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Automatic control

The silent technology:

• Widely used

• Very successful

• Seldom talked about, except when disaster strikes!
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Automatic control

Use of models and feedback

Activities:
• Modeling

• Analysis and simulation

• Control design

• Implementation

Disturbance

Input Output
Process

Controller

Reference
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Applications

• Automotive systems

• Robotics

• Biotechnology

• Power systems

• Process control

• Communications

• Consumer electronics

• . . .
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Basic setting

Model Control Process

r u y

Disturbance

Must handle two tasks:

• Follow reference signals, r
• Compensate for disturbances

How to

• do several things with the control signal u
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The feedback principle

A very powerful idea, that often leads to revolutionary changes in
the way systems are designed.

The primary paradigm in automatic control.

Process
Ref. signal u yΣ  Feedback

Controller

−1

e

• Base corrective action on an error that has occurred

• Closed loop
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Properties of feedback

+ Reduces influence of disturbances

+ Reduces effect of process variations

+ Does not require exact models

− Feeds sensor noise into the system

− May lead to instability, e.g.:

– if the controller has too high gain
– if the feedback loop contains too large time delays

∗ from the process

∗ from the controller implementation
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The feedforward principle

Process

Measurable
Disturbance

u yRef. signal Feedforward
  controller

• Take corrective action before an error has occurred

• Measure the disturbance and compensate for it

• Use the fact that the reference signal is known and adjust the
control signal to the reference signal

• Open loop

Graduate Course on Embedded Control Systems – Pisa 8-12 June 2009



Properties of feedforward

+ Reduces effect of disturbances that cannot be reduced by
feedback

+ Measurable signals that are related to disturbances

+ Allows faster set-point changes, without introducing control
errors

− Requires good models

− Requires stable systems
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The servo problem

Focus on reference value changes:

Model Control Process

r u y

Disturbance

Typical design criteria:
• Rise time, Tr
• Overshoot, M
• Settling time, Ts
• Steady-state error, e0
• . . .

1.0
2p

y

M

Tr
t

e 0

Ts
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The regulator problem

Focus on process disturbances:

Model Control Process

r u y

Disturbance

Typical design criteria:
• Output variance

• Control signal variance

−2 0 2 4 6
0

0.5

Process output
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Set point for regulator
with low variance

Set point for regulator
with high variance

Test limit
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Putting it all together

Feedback

Feedforward

Process

Measurable
Disturbance

Ref. signal

u y

Unmeasurable
Disturbances

Σ

Combination of feedback and feedforward
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Dynamical systems

u y
System

Static system:
y(t) = f (u(t))

(The output at time t only depends on the input at time t.)

Dynamical system:

y(t) = f (x(0), u[0, t])
(The output at time t depends on the initial state x(0) and
the input from time 0 to t.)
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Modeling
u y

Process

y u
Controller

u y
S

• View all subsystems as “boxes” with inputs and outputs

• Linear, time-invariant (LTI) dynamical systems

• Continuous or discrete time
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Linear systems

We will mainly deal with linear, time-invariant (LTI) systems

For linear systems, the principle of superposition holds:

u1 y1
System

u2 y2
System

αu1 + βu2 α y1 + β y2
System
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Nonlinear systems

• Almost all real systems are nonlinear

– limited input and output signals
– nonlinear process geometry
– friction, turbulence, . . .

• Can be linearized around an operating point

• If there is feedback, a simple linear model is often enough

• But, always remember the limitations of the model!
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Continuous-time systems

Higher order
differential equation

dny
dtn + a1 d

n−1y
dtn−1 + . . .+ any

= b1 dn−1udtn−1 + . . .+ bnu

Transfer function
(Laplace domain)

State space
(time domain)

Y(s) = G(s)U(s) dx
dt = Ax + Bu
y= Cx + Du
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Standard system forms

• State space form

– A number of first-order differential equations
– Describes what happens “inside” the system and how

inputs and output are connected to this
– Numerically superior
– The heritage of mechanics

• Transfer function form

– The transform of a higher-order linear differential equation
– Describes the relationship between the input and the

output
– The system is a “black box”
– Compact notation, convenient for hand calculations
– The heritage of electrical engineering

Graduate Course on Embedded Control Systems – Pisa 8-12 June 2009



Example: Inverted pendulum

y

u

Nonlinear differential equation from physical modeling:

d2y
dt2 = ω 20 sin y+ ku cos y

Linearized model around y0 = 0 (sin y � y, cos y � 1):
d2y
dt2 = ω 20y+ ku
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Inverted pendulum in state space form

Introduce state variables

• x1 = y (pendulum angle)

• x2 = dy
dt (pendulum angular velocity)

dx
dt =

⎧⎪⎪⎩ 0 1
ω 20 0

⎫⎪⎪⎭ x +⎧⎪⎪⎩ 0k
⎫⎪⎪⎭u

y=
⎧⎩ 1 0

⎫⎭ x
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Stability concepts

Stable

Unstable

Asymptotically stable
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Stability definitions

Assume
ẋ = Ax, x(0) = x0

The system is stable if x(t) is limited for all x0.

The system is asymptotically stable if x(t) → 0 for all x0.

The system is unstable if x(t) is unlimited for some x0.
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Stability criteria{
ẋ = Ax
x(0) = x0

� x(t) = x0eAt

The behavior of the solution depends on the eigenvalues of A

All eigenvalues have negative real part: � As. stab.

Some eigenvalue has positive real part: � Unstable

No eigenvalues with positive real part and no
multiple eigenvalues on the imaginary axis:

� Stable
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Transfer function form

Study the system in the (complex) frequency domain:

U(s) Y(s)
G(s)

U(s) – Laplace transform of u(t)
Y(s) – Laplace transform of y(t)
G(s) – transfer function

Y(s) = G(s)U(s)
(if the initial state is assumed to be zero)

Graduate Course on Embedded Control Systems – Pisa 8-12 June 2009



Some signals and their Laplace transforms

Definition: L f = F(s) =
∫ ∞

0
e−st f (t)dt

Derivative: L
(
d f
dt

)
= sF(s)

Integral: L
(∫

f dt
)
= 1s F(s)

Dirac impulse: Lδ = 1
Step function: Lθ = 1s
Ramp function: L(tθ ) = 1s2
Exponential function: L(eatθ ) = 1

s− a
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From transfer function to state space form

{
ẋ = Ax + Bu x(0) = 0
y= Cx + Du

{
sX (s) = AX (s) + BU(s)
Y(s) = CX (s) + DU(s)

Y(s) = [
C(sI − A)−1B + D]

U(s)

G(s) = C(sI − A)−1B + D = p(s)q(s)

q(s) = det(sI − A) is called characteristic polynomial
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Poles and zeros

Often,

G(s) = p(s)q(s)
The roots of p(s) are called zeros

The roots of q(s) are called poles

Note that
Poles of G(s) � Eigenvalues of A
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Inverted pendulum in transfer function form

Apply Laplace transform to differential equation:

s2Y(s) = ω 20Y(s) + kU(s)

G(s) = Y(s)U(s) =
k

s2 −ω 20

Or, from state space to transfer function:

G(s) = C(sI − A)−1B =
⎧⎩ 1 0

⎫⎭⎧⎪⎩ s −1
−ω 20 s

⎫⎪⎭−1⎧⎪⎩ 0
k

⎫⎪⎭ = k
s2 −ω 20
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Block diagrams

U
G1 G2

Y Y = G2G1 U

U
G1

G2

Y
Σ Y = (

G1 + G2
)
U
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U
G1 G2

−1

Y
Σ

Y = G2G1
(
U − Y)

Y(1+ G2G1) = G2G1U

Y = G2G1
1+ G2G1U
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Frequency response

0 5 10 15

0

0.1

0 5 10 15

−1

1

y

u

Given a stable system G(s), the input u(t) = sinω t will, after a
transient, give the output

y(t) = �G(iω )� sin
(

ω t+ argG(iω )
)

The steady-state output is also sinusoidal
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Bode diagram

Draw

• �G(iω )� as a function of ω (in log-log scale)

– Amplitude/magnitude/gain diagram

• argG(iω ) as a function of ω (in log-lin scale)

– Phase/angle diagram
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Example: low-pass filter

dy(t)
dt + y(t) = u(t) � G(s) = 1

s+ 1

G(iω ) = 1
iω + 1

�G(iω )� = 1√
ω 2 + 1

argG(iω ) = − arctanω
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Example: low-pass filter
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Frequency response for inverted pendulum

Plot �G(iω )� and argG(iω ) for ω ∈ [0, ∞]
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Model-based design

Σ ΣΣ
r e u

l
y

n

C(s) P(s)

−1

Given P(s), determine C(s) such that the specifications on the
closed-loop system are met. Common approaches:

• Frequency domain design (loop shaping)

• Pole placement design

– transfer function domain
– state space domain

• Optimization-based methods (H∞, LQG, . . . )
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Pole placement – transfer function domain

• Determine the required form of C(s) = b1sn−1+...+bn
sn+a1sn−1+...+an

• Calculate the closed loop system:

Gcl(s) = P(s)C(s)
1+ P(s)C(s)

• Choose the coefficients of C(s) such that you get the desired
closed-loop poles

s

ϕ
ω 0 • Large ω 0 � fast system

• Large ϕ � poorly damped
system
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Pole placement – state space domain

r lr Σ u Process

Observer

−L

y

x̂

State feedback from an observer:

dx̂
dt = Ax̂ + Bu+ K (y− Cx̂)
u = −Lx̂ + lrr

Choose gain vectors L and K to give desired closed-loop poles
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PID control

• The oldest controller type

• The most widely used

– Pulp & Paper 86%
– Steel 93%
– Oil refineries 93%

• Much to learn!!
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The textbook algorithm

u(t) = K
(
e(t) + 1

Ti

t∫
e(τ )dτ + Td de(t)dt

)

U(s) = K
(
E(s) + 1

sTi E(s) + TdsE(s)
)

= P + I + D
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Proportional term

umax

umin

u

e
0e– e0

u0

Proportionalband

u =

⎧⎪⎪⎨
⎪⎪⎩
umax e > e0
K e+ u0 − e0 < e < e0
umin e < −e0
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Properties of P-control

0 5 10 15 20
0

0.5

1

1.5
Set point and measured variable

0 5 10 15 20

−2

0

2

4

6 Control variable

Kc=5

Kc=2

Kc=1

Kc=5

Kc=2
Kc=1

• stationary error

• increased K means faster speed, increased noise sensitivity,
worse stability
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Errors with P-control

Control signal:
u = K e+ u0

Error:
e = u− u0K

Error removed if:

• K equals infinity

• u0 = u
Solution: Automatic way to obtain u0
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Integral term

u = K e+ u0
u = K

(
e+ 1Ti

∫
e(t)dt

)
(PI)

e

t
–

+

Stationary error present → ∫
edt increases → u increases → y

increases → the error is not stationary
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Properties of PI-control

0 5 10 15 20
0

0.5

1

1.5
Set point and measured variable

0 5 10 15 20
0

1

2

Control variable

Ti=1
Ti=2

Ti=5

Ti=∞

Ti=1

Ti=2

Ti=5

Ti=∞

• removes stationary error

• smaller Ti implies worse stability, faster steady-state error
removalGraduate Course on Embedded Control Systems – Pisa 8-12 June 2009



Prediction

A PI-controller contains no prediction

The same control signal is obtained for both these cases:
e

t tid

I

P

e

t tid

I

P
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Derivative part
Reglerfel

e(t)
e(t + Td)

e(t) + Td
de(t)
dt

tid

P:
u(t) = K e(t)

PD:
u(t) = K

(
e(t) + Tdde(t)dt

)
� K e(t+ Td)

Td = Prediction horizon
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Properties of PD-control

0 5 10 15 20
0

0.5

1

Set point and measured variable

0 5 10 15 20

−2

0

2

4

6 Control variable

Td=0.1

Td=0.5

Td=2

Td=0.1
Td=0.5
Td=2

• Td too small, no influence

• Td too large, decreased performance

In industrial practice the D-term is often turned off.
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Algorithm modifications

Modifications are needed to make the controller practically useful

• Limitations of derivative gain

• Derivative weighting

• Handle control signal limitations
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Limitations of derivative gain

We do not want to apply derivation to high frequency
measurement noise, therefore the following modification is used:

sTd � sTd
1+ sTd/N

N = maximum derivative gain, often 10− 20
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Derivative weighting

The reference is often constant for long periods of time

Reference often changed in steps → D-part becomes very large.

Derivative part applied on part of the reference or only on the
measurement signal.

D(s) = sTd
1+ sTd/N (γ R(s) − Y(s))

Often, γ = 0
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Control signal limitations

All actuators saturate.

Problems for controllers with integration.

When the control signal saturates the integral part will continue to
grow – integrator windup.

When the control signal saturates the integral part will integrate up
to a very large value. This may cause large overshoots.

0 10 20
0

0.5

1

1.5

2 Output y and yref

0 10 20

−0.2

0

0.2

Control variable u
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Anti-windup

Several solutions exist:

• limit the reference variations (saturation never reached)

• conditional integration (integration is switched off when the
control is far from the steady-state)

• tracking (back-calculation)
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Tracking

• when the control signal saturates, the integral is
recomputed so that its new value gives a control signal at the
saturation limit

• to avoid resetting the integral due to, e.g., measurement noise,
the recomputation is done dynamically, i.e., through a LP-filter
with a time constant Tt.
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Tracking

Actuator

– +Σ

Σ

Σ

  e = r − y

  KTds

K

    
1
s

    

1
Tt

  

K
Ti

–y

  es

Actuator
model
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Tracking
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Tuning

Parameters: K ,Ti,Td,N,γ ,Tt
Methods:

• empirically, rules of thumb, tuning charts

• model-based tuning, e.g., pole-placement

• automatic tuning experiment

– Ziegler-Nichols method

∗ step response method

∗ ultimate sensitivity method

– relay method
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Sampled-data control systems

Process

u t( )

)

uk

y t(u t( )

yk

SamplerHold

Computer
uk

yk

tt

t

y t( )

t

D-A A-D

• Mix of continuous-time and discrete-time signals
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Networked control systems

uk

uk

ky

ky

Communication network

Computer

Process

y(t). . . . .
u(t)

t

.

and
D−A

Hold

Sampler

A−D
and

y(t)u(t)

. . . .
t

. .
. . .. . .

t

t

• Extra delay, possibly lost packetsGraduate Course on Embedded Control Systems – Pisa 8-12 June 2009



Sampling

ProcessA/D D/AAlgorithm

Computer u
y

AD-converter acts as sampler

A/D

DA-converter acts as a hold device

Normally, zero-order-hold is used � piecewise constant control
signals
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Aliasing

0 5 10
−1

0

1

Time

ω s = 2πh = sampling frequency

ω N = ω s/2 = Nyquist frequency

Frequencies above the Nyquist frequency are folded and appear
as low-frequency signals.

The fundamental alias frequency for a frequency f1 is given by

f = �( f1 + fN) mod ( fs) − fN �

Above: f1 = 0.9, fs = 1, fN = 0.5, f = 0.1Graduate Course on Embedded Control Systems – Pisa 8-12 June 2009



Anti-aliasing filter

Analog low-pass filter that eliminates all frequencies above the
Nyquist frequency

• Analog filter

– 2-6th order Bessel or Butterworth filter
– Difficulties with changing h (sampling interval)

• Analog + digital filter

– Fixed, fast sampling with fixed analog filter
– Downsampling using digital LP-filter
– Control algorithm at the lower rate
– Easy to change sampling interval

The filter may have to be included in the control design
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Example – Prefiltering

0 10 20 30

−1

0

1(a)

0 10 20 30

−1

0

1(b)

0 10 20 30

−1

0

1

Time

(c)

0 10 20 30

−1

0

1

Time

(d)

ω d = 0.9, ω N = 0.5, ω alias = 0.1
6th order Bessel with ω B = 0.25
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Design approaches

Digital controllers can be designed in two different ways:

• Discrete-time design – sampled control theory

– Sample the continuous system
– Design a digital controller for the sampled system

∗ Z-transform domain

∗ state-space domain

• Continuous time design + discretization

– Design a continuous controller for the continuous system
– Approximate the continuous design
– Use fast sampling
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Sampled control theory

Algorithm Process

Clock

A-D D-A

Computer

    y(t )    u(t)y(tk ){ }     u(t k){ }

Basic idea: look at the sampling instances only

• System theory analogous to continuous-time systems

• Better performance can be achieved

• Potential problem with intersample behaviour
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Sampling of systems

Look at the system from the point of view of the computer

D-A

Clock

System A-D
    {u(tk )}     y (tk ){ }    y(t)    u(t)

Zero-order-hold sampling of a system

• Let the inputs be piecewise constant

• Look at the sampling points only

• Solve the system equation
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Sampling a continuous-time system

System description

dx
dt = Ax(t) + Bu(t)
y(t) = Cx(t) + Du(t)

Solve the system equation

x(t) = eA(t−tk)x(tk) +
∫ t

tk
eA(t−s′)Bu(s′) ds′

= eA(t−tk)x(tk) +
∫ t

tk
eA(t−s′) ds′ Bu(tk) (u const.)

= eA(t−tk)x(tk) +
∫ t−tk

0
eAs ds Bu(tk) (variable change)

= Φ(t, tk)x(tk) + Γ(t, tk)u(tk)
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Periodic sampling

Assume periodic sampling, i.e. tk = k ⋅ h, then

x(kh+ h) = Φx(kh) + Γu(kh)
y(kh) = Cx(kh) + Du(kh)

where

Φ = eAh

Γ =
∫ h

0
eAs ds B

Time-invariant linear system!
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Example: Sampling of inverted pendulum

dx
dt =

⎧⎪⎪⎩ 0 1
1 0

⎫⎪⎪⎭ x +⎧⎪⎪⎩ 01
⎫⎪⎪⎭u

y =
⎧⎩ 1 0

⎫⎭ x
We get

Φ = eAh =
⎧⎪⎪⎩ cosh h sinh h
sinhh coshh

⎫⎪⎪⎭
Γ =

∫ h

0

⎧⎪⎪⎩ sinh scosh s

⎫⎪⎪⎭ ds = ⎧⎪⎪⎩ cosh h− 1sinh h

⎫⎪⎪⎭
Several ways to calculate Φ and Γ. Matlab
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Sampling a system with a time delay

Sampling the system

dx(t)
dt = Ax(t) + Bu(t− τ ), τ ≤ h

we get the discrete-time system

x(kh+ h) = Φx(kh) + Γ0u(kh) + Γ1u(kh− h)
where

Φ = eAh

Γ0 =
∫ h−τ

0
eAs ds B

Γ1 = eA(h−τ )
∫ τ

0
eAs ds B

We get one extra state
(
u(kh− h)) in the sampled system
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Stability region

• In continuous time the stability region is the complex left half
plane, i.e„ the system is stable if all the poles are in the left
half plane.

• In discrete time the stability region is the unit circle.

1

1
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Digital control design

Similar to the continuous-time case, we can choose between

• frequency-domain design (loop shaping)

• pole-placement design

– transfer function domain
– state space domain
– the poles are placed inside the unit circle

• optimal design methods (e.g. LQG)
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Approximation of continuous-time design

Basic idea: Reuse the design

Algorithm

Clock

  u kh( ){ }   y kh( ){ }

  H (z) ≈ G (s)

  y(t)u(t)
A-D D-A

G(s) is designed based on analog techniques

Want to get:

• A/D + Algorithm + D/A � G(s)
Methods:

• Approximate s, i.e., H(z) = G(s′)
• Other methods (Matlab)

Graduate Course on Embedded Control Systems – Pisa 8-12 June 2009



Approximation methods

Forward Difference (Euler’s method)

dx(t)
dt � x(t+ h) − x(t)h

s′ = z− 1h
Backward Difference

dx(t)
dt � x(t) − x(t− h)h

s′ = z− 1zh
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Tustin
dx(t)
dt + dx(t+h)

dt
2 � x(t+ h) − x(t)h
s′ = 2h

z− 1
z+ 1
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Stability of approximations

How is the continuous-time stability region (left half plane)
mapped?

Forward differences Backward differences Tustin
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Discretization of the PID controller

Continuous PID controller with γ = 0:

U(s) = K
(
R(s) − Y(s)) + 1

sTi

(
R(s) − Y(s)

)
− sTd
1+ sTd/N Y(s)

)
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Discretization

P-part:

P(k) = K (r(k) − y(k))
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Discretization

I-part:

I(t) = KTI

t∫
0

(r(τ ) − y(τ ))dτ

dI
dt =

K
TI
(r(t) − y(t))

• Forward difference

I(k+ 1) − I(k)
h = KTI (r(k) − y(k))

I(k+1) := I(k) + (K*h/Ti)*(r(k)-y(k))

The I-part can be precalculated

• Backward difference

The I-part cannot be precalculated, I(k) = f (r(k), y(k))
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Discretization

D-part (assume γ = 0):

D = K sTD
1+ sTD/N

(−Y(s))

TD
N
dD
dt + D = −KTD

dy
dt

• Forward difference (unstable for small TD)

• Backward difference

TD
N
D(k) − D(k− 1)

h + D(k) = −KTD y(k) − y(k− 1)h

D(k) = TD
TD + Nh

D(k− 1) − KTDN
TD + Nh

(y(k) − y(k− 1))
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Discretization

Tracking:

v := P + I + D;
u := sat(v,umax,umin);
I := I + (K*h/Ti)*(r-y) + (h/Tt)*(u - v);
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PID code

PID-controller with anti-windup (γ = 0).
r = ref.get();
y = yIn.get();
D = ad * D - bd * (y - yold);
v = K*(r - y) + I + D;
u = sat(v,umax,umin);
uOut.put(u);
I = I + (K*h/Ti)*(r - y) + (h/Tt)*(u - v);
yold = y;

ad and bd are precalculated parameters given by the backward differ-
ence approximation of the D-term.
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Further Reading

• B. Wittenmark, K. J. Åström, K.-E. Årzén: “Computer Control:
An Overview.” IFAC Professional Brief, 2002.
(93 pages, available at http://www.control.lth.se)

• K. J. Åström, Tore Hägglund: “Advanced PID Control.” The
Instrumentation, Systems, and Automation Society, 2005.

• A. Cervin: “Integrated Control and Real-Time Schedul-
ing.” PhD Thesis, Lund University, 2003. (Available at
http://www.control.lth.se)
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