pendulum controller

Bode Diagram

Frequency (rad/sec)

P
h

a
s
e

 (
d

e
g

)
M

a
g
n

it
u
d

e
 (

a
b
s
)

10
0

Gm = 3.0069 (at 7.0717 rad/sec), Pm = 32.199 deg (at 2.8208 rad/sec)

10
0

10
1

−270

−180

−90

ϕm = 32○, ω c = 2.8 rad/s [τm = 32π
180⋅2.8

= 0.2

Graduate Course on Embedded Control Systems – Pisa 8-12 June 2009

Pendulum controller with control delay

0 5
−1

0

1

2

0 5
−20

−10

0

10

Time

0 5
−1

0

1

2

0 5
−20

−10

0

10

Time

0 5
−2

0

2

0 5
−20

−10

0

10

Time

y
u

h = 0.1,
τ = 0.05

h = 0.1,
τ = 0.1

h = 0.1,
τ = 0.2

• No delay compensation

Graduate Course on Embedded Control Systems – Pisa 8-12 June 2009

Delays in discrete time

Include the control delay in the process model:

dx(t)
dt

= Ax(t) + Bu(t− τ), τ < h

Sampling gives

x(kh+ h) = Φx(kh) + Γ1u(kh− h) + Γ0u(kh)

where

Γ1 = eA(h−τ)
∫ τ

0

eAsB ds

Γ0 =
∫ h−τ

0

eAsB ds

Graduate Course on Embedded Control Systems – Pisa 8-12 June 2009

State-space model (with extra state z(kh) = u(kh− h)








x(kh+ h)
z(kh+ h)








=









Φ Γ1

0 0

















x(kh)
z(kh)








+









Γ0

I








u(kh)

Can easily be extended to τ > h
Design:

• Apply arbitrary discrete time design using the augmented

model

• Remember that the delay imposes a fundamental perfor-

mance limitation

– Try to respect the rule of thumb 0.15 < ω (h+ 2τ) < 0.5

Graduate Course on Embedded Control Systems – Pisa 8-12 June 2009

Pendulum controller with delay compensation

0 5
−1

0

1

2

0 5
−20

−10

0

10

Time

y
u

h = 0.1,
τ = 0.2

• Shaky response, but stable

• ω c(h+ 2τ) = 1.4

Graduate Course on Embedded Control Systems – Pisa 8-12 June 2009

Minimizing the computational delay

A general controller in state-space representation:

x(k+ 1) = Fx(k) + Gy(k) + Grr(k)
u(k) = Cx(k) + Dy(k) + Drr(k)

Do as little as possible between the input and the output:

r = ref.get();

y = yIn.get();

/* Calculate Output */

u := u1 + D*y + Dr*r;

uOut.put(u);

/* Update State */

x := F*x + G*y + Gr*r;

u1 := C*x;

Graduate Course on Embedded Control Systems – Pisa 8-12 June 2009

3. Jitter

More difficult to analyze and compensate for.

Some tools for jitter analysis:

• Robust (worst-case) analysis – e.g. the Jitter margin

• Stochastic (average-case) analysis – e.g. the Jitterbug

toolbox

• Simulation – e.g. the TrueTime simulator

Graduate Course on Embedded Control Systems – Pisa 8-12 June 2009

Comparison of the tools

Modeling
detail

Strength of
results

Jitterbug

Jitter margin

TrueTime

Graduate Course on Embedded Control Systems – Pisa 8-12 June 2009

The jitter margin

Stability result due to Kao and Lincoln (2004):

P(s)

C(s)

∆

Σ−

• Continuous-time plant P(s)
• Continuous-time controller C(s)
• Arbitrarily time-varying delay ∆ ∈ [0, J]
• Theorem: closed-loop system stable if

∣

∣

∣

∣

P(iω)C(iω)
1+ P(iω)C(iω)

∣

∣

∣

∣

< 1

Jω
∀ω ∈ [0,∞].

Graduate Course on Embedded Control Systems – Pisa 8-12 June 2009

Graphical test:

Bode Magnitude Diagram

Frequency (rad/sec)

M
a

g
n
it
u

d
e
 (

a
b

s
)

10
0

10
1

10
2

10
−4

10
−3

10
−2

10
−1

Bode Magnitude Diagram

Frequency (rad/sec)

M
a

g
n
it
u

d
e
 (

a
b

s
)

10
0

10
1

10
2

10
−4

10
−3

10
−2

10
−1

∣

∣

PC
1+PC

∣

∣

∣

∣

PC
1+PC

∣

∣

1
Jω

1
Jω

Stable Could be unstable

(Note that the theorem gives a sufficient but not necessary

condition for stability)

Graduate Course on Embedded Control Systems – Pisa 8-12 June 2009

Proof sketch

Rewrite the control output as one direct path and one error

path:

P(s)

C(s)

Σ−−

1
s

∆−1

s

Gain of left part: J

Gain of right part: max
ω

∣

∣

∣

∣

iω P(iω)C(iω)
1+ P(iω)C(iω)

∣

∣

∣

∣

The Small Gain Theorem then gives the result

Graduate Course on Embedded Control Systems – Pisa 8-12 June 2009

Stability under jitter – sampled-data case

Now assume continuous-time plant P(s), discrete-time con-

troller C(z) and time-varying delay ∆ ∈ [0, J]
The closed-loop system is stable if

∣

∣

∣

∣

Palias(ω)C(eiω)
1+ PZOH(eiω)C(eiω)

∣

∣

∣

∣

< 1√
J
∣

∣eiω − 1
∣

∣

, ∀ω ∈ [0,π]

Here,

• Palias(ω) =
√

∑∞
k=−∞

∣

∣P
(

i(ω + 2π k) 1
h

)∣

∣

2

• PZOH(z) is the ZOH-discretization of P(s)

(For small h, Palias(ω) (PZOH(eiω))

Graduate Course on Embedded Control Systems – Pisa 8-12 June 2009

Jitter analysis – rate-monotonic scheduling

• Ri – worst-case response time of task i

Ri = Ci +
∑

j∈hp(i)

⌈

Ri

Tj

⌉

Cj

• Rbi – best-case response time of task i

Rbi = Ci +
∑

j∈hp(i)

⌈

Rbi
Tj
− 1

⌉

Cj

• Ji – worst-case input-output jitter of task i:

Ji = Ri − Rbi

(Analysis for earliest-deadline-first scheduling also exists)

Graduate Course on Embedded Control Systems – Pisa 8-12 June 2009

The pendulum example – RM scheduling

Task T C R Rb J

1 10 3.5 3.5 3.5 0

2 14.5 3.5 7.0 3.5 3.5

3 17.5 3.5 14.0 3.5 10.5

Graduate Course on Embedded Control Systems – Pisa 8-12 June 2009

The pendulum example – RM

• Compute the jitter margin Jm for each task

• J < Jm [Stable

Task R L = Rb J Jm Stable

1 3.5 3.5 0 4.4 Yes

2 7.0 3.5 3.5 6.4 Yes

3 14.0 3.5 10.5 8.1 Can’t say

Graduate Course on Embedded Control Systems – Pisa 8-12 June 2009

The pendulum example – EDF

Task R L = Rb J Jm Stable

1 3.5 3.5 0 4.4 Yes

2 7.5 3.5 4.0 6.4 Yes

3 10.5 3.5 7.0 8.1 Yes

• In general, EDF distributes the jitter more evenly than RM.

Graduate Course on Embedded Control Systems – Pisa 8-12 June 2009

Limitations of the jitter margin

• No sampling jitter, only input-output jitter

• Only linear systems

• Sufficient condition only, can be conservative

Graduate Course on Embedded Control Systems – Pisa 8-12 June 2009

Coping with sampling jitter

Rule of thumb: Jitter that is less than 10% of the nominal

sampling period need not to be compensated for

Two approaches:

• Gain scheduling

• Robust design methods, e.g.

– H∞
– Quantitative Feedback Theory (QFT)

– µ-design

Graduate Course on Embedded Control Systems – Pisa 8-12 June 2009

Gain scheduling

Parametrize the controller parameters in terms of the actual

(measured) sampling period hk

For example:

dx(tk)
dt

(x(tk) − x(tk−1)
hk

Often works well for low order controllers, e.g., PID.

Ad hoc method with no formal guarantees

Graduate Course on Embedded Control Systems – Pisa 8-12 June 2009

Example: Control of DC servo with sampling jitter

• PD controller designed for h = 10 ms

• Actual sampling period varies randomly between 2 and

18 ms

0 0.5 1 1.5 2

−1

0

1

O
u

tp
u

t

0 0.5 1 1.5 2

−2

0

2

In
p

u
t

Time

Graduate Course on Embedded Control Systems – Pisa 8-12 June 2009

Example: Control of DC servo with sampling jitter

• D-part calculated according to actual sampling interval hk

0 0.5 1 1.5 2

−1

0

1

O
u

tp
u

t

0 0.5 1 1.5 2

−2

0

2

In
p

u
t

Time

Almost no visible performance degradation

Graduate Course on Embedded Control Systems – Pisa 8-12 June 2009

Lecture 2 outline

• Introduction

• Analysis of controller timing

• Scheduling to reduce delay and jitter

Graduate Course on Embedded Control Systems – Pisa 8-12 June 2009

Subtask scheduling

A control algorithm normally consists of four distinct parts:

while (1) {

read_input();

calculate_output();

write_output();

update_state();

...

}

Idea: schedule the parts as separate (sub)tasks

• reduce delay

• reduce jitter

Graduate Course on Embedded Control Systems – Pisa 8-12 June 2009

Subtask scheduling with two subtasks

Assume a set of control tasks, where each control task τ is

divided into two subtasks:

• τCO – Read Input, Calculate Output, Write Output; execu-

tion time CCO

• τUS – Update State, execution time CUS

Many possible scheduling algorithms:

• Deadline-monotonic (DM) scheduling

• EDF scheduling

• . . .

Graduate Course on Embedded Control Systems – Pisa 8-12 June 2009

Deadline assignment under DM scheduling

0

0 DUS=T

DCO T

τCO

τUS

t

t

• Assign DUS = T for all control tasks

• Want to minimize DCO for each task. Iterative deadline
assignment algorithm:

1. Start by assigning DCO := T − CUS for all tasks

2. Assign deadline-monotonic priorities to all subtasks

3. Calculate the response time R of each subtask

4. Assign DCO := RCO for all tasks

5. Repeat from 2 until no further improvement.
Graduate Course on Embedded Control Systems – Pisa 8-12 June 2009

Inverted pendulum example (again)

CPU

RTOS

y1

y1

y2

y2

y3

y3

u1

u1

u2

u2

u3

u3

• The same design as before

Graduate Course on Embedded Control Systems – Pisa 8-12 June 2009

Simulation under RM scheduling

0 0.1 0.2 0.3
−0.5

0

0.5

1

1.5

O
u
tp

u
t
 y

Pendulum 1

0 0.1 0.2 0.3
−0.5

0

0.5

1

1.5
Pendulum 2

0 0.1 0.2 0.3
−4

−2

0

2

4
Pendulum 3

0 0.1 0.2 0.3
−20

−10

0

10

20

Time

In
p
u
t
 u

0 0.1 0.2 0.3
−20

−10

0

10

20

Time

0 0.1 0.2 0.3
−20

−10

0

10

20

Time

Graduate Course on Embedded Control Systems – Pisa 8-12 June 2009

Schedule under RM scheduling

Schedule (high=running, medium=ready, low=sleeping)

0 0.05 0.1 0.15 0.2 0.25 0.3

T
a
s
k
 1

Time

0 0.05 0.1 0.15 0.2 0.25 0.3

T
a
s
k
 2

0 0.05 0.1 0.15 0.2 0.25 0.3

T
a
s
k
 3

• Large delay and jitter for controller 3

Graduate Course on Embedded Control Systems – Pisa 8-12 June 2009

Subtask scheduling analysis

Each pendulum controller is divided into two subtasks:

• Calculate Output: CCO = 1.5 ms

• Update State: CUS = 2.0 ms

First iteration of deadline assignment algorithm:

T D C R

τCO1 10.0 8.0 1.5 1.5

τUS1 10.0 10.0 2.0 3.5

τCO2 14.5 12.5 1.5 5.0

τUS2 14.5 14.5 2.0 7.0

τCO3 17.5 15.5 1.5 8.5

τUS3 17.5 17.5 2.0 14.0

Graduate Course on Embedded Control Systems – Pisa 8-12 June 2009

Subtask scheduling analysis

Third iteration (converged):

T D C R

τCO1 10.0 1.5 1.5 1.5

τUS1 10.0 10.0 2.0 6.5

τCO2 14.5 3.0 1.5 3.0

τUS2 14.5 14.5 2.0 8.5

τCO3 17.5 4.5 1.5 4.5

τUS3 17.5 17.5 2.0 14.0

New worst-case input-output latencies: 1.5, 3.0, 4.5 ms.

Graduate Course on Embedded Control Systems – Pisa 8-12 June 2009

Simulation under subtask scheduling

0 0.1 0.2 0.3
−0.5

0

0.5

1

1.5

O
u
tp

u
t
 y

Pendulum 1

0 0.1 0.2 0.3
−0.5

0

0.5

1

1.5
Pendulum 2

0 0.1 0.2 0.3
−0.5

0

0.5

1

1.5
Pendulum 3

0 0.1 0.2 0.3
−20

−10

0

10

20

Time

In
p
u
t
 u

0 0.1 0.2 0.3
−20

−10

0

10

20

Time

0 0.1 0.2 0.3
−20

−10

0

10

20

Time

Graduate Course on Embedded Control Systems – Pisa 8-12 June 2009

Schedule under subtask scheduling

Schedule (high=running, medium=ready, low=sleeping)

0 0.05 0.1 0.15 0.2 0.25 0.3

T
a
s
k
 1

Time

0 0.05 0.1 0.15 0.2 0.25 0.3

T
a
s
k
 2

0 0.05 0.1 0.15 0.2 0.25 0.3

T
a
s
k
 3

• More context switches

Graduate Course on Embedded Control Systems – Pisa 8-12 June 2009

