
Real-time kernels for embedded systemsy

P l G iPaolo Gai
Evidence Srl

http://www evidence eu comhttp://www.evidence.eu.com

Evidence Srl - info@evidence.eu.com – 2008



summary

embedded systems – typical features
designed to be smalldesigned to be small
scheduling algorithms for small embedded systems
the OSEK/VDX standardthe OSEK/VDX standard
I/O management

Evidence Srl - info@evidence.eu.com – 2008



part Ip

embedded systemsembedded systems
-

t i l f ttypical features

Evidence Srl - info@evidence.eu.com – 2008



software used in automotive systems

The software in powertrain systems
boot and microcontroller related features
real-time operating system 

provides abstractions (for example: task, semaphores, …)
an interaction model between hardware and application
separates behavior from infrastructures
debugging simplificationdebugging simplification

I/O Libraries
completes the OS with the support of the platform HWp pp p
10 times bigger than a minimal OS

application
implements only the behavior and not the infrastructures (libraries)
independent from the underlying hardware

the operating system is a key element in the architecture of

Evidence Srl - info@evidence.eu.com – 2008

the operating system is a key element in the architecture of 
complex embedded systems



typical microcontroller features

let's try to highlight a typical scenario that applies to embedde 
platforms
embedded microcontroller

depending on the project, that microcontroller will be @ 8, 16, or 32 
bitbit
typically comes with a rich set of interfaces

timers (counters / CAPCOM / Watchdog / PWM)timers (counters / CAPCOM / Watchdog / PWM)
A/D and D/A
communication interfaces (I2C, RS232, CAN, Infrared, ...)

50 i t t (th i i l PC i t t t ll h d l 15!!!)~50 interrupts (the original PC interrupt controller had only 15!!!)

memory
SRAM / FLASH /SRAM / FLASH / ...

other custom HW / power circuits

Evidence Srl - info@evidence.eu.com – 2008



Hitachi H8

Evidence Srl - info@evidence.eu.com – 2008



Motorola MPC565
1M byte of internal FLASH memory (divided into 
two blocks of 512K bytes)
36K bytes Static RAM
Three time processor units (TPU3)Three time processor units (TPU3)
A 22-timer channel modular I/O system (MIOS14)
Three TouCAN modules
Two enhanced queued analog system with analogTwo enhanced queued analog system with analog 
multiplexors (AMUX) for 40 total analog channels. 
These modules are configured so each module can 
access all 40 of the analog inputs to the part.
Two queued serial multi-channel modules each ofTwo queued serial multi channel modules, each of 
which contains a queued serial peripheral interface 
(QSPI) and two serial controller interfaces 
(SCI/UART)
A J1850 (DLCMD2) communications moduleA J1850 (DLCMD2) communications module
A NEXUS debug port (class 3) – IEEE-ISTO 5001-
1999
JTAG and background debug mode (BDM)g g ( )

Evidence Srl - info@evidence.eu.com – 2008



Microchip dsPIC
Single core architecture / Familiar MCU look and feel / DSP performance
Rich peripheral options / Advanced interrupt capability / Flexible Flash memory
Self-programming capability / Low pin count options / Optimized for C

Evidence Srl - info@evidence.eu.com – 2008



RAM vs ROM usage

consider a mass production market: ~ few M boards sold
development cost impacts around 10%p p
techniques for optimizing silicon space on chip

you can spend a few men-months to reduce the footprint of the 
application

memory in a typical SoC
b l h b512 Kb Flash, 16 Kb RAM

l S C ( h hi fsample SoC (speech process. chip for 
security apps) picture

• 68HC11 micro68HC11 micro
• 12Kb ROM
• 512 bytes RAM in approx. the same 

space (24x cost!)

Evidence Srl - info@evidence.eu.com – 2008

Sample die of a  speech-processing chip

space (24x cost!)



wrap-up

typical scenario for an embedded system
microcontroller (typically with reduced number instruction ( yp y
numbers
lack of resources (especially RAM!!!)
dedicated HW
dedicated interaction patternsp

a microwave oven is -not- a general purpose computer

these assumptions leads to different programming styles, and 
to SW architectures different from general purpose 

tcomputers

Evidence Srl - info@evidence.eu.com – 2008



Part II

designed to be small

Evidence Srl - info@evidence.eu.com – 2008



the problem...

let's consider typical multiprogrammed environments
Linux/FreeBSD have footprints in the order of Mbytes!!!

the objective now is to make a 
reduced systemreduced system 

that can fit in small scale microcontrollers!!!

the system we want to be able must fit on a typical y yp
system-on-chip memory footprint

that is, around 10 Kb of code and around 1 Kb of RAM...

Evidence Srl - info@evidence.eu.com – 2008



POSIX does not (always) mean minimal
a full-fledged POSIX footprints around 1 Mb

use of profiles to support subset of the standard
a profile is a subset of the full standard that lists a set of 

i t i ll d i i i tservices typically used in a given environment

POSIX l ti fil ifi d b th ISO/IEEEPOSIX real time profiles are specified by the ISO/IEEE 
standard 1003.13

Evidence Srl - info@evidence.eu.com – 2008



POSIX 1003.13 profiles

PSE51 minimal realtime system profile
no file system
no memory protection
monoprocess multithread kernel

PSE52 l i ll filPSE52 realtime controller system profile
PSE51 + file system + asynchronous I/O

PSE53 dedicated realtime system profilePSE53 dedicated realtime system profile
PSE51 + process support and memory protection

PSE54 multi purpose realtime system profilePSE54 multi-purpose realtime system profile
PSE53 + file system + asynchronous I/O

Evidence Srl - info@evidence.eu.com – 2008



POSIX top-down approach
POSIX defines a top-down approach towards embedded 
systems API design

th i t f id l t d h th fil tthe interface was widely accepted when the profiles came out
these profiles allow easy upgrades to more powerful systems
possibility to reuse previous knowledges and codepossibility to reuse previous knowledges and code

PSE51 systems around 50-150 Kbytes
that size fits for many embedded devices, like single board PCsy , g
ShaRK is a PSE51 compliant system

Evidence Srl - info@evidence.eu.com – 2008



SoC needs bottom-up approaches!

we would like to have footprint in the order of 1-10 Kb
the idea is to have a bottom-up approachp pp

starting from scratch, design sta t g o sc atc , des g
a minimal system 
that provides a minimal API
that is able to efficiently describe embedded systems

with stringent temporal requirements
with limited resourceswith limited resources

results:
RTOS standards (OSEK-VDX uITRON)RTOS standards (OSEK VDX, uITRON)
2 Kbytes typical footprint

Evidence Srl - info@evidence.eu.com – 2008



typical footprints

����
���� �����

������

�����
�����

(�����, �������)
�����

����-����

����

����� �����
�����/��

�������
����

�������

�����

µITRON

���

����
����/���

�������

������
�����

Evidence Srl - info@evidence.eu.com – 2008



step 1: the boot code

starting point
the microcontroller

boot code design
typically there will be a startup routine called at startup
that routine will handle 

binary image initialization (initialized data and BSS)
initialization of the microcontroller services (segments/memoryinitialization of the microcontroller services (segments/memory 
addresses/interrupt vectors)

and will finally jump to an initialization C routine

RTOS- independent interrupt handling
interrupt handlers that allow an interrupt to fire and to return to the 
interrupted point without any kind of reschedulinginterrupted point, without any kind of rescheduling
OSEK calls these handlers “ISR type 1”

Evidence Srl - info@evidence.eu.com – 2008



after step 1: a non concurrent system

basic 1-task non-preemptive system

good for really really small embedded devices
footprint around a few hundred bytes
e.g., PIC

next step: add some kind of multiprogramming environment

Evidence Srl - info@evidence.eu.com – 2008



step 2: multiprogramming environment

right choice of the multiprogramming environment 
cuncurrent requirements influences RAM footprint

Questions:
what kind of multiprogramming model is really needed for 
automotive applications?

which is the best semantic that fits the requirements? 
preemptive or non preemptive?
off-line or on-line scheduling?

t f bl ki i iti ?support for blocking primitives?

Evidence Srl - info@evidence.eu.com – 2008



step 2: off-line, non real-time

not all the systems requires full multiprogramming support
off-line scheduled systems typically requires simpler y yp y q p
scheduling strategies

example: cyclic scheduling

non real-time systems may not require complex scheduling 
algorithms

http://www.tinyos.net

component-based OS written in NesC
used for networked wireless sensors
provides interrupt management and FIFO scheduling in a few 
hundred bytes of code

Evidence Srl - info@evidence.eu.com – 2008

hundred bytes of code



step 2: stack size

Stack sizes highly depend on the scheduling algorithm used

non-preemptive scheduling requires only one context

under certain conditions, stack can be shared
priorities do not have to change during task executionp g g

Round Robin cannot share stack space

blocking primitives should be avoided
POSIX t bl ki i itiPOSIX support blocking primitives

otherwise stack space scales linearly with the number ofotherwise, stack space scales linearly with the number of 
tasks

Evidence Srl - info@evidence.eu.com – 2008



step 3: ISR2

some interrupts should be RTOS-aware
for example, the application could use a timer to activate tasks

need for handlers that are able to influence the RTOS 
h d lischeduling
OSEK calls these handlers “ISR type 2”

need for interrupt nesting
scheduling decisions taken only when the last interrupt endsscheduling decisions taken only when the last interrupt ends
ISR type 1 always have priority greater than ISR type 2

Evidence Srl - info@evidence.eu.com – 2008



step 4: careful selection of services

to reduce the system footprint, system services must be 
carefully chosen

no memory protection
no dynamic memory allocation

fil tno filesystem
no blocking primitives
no software interruptsno software interrupts
no console output

...including only what is really neededg y y
basic priority scheduling
mutexes for resource sharing
timers for periodic tasks

Evidence Srl - info@evidence.eu.com – 2008



standardized APIs
there exists standards for minimal RTOS support

automotive applications, OSEK-VDX
japanese embedded consumers, uITRON

and for I/O libraries
t ti li ti HIS kiautomotive applications, HIS working group

Evidence Srl - info@evidence.eu.com – 2008



part IIIp

scheduling algorithmsscheduling algorithms
for

ll b dd d tsmall embedded systems

Evidence Srl - info@evidence.eu.com – 2008



sharing the stack
the goal of our design is to produce a system that can save 
as much RAM memory as possible
RAM is used for

storing application data
storing thread stacks

a good idea would be to try to reduce as much as possible 
t k ge h ing the t k t k p e mong diffe entstack usage, sharing the stack stack space among different 

threads.

Now the question is:

When does the stack can be shared
among different tasks?

Evidence Srl - info@evidence.eu.com – 2008

among different tasks?



sharing the stack (2)

in general, the stack can be shared every time we can 
guarantee that two tasks will not be interleavedguarantee that two tasks will not be interleaved

T1

T1

T2

T2

T3T2

interleaved execution

T3

not interleaved execution

stack sharing under fixed priority scheduling
t k h th i ittasks have the same priority
tasks do NOT block (no shared resources)

Evidence Srl - info@evidence.eu.com – 2008



an example

suppose to have a system
that schedules tasks using fixed prioritiesthat schedules tasks using fixed priorities
where each task do not block

suppose to have 3 different scheduling prioritiespp g p
suppose that 

priority 1 (lowest) has three tasks with stack usage 7, 8, 15
priority 2 (medium) has two tasks with stack usage 10 and 3
priority 3 (highest) has a task with stack usage 1

the total stack usage will be
(7 8 15) (10 3) (1) 26max(7,8,15)+max(10,3)+max(1) = 26

whereas the sum of all the stacks is 44

Evidence Srl - info@evidence.eu.com – 2008



using resources...

the model where the different tasks do not interact is not 
realisticrealistic
we would like to let the different tasks 

share some resources
still maintaining some timing properties (e.g., meet deadlines)
and, if possible, minimize the stack space (RAM) needed

the first problem that must be addressed is the Priority 
Inversion problem

Evidence Srl - info@evidence.eu.com – 2008



priority inversion

suppose to have 2 tasks that share a resource
the High Priority task can be delayed because of some lowthe High Priority task can be delayed because of some low 
priority task

normal execution Deadline miss!!!

T1

critical section

W ST1
T2
T3 SWT3

Evidence Srl - info@evidence.eu.com – 2008



priority inheritance

first Solution (Priority Inheritance/Original Priority Ceiling):
the low priority task inherits the priority of T1the low priority task inherits the priority of T1

note that the execution of T1 and T3 are interleaved!

normal execution Push-Through

T1

critical section

W S

Blocking

T1
T2
T3 S

WT3 S

Evidence Srl - info@evidence.eu.com – 2008



can we share the stack?
sharing stack space means that two task instances can use 
the same stack memory area in different time instants
in normal preemptive fixed priority schedulers, tasks cannot
share stack space

b f bl ki i i ibecause of blocking primitives
recalling the PI example showed before, T1 and T3 cannot share the 
same stack space at the same timep

T1 W ST1
T2
T3 S

WT3 S

Evidence Srl - info@evidence.eu.com – 2008



yes!

stack can be shared also when mutual exclusion between 
shared resources have to be guaranteedshared resources have to be guaranteed
the idea is that a task can start only when all the resources 
it needs are free
this idea leads to two protocols

Immediate Priority Ceiling (Fixed Priority-based)
Stack Resource Policy (EDF-based)

Evidence Srl - info@evidence.eu.com – 2008



IPCP /SRP

solution (Immediate Priority Ceiling, Stack Resource Policy)
a task is allowed to execute when there are enough freea task is allowed to execute when there are enough free 
resources
T1 and T3 are NOT Interleaved!T1 and T3 are NOT Interleaved!

normal execution
Delayed execution

T1

critical section

W S

y

T1
T2
T3 SWT3

Evidence Srl - info@evidence.eu.com – 2008



IPCP/SRP (2)

tasks can share a single user level stacktasks can share a single user-level stack

T1T1
T2
T3

without
IPCP/SRPT3

IPCP/SRP
stack usage

IPCP/SRP

g

Evidence Srl - info@evidence.eu.com – 2008



implementation tips

how can two threads share the same stack space?

the tradictional thread model

Task x()
{
int local;
initialization();

allows a task to block
forces a task structure

initialization();
for (;;) {

do_instance();
end_instance();

}}
}

in general, all tasks can preempt each other
also, tasks can block on semaphores

a stack is needed for each task that can be preempted
the overall requirement for stack space is the sum of all 

Evidence Srl - info@evidence.eu.com – 2008

task requirements, plus interrupt frames



kernel-supported stack sharing

the kernel really manages only a single stack that is shared 
by ALL the tasks

also interrupts use the same stack

kernel must ensure that tasks never block
it would produce interleaving between tasks, that is not supported 
since there is only one stack

User Stack

T1T2

T1
T2 T2
T3 T3

Evidence Srl - info@evidence.eu.com – 2008



one shot model

to share the stack the one shot task model is needed
in OSEK/VDX these two kinds of task models arein OSEK/VDX, these two kinds of task models are 
extended and basic tasks

Extended Tasks Basic Tasks (one shot!)

Task(x)
{
int local;
initialization();

int local;

Task x()
{initialization();

for (;;) {
do_instance();
end_instance();

{
do_instance();

}

S t i iti li ti ()}
}

System_initialization()
{
initialization();
...

Evidence Srl - info@evidence.eu.com – 2008

}



is there a limit?

we are able to let tasks share the same stack space
but only between tasks of the same prioritybut only between tasks of the same priority

can we do better?can we do better?

the limit for stack reduction is to schedule all the tasks usingthe limit for stack reduction is to schedule all the tasks using 
a non-preemptive algorithm

only one stack is needed
not all the systems can afford that

the idea is to limit preemptability without impacting on the 
schedulability of the system using Preemption Thresholds

Evidence Srl - info@evidence.eu.com – 2008



preemption thresholds
(technique first introduced by Express Logic inside the ThreadX kernel; 

further studied by Saksena and Wang])

derived from Fixed priority scheduling
two prioritiesp

ready priority used for queuing ready tasks
dispatch priority used for the preemption test
ready priority <= dispatch priority

the dispatch priority is also called threshold

Evidence Srl - info@evidence.eu.com – 2008



disabling preemption

preemption thresholds are used to disable preemption 
between tasks

dispatch Priority (B)

Higher 
priorities

Task A
Task Bdispatch Priority (A)

d P i it
ready Priority (A)

ready Priority (B)

these tasks cannot preempt each other!

Evidence Srl - info@evidence.eu.com – 2008

p p



another interpretation of preemption thresholds
consider a system that uses fixed priorities with immediate 
priority ceiling
consider the task set
let each two tasks that are mutually non-preemptive 
share a pseudo-resource
the pseudo resource is automatically 

locked when the task starts
unlocked when the task ends

d i it t k' i itready priority task's priority
dispatch priority max(ceiling of a pseudo-resource 

used by the task)used by the task)
preemption thresholds = traditional fixed priorities when 
ready priority = dispatch priority

Evidence Srl - info@evidence.eu.com – 2008

ready priority = dispatch priority



preemption thresholds and IPCP
preemption thresholds under IPCP can be thought as a 
straightforward extension
each task 

is scheduled using IPCP
is assigned some pseudo-resource that is automatically 
locked/unlocked

ready priority priority of each taskready priority priority of each task
dispatch priority max(ceiling of a pseudo-resource 

used by the task)used by the task)
OSEK/VDX calls this feature “Groups of tasks”, and “Internal 
resources”

Evidence Srl - info@evidence.eu.com – 2008

resources



why disabling preemption?

preemption is usually used to enhance response time
the objective is to disable the preemption maintaining the j p p g
timing constraints of the system

Why?Why?

reducing the preemption let more tasks share the same 
stack
it is important not to reduce the preemption too much

a non-preemptive system is easily non schedulable

Evidence Srl - info@evidence.eu.com – 2008



enhancing schedulability
premption thresholds have the nice property to 
enhance schedulability
Example [Saksena, Wang,99] :

three periodic tasks with relative deadlines response time
Task Ci Ti Di ready priority preemptive non-preemptive

T1 20 70 50 3 20 55
T2 20 80 80 2 40 75
T3 35 200 100 1 115 75

the system is NOT schedulable with fixed priorities or non-
preemptive scheduling

T3 35 200 100 1 115 75

Task ready priority dispatch priority response time
T1 3 3 40
T2 2 3 75
T3 1 2 95

but is schedulable using preemption thresholds
(T1,T2) and (T2,T3) are mutually non preemptive tasks

T3 1 2 95

Evidence Srl - info@evidence.eu.com – 2008

(T1,T2) and (T2,T3) are mutually non preemptive tasks



minimizing stack space

preemption thresholds are used to reduce stack space
the idea is to selectively reduce the preemption betweenthe idea is to selectively reduce the preemption between 
tasks, to let tasks share their stack
the approach is done in three stepsthe approach is done in three steps

1) search for a schedulable solution

2) threshold computation

3) stack computation

Evidence Srl - info@evidence.eu.com – 2008



search for a schedulable solution

the staring point is a set of tasks with requirements that 
comes out from the application domaincomes out from the application domain

periodicity, relative deadline, jitter

this step should produce a feasible priority assignmentp p p y g
composed by ready and dispatch priority for each task

EDFfixed priorities
EDF + SRP assignment is 
typically a good choice

traditional methods
Rate Monotonic
D dli M t iDeadline Monotonic

others [Saksena, Wang, 99]
greedy algorithms

Evidence Srl - info@evidence.eu.com – 2008

g y g
simulated annealing



threshold computation

the schedulable solution found at the previous step consists 
in a ready and a dispatch priority value for each taskin a ready and a dispatch priority value for each task
observation: raising a dispatch priority

helps stack sharing p g
(tasks easily become mutually non-preemptive)

makes feasibility harder
(the system tends more to non-preemptive)(the system tends more to non-preemptive)

the objective of this phase is to reduce unnecessarythe objective of this phase is to reduce unnecessary 
preemptability inserted by the values of the scheduling 
attributes

algorithm proposed by [Saksena, Wang, 00]

Evidence Srl - info@evidence.eu.com – 2008



threshold computation (2)

main idea: raise the dispatch priority as much as we can, 
maintaining schedulabilitymaintaining schedulability

1 start from the highest priority task1. start from the highest priority task
2. raise its dispatch priority until 

it is equal to the maximum priorityit is equal to the maximum priority
the system is not schedulable

3. consider the next task
4. go to step 2

Evidence Srl - info@evidence.eu.com – 2008



stack computation

once the dispatch priority values have been “maximized”, 
we obtain a system that have just the needed (minimum)we obtain a system that have just the needed (minimum) 
preemptiveness
then, we only have to compute which is the maximum stack, y p
required by a given configuration
there exist a polynomial algorithm that finds it
the algorithm is essentially a directed acyclic graph longest 
path search along the preemption graph with stack sizes as 

i hweights.

Evidence Srl - info@evidence.eu.com – 2008



computing the maximum stack usage (2)

1. for each task ti
2 worst[t ] = stack[t ];2. worst[ti] = stack[ti];
3. for each task ti h2l
4 for each task t that can preempt t h2l4. for each task tj that can preempt ti h2l
5. worst[ti] = max( worst[ti], stack[ti]+worst[tj]);
6 the worst = max(for each t worst[t ]);6. the_worst = max(for each ti, worst[ti]);

(Note: h2l means “from highest to lowest priority”)(Note: h2l means from highest to lowest priority )

[T W Carley private e mail][T. W. Carley, private e-mail]

Evidence Srl - info@evidence.eu.com – 2008



an example

8

dispatch priority6
7
8

s dispatch priority

4
5
6

rio
rit

ie
s

3
4P

r

ready priority

1
2

Evidence Srl - info@evidence.eu.com – 2008

Task τ8 τ7 τ6 τ5 τ4 τ3 τ2 τ1



an example

8

6
7
8

s

4
5
6

rio
rit

ie
s

Total
3
4P

102

1
2

Stack 1 100 1 100 1 1 1 1

Worse 102 102 3 101 2 2 1 1

Evidence Srl - info@evidence.eu.com – 2008

Task τ8 τ7 τ6 τ5 τ4 τ3 τ2 τ1



grouping

T1
T2

T3
T T

T7

Group 3

Group 1
T5

T4

T6 T8

Group 3
Group 2

in other words, given a priority assignment, we need to find 
a partition of the task set in Non Preemption Groups

all tasks in a NPG are mutually non-preemptable
the total stack requirement is the sum of the maximum stack 
required by the tasks of each group

Evidence Srl - info@evidence.eu.com – 2008

required by the tasks of each group



computing the minimum number of groups

it may be interesting, given a priority assignment, to 
compute the minimum number of non-preemption groupscompute the minimum number of non preemption groups
note: minimizing the number of groups means minimizing 
the number of tasks in a user-supported stack sharing pp g
approach
as we will see, minimum number of groups does not always 
coincide with the minimum stack usage
a polynomial algorithm that computes the minimum number 
f iof groups exists

Evidence Srl - info@evidence.eu.com – 2008



computing the minimum number of groups (2)

1. m=0 /* number of groups */
2. L = sort tasks by dispatch priority, non decreasing order2. L  sort tasks by dispatch priority, non decreasing order
3. while (L != NULL) do
4. ti = first(L);
5. G[m] = ti; L = L – ti
6. foreach tj in L
7 if ready <= disp then7. if readyj <= dispi then 
8. G[m] += tj; L = L – tj
9. endifd
10. endfor
11. m = m+1
12. endwhile

[Saksena, Wang, 00]

Evidence Srl - info@evidence.eu.com – 2008



an example (2)

8 G2

6
7
8

s

G2

4
5
6

rio
rit

ie
s

G3

G1
Total

3
4P G3

201

1
2

Task τ8 τ7 τ6 τ5 τ4 τ3 τ2 τ1

Stack 1 100 1 100 1 1 1 1

Evidence Srl - info@evidence.eu.com – 2008

8 7 6 5 4 3 2 1



an example (3)

the total stack space, then, is computed summing the 
maximum stack of each groupmaximum stack of each group

unfortunately, it is not true that the partition with the leastunfortunately, it is not true that the partition with the least 
number of groups also minimizes the stack

there are examples where the minimum number of non-
preemptive groups does not correspond to the minimum 
stack usage!

Evidence Srl - info@evidence.eu.com – 2008



an example (4)

8

6
7
8

s

G4
G1 G1

4
5
6

rio
rit

ie
s

Group 3 Total
3
4P 103

1
2 G2 Group 2

Task τ8 τ7 τ6 τ5 τ4 τ3 τ2 τ1

Stack 1 1 100 1 1 1 1100

Evidence Srl - info@evidence.eu.com – 2008

8 7 6 5 4 3 2 1



finding the groups that minimizes the stack

there exist an exponential algorithm that finds the partition 
of the task set that minimizes the overall stack usage
the algorithm

tries all possible combinations of groups
the search algorithm has been optimized to reduce the number of 
visited nodes
the overall complexity remains exponential but thanks to thethe overall complexity remains exponential, but thanks to the 
pruning the problem can be solved in (at most) few seconds  

Evidence Srl - info@evidence.eu.com – 2008



simulation results

mean number of preemption groups

Evidence Srl - info@evidence.eu.com – 2008

mean number of preemption groups
the number typically scales with log max period

min period



simulation results (2)

Evidence Srl - info@evidence.eu.com – 2008



improvement of stack optimizations

% of tasks that sets where the minimum number of groups

Evidence Srl - info@evidence.eu.com – 2008

% of tasks that sets where the minimum number of groups 
has also the minimum stack size



part IV

the OSEK/VDX standard

Evidence Srl - info@evidence.eu.com – 2008



what is OSEK/VDX?

is a standard for an open-ended architecture for distributed 
control units in vehicles
the name:

OSEK: Offene Systeme und deren Schnittstellen für die Elektronik im 
K ft f h (O t d th di i t f fKraft-fahrzeug (Open systems and the corresponding interfaces for 
automotive electronics)
VDX: Vehicle Distributed eXecutive (another french proposal of API ( p p
similar to OSEK)
OSEK/VDX is the interface resulted from the merge of the two 
projectsprojects

http://www osek-vdx orghttp://www.osek-vdx.org

Evidence Srl - info@evidence.eu.com – 2008



motivations

high, recurring expenses in the development and variant 
management of non-application related aspects of control 

funit software. 
incompatibility of control units made by different 

f t d t diff t i t f d t lmanufacturers due to different interfaces and protocols 

Evidence Srl - info@evidence.eu.com – 2008



objectives

portability and reusability of the application software 
specification of abstract interfaces for RTOS and networkspecification of abstract interfaces for RTOS and network 
management
specification independent from the HW/network detailsspecification independent from the HW/network details
scalability between different requirements to adapt to 
particular application needsp pp
verification of functionality and implementation using a 
standardized certification process

Evidence Srl - info@evidence.eu.com – 2008



advantages

clear savings in costs and development time. 
enhanced quality of the softwareenhanced quality of the software
creation of a market of uniform competitors
independence from the implementation and standardisedindependence from the implementation and standardised 
interfacing features for control units with different 
architectural designs
intelligent usage of the hardware present on the vehicle

for example, using a vehicle network the ABS controller could give a 
d f db k t th t i i t llspeed feedback to the powertrain microcontroller

Evidence Srl - info@evidence.eu.com – 2008



system philosophy

standard interface ideal for automotive applications

scalability
using conformance classesg

configurable error checking g g

portability of softwareportability of software
in reality, the firmware on an automotive ECU is 10% RTOS and 
90% device drivers

Evidence Srl - info@evidence.eu.com – 2008



support for automotive requirements

the idea is to create a system that is
reliablereliable
with real-time predictability

support for pp
fixed priority scheduling with immediate priority ceiling
non preemptive scheduling
preemption thresholds
ROM execution of code
stack sharing (limited support for blocking primitives)stack sharing (limited support for blocking primitives)

documented system primitives
behavior
performance of a given RTOS must be known

Evidence Srl - info@evidence.eu.com – 2008



static is better

everything is specified before the system runs

static approach to system configuration
no dynamic allocation on memoryno dynamic allocation on memory
no dynamic creation of tasks
no flexibility in the specification of the constraints

custom languages that helps off-line configuration of the 
system

OIL: parameters specification (tasks, resources, stacks…)
KOIL: kernel aware debuggingKOIL: kernel aware debugging

Evidence Srl - info@evidence.eu.com – 2008



application building process

RTOS configuration drivers configuration

input

output

third part libraries

OIL DIL
device drivers
templates

DIL
OIL

Conf. Tool Debugger

DIL
Conf. Tool

device drivers
C/ASM d

RTOS configuration
C d

ORTI description
KOIL

binary image
lfC/ASM codeC code KOIL

Li k

.elf

C/ASM
C il

Linker

objects
oobjectsobjects

Evidence Srl - info@evidence.eu.com – 2008

application
C code RTOS library

.a

Compiler .o.oobjects
.o



OSEK/VDX standards

The OSEK/VDX consortium packs its standards in different 
documentsdocuments

OSEK OS operating systemOSEK OS operating system
OSEK Time time triggered operating system
OSEK COM communication servicesOSEK COM communication services
OSEK FTCOM fault tolerant communication
OSEK NM network managementOSEK NM network management
OSEK OIL kernel configuration
OSEK ORTI kernel awareness for debuggersOSEK ORTI kernel awareness for debuggers

next slides will describe the OS OIL ORTI and COM parts

Evidence Srl - info@evidence.eu.com – 2008

next slides will describe the OS, OIL, ORTI and COM parts



processing levels

the OSEK OS specification describes the processing levels 
that have to be supported by an OSEK operating systemthat have to be supported by an OSEK operating system

Evidence Srl - info@evidence.eu.com – 2008



conformance classes

OSEK OS should be scalable with the application needs
different applications require different servicesdifferent applications require different services
the system services are mapped in Conformance Classes

a conformance class is a subset of the OSEK OS standard
objectives of the conformance classes

allow partial implementation of the standard
allow an upgrade path between classes

services that discriminates the different conformance 
lclasses

multiple requests of task activations
task typestask types
number of tasks per priority

Evidence Srl - info@evidence.eu.com – 2008



conformance classes (2)

there are four conformance classes
BCC1BCC1
basic tasks, one activation, one task per priority
BCC2
BCC1 plus: > 1 activation > 1 task per priorityBCC1 plus: > 1 activation, > 1 task per priority
ECC1
BCC1 plus: extended tasks
ECC2
ECC1 plus: > 1 activation (basic tasks), > 1 task per priority

Evidence Srl - info@evidence.eu.com – 2008



conformance classes (3)

Evidence Srl - info@evidence.eu.com – 2008



basic tasks

a basic task is 
a C function call that is executed in a proper contextp p
that can never block
can lock resources
can only finish or be preempted by an higher priority task or ISR

a basic task is ideal for implementing a kernel-supported 
stack sharing becausestack sharing, because

the task never blocks
when the function call ends, the task ends, and its local variables arewhen the function call ends, the task ends, and its local variables are 
destroyed
in other words, it uses a one-shot task model

support for multiple activations
in BCC2, ECC2, basic tasks can store pending activations (a task can 
be activated while it is still running)

Evidence Srl - info@evidence.eu.com – 2008

be activated while it is still running)



extended tasks

extended tasks can use events for synchronization
an event is simply an abstraction of a bit maskan event is simply an abstraction of a bit mask

events can be set/reset using appropriate primitives
a task can wait for an event in event mask to be set

extended tasks typically
have its own stack
are activated once
have as body an infinite loop over a WaitEvent() primitive

d d k d f l i l i iextended tasks do not support for multiple activations
... but supports multiple pending events

Evidence Srl - info@evidence.eu.com – 2008



scheduling algorithm

the scheduling algorithm is fundamentally a 
fixed priority schedulerfixed priority scheduler
with immediate priority ceiling
with preemption threshold

the approach allows the implementation of
preemptive scheduling
non preemptive scheduling
mixed

with some peculiaritieswith some peculiarities...

Evidence Srl - info@evidence.eu.com – 2008



scheduling algorithm: peculiarities

multiple activations of tasks with the same priority
are handled in FIFO orderare handled in FIFO order
that imposes in some sense the internal scheduling data structure

Evidence Srl - info@evidence.eu.com – 2008



OSEK task primitives (basic and extended tasks)
TASK(<TaskIdentifier>) {…}

used to define a task body (it’s a macro!)
D l T k( T kId tifi )DeclareTask(<TaskIdentifier>)

used to declare a task name (it’s a macro!)
StatusType ActivateTask(TaskType <TaskID>)

ti t t kactivates a task
StatusType TeminateTask(void)

terminates the current running task (from any function nesting!)
St t T Ch i T k(T kT T kID )StatusType ChainTask(TaskType <TaskID>)

atomic version of TerminateTask+ActivateTask
StatusType Schedule(void)

rescheduling point for a non-preemptive task
StatusType GetTaskID(TaskRefType <TaskID>)

returns the running task ID
StatusType GetTaskState(TaskType <TaskID>, TaskStateRefType 
<State>)

returns the status of a given task

Evidence Srl - info@evidence.eu.com – 2008



OSEK event primitives

DeclareEvent(<EventIdentifier>)
declaration of an Event identifier (it’s a macro!)declaration of an Event identifier (it s a macro!)

StatusType SetEvent(TaskType <TaskID>,
EventMaskType <Mask> )EventMaskType <Mask> )

sets a set of event flags to an extended task

StatusType ClearEvent(EventMaskType <Mask>)StatusType ClearEvent(EventMaskType <Mask>)
clears an event mask (extended tasks only)

StatusType GetEvent(TaskType <TaskID>, yp ( yp ,
EventMaskRefType <Event>)

gets an event mask

StatusType WaitEvent(EventMaskType <Mask>)
waits for an event mask (extended tasks only)
thi i th l bl ki i iti f th OSEK t d d

Evidence Srl - info@evidence.eu.com – 2008

this is the only blocking primitive of the OSEK standard



scheduling algorithm: resources

resources
are typical Immediate Priority Ceiling mutexesare typical Immediate Priority Ceiling mutexes
the priority of the task is raised when the task locks the resource

Evidence Srl - info@evidence.eu.com – 2008



scheduling algorithm: resources (2)

resources at interrupt level
resources can be used at interrupt levelresources can be used at interrupt level
for example, to protects drivers
the code directly have to operate on the interrupt controller

Evidence Srl - info@evidence.eu.com – 2008



scheduling algorithm: resources (3)

preemption threshold implementation
done using “internal resources” that are locked when the task startsdone using internal resources  that are locked when the task starts 
and unlocked when the task ends
internal resources cannot be used by the application

Evidence Srl - info@evidence.eu.com – 2008



OSEK resource primitives

DeclareResource(<ResourceIdentifier>)
used to define a task body (it’s a macro!)used to define a task body (it s a macro!)

StatusType GetResource(ResourceType <ResID>)
resource lock functionresource lock function

StatusType ReleaseResource(ResourceType <ResID>)
resource unlock function

RES_SCHEDULER
resource usd by every task the task becomes non preemptive

Evidence Srl - info@evidence.eu.com – 2008



interrupt service routine

OSEK OS directly addresses interrupt management in the 
standard APIstandard API
interrupt service routines (ISR) can be of two types

Category 1: without API callsg y
simpler and faster, do not implement a call to the scheduler at the 
end of the ISR
Category 2: with API callsCategory 2: with API calls
these ISR can call some primitives (ActivateTask, ...) that change 
the scheduling behavior. The end of the ISR is a rescheduling point

ISR 1 has always a higher priority of ISR 2

finally, the OSEK standard has functions to directly 
manipulate the CPU interrupt status

Evidence Srl - info@evidence.eu.com – 2008



OSEK interrupts primitives

ISR(<ISRName>) {…}
define an ISR2 functiondefine an ISR2 function

void EnableAllInterrupts(void)
void DisableAllInterrupts(void)void DisableAllInterrupts(void)

enable and disable ISR1 and ISR2 interrupts

void ResumeAllInterrupts(void)void ResumeAllInterrupts(void)
void SuspendAllInterrupts(void)

enable and disable ISR1 and ISR2 interrupts (nesting possible!)p ( g p )

void ResumeOSInterrupts(void)
void SuspendOSInterrupts(void)p p ( )

enable and disable only ISR2 interrupts (nesting possible!)

Evidence Srl - info@evidence.eu.com – 2008



counters and alarms

counter
is a memory location or a hardware resource used to count eventsy
for example, a counter can count the number of timer interrupts to 
implement a time reference

alarmalarm
is a service used to process recurring events
an alarm can be cyclic or one shotan alarm can be cyclic or one shot
when the alarm fires, a notification takes place

task activation
call of a callback function
set of an event

Evidence Srl - info@evidence.eu.com – 2008



OSEK alarm primitives
DeclareAlarm(<AlarmIdentifier>)

declares an Alarm identifier (it’s a macro!)( )

StatusType GetAlarmBase ( AlarmType <AlarmID>, 
AlarmBaseRefType <Info> )

gets timing informations for the Alarmgets timing informations for the Alarm

StatusType GetAlarm ( AlarmType <AlarmID> TickRefType <Tick>)
value in ticks before the Alarm expires

StatusType SetRelAlarm(AlarmType <AlarmID>,
TickType <increment>, TickType <cycle>)

StatusType SetAbsAlarm(AlarmType <AlarmID>StatusType SetAbsAlarm(AlarmType <AlarmID>, 
TickType <start>, TickType <cycle>) 

programs an alarm with a relative or absoulte offset and period

StatusType CancelAlarm(AlarmType <AlarmID>)
cancels an armed alarm

Evidence Srl - info@evidence.eu.com – 2008



application modes

OSEK OS supports the concept of application modes
an application mode is used to influence the behavior of thean application mode is used to influence the behavior of the 
device
example of application modesexample of application modes

normal operation
debug mode
diagnostic mode
...

Evidence Srl - info@evidence.eu.com – 2008



OSEK Application modes primitive

AppModeType GetActiveApplicationMode(void)
gets the current application modegets the current application mode

OSDEFAULTAPPMODE
a default application mode value always defined

void StartOS(AppModeType <Mode>) 
starts the operating system
id Sh td OS(St t T E )void ShutdownOS(StatusType <Error>)
shuts down the operating system (e.g., a critical error occurred)

Evidence Srl - info@evidence.eu.com – 2008



hooks

OSEK OS specifies a set of hooks  that are called at specific 
timestimes

StartupHook
when the system starts

Evidence Srl - info@evidence.eu.com – 2008



hooks (2)

PreTaskHook
before a task is scheduled

k kPostTaskHook
after a task has finished its slice

ShutdownHook
when the system is shutting down (usually because of an 
unrecoverable error)
ErrorHook
when a primitive returns an error

Evidence Srl - info@evidence.eu.com – 2008

when a primitive returns an error



error handling

the OSEK OS has two types or error return values
standard error 
(only errors related to the runtime behavior are returned)
extended error
(more errors are returned useful when debugging)(more errors are returned, useful when debugging)

the user have two ways of handling these errors
distributed error checkingdistributed error checking
the user checks the return value of each primitive
centralized error checking
the se p o ides a E o Hook that is called hene e an e othe user provides a ErrorHook that is called whenever an error 
condition occurs

macros can be used to understand which is the failing primitive and 
what are the parameters passed to it

Evidence Srl - info@evidence.eu.com – 2008



OSEK OIL

goal
provide a mechanism to configure an OSEK application inside aprovide a mechanism to configure an OSEK application inside a 
particular CPU (for each CPU there is one OIL description)

the OIL language
allows the user to define objects with properties
(e.g., a task that has a priority)
some object and properties have a behavior specified by thesome object and properties have a behavior specified by the 
standard

an OIL file is divided in two partsp
an implementation definition
defines the objects that are present and their properties

li ti d fi itian application definition
define the instances of the available objects for a given application

Evidence Srl - info@evidence.eu.com – 2008



OSEK OIL objects

The OIL specification defines the properties of the following 
objects:objects:

CPU
the CPU on which the application runs
OS
the OSEK OS which runs on the CPU
ISRISR
interrupt service routines supported by OS
RESOURCE
the resources which can be occupied by a taskthe resources which can be occupied by a task
TASK
the task handled by the OS
COUNTER
the counter represents hardware/software tick source for alarms. 

Evidence Srl - info@evidence.eu.com – 2008



OSEK OIL objects (2)

EVENT
the event owned by a task. A
ALARM
the alarm is based on a counter
MESSAGESS G
the COM message which provides local or network communication
COM
the communication subsystemthe communication subsystem
NM
the network management subsystem

Evidence Srl - info@evidence.eu.com – 2008



OIL example: implementation definition

OIL_VERSION = "2.4";

IMPLEMENTATION my_osek_kernel {
[...]

TASK {
BOOLEAN [

TRUE { APPMODE_TYPE APPMODE[]; },
FALSE
] AUTOSTART;
UINT32 PRIORITY;
UINT32 ACTIVATION = 1;
ENUM [NON, FULL] SCHEDULE;
EVENT_TYPE EVENT[];
RESOURCE TYPE RESOURCE[];_

/* my_osek_kernel specific values */
ENUM [

SHARED,,
PRIVATE { UINT32 SIZE; }

] STACK;
};

[...]

Evidence Srl - info@evidence.eu.com – 2008

[ ]
};



OIL example: application definition

CPU my_application {
TASK Task1 {

PRIORITY = 0x01;
ACTIVATION = 1;
SCHEDULE = FULL;
AUTOSTART = TRUE;
STACK = SHARED;

};
};

Evidence Srl - info@evidence.eu.com – 2008



part V

I/O management

Evidence Srl - info@evidence.eu.com – 2008



I/O Management architecture

the application calls I/O functions
typical I/O functions are non blockingtypical I/O functions are non-blocking

OSEK BCC1/BCC2 does not have blocking primitives

blocking primitives can be implementedblocking primitives can be implemented
with OSEK ECC1/ECC2
not straightforwardg

the driver can use
polling

typically used for low bandwidth, fast interfaces
typically non-blockingtypically non-blocking
typically independent from the RTOS

Evidence Srl - info@evidence.eu.com – 2008



I/O Management architecture (2)

interrupts
there are a lot of interrupts in the systemp y
interrupts nesting often enabled
most of the interrupts are ISR1 (independent from the RTOS) because 
of runtime efficiencyof runtime efficiency 
one ISR2 that handles the notifications to the application

DMA
typically used for high-bandwidth devices
(e.g., transfers from memory to device

Evidence Srl - info@evidence.eu.com – 2008



I/O Management: using ISR2

ISR1
I/O Driver

ISR1

globalg
data

ISR2

Library API

A li ti llb k

Evidence Srl - info@evidence.eu.com – 2008

Application callback



I/O Management architecture (3)

another option is to use the ISR2 inside the driver to wake 
up a driver taskup a driver task
the driver task will be scheduled by the RTOS together 
with the other application taskswith the other application tasks

Evidence Srl - info@evidence.eu.com – 2008



I/O Management architecture

ISR1
I/O Driver

ISR1

globalg
data

ISR2

Library API I/O Tasks

A li ti llb k

Evidence Srl - info@evidence.eu.com – 2008

Application callback





ERIKA EnterpriseERIKA Enterprise
Configuration details

110



summaryy

• ERIKA Enterprise features
• comparison of the various versions
• OIL definition for Microchip dsPIC ® DSC

111



erika enterprise - featuresp

supported API
• OSEK OS (BCC1, BCC2, ECC1, ECC2)
• OSEK OIL 1.4.1

OSEK ORTI 2 1 1 f L t b h T 32• OSEK ORTI 2.1.1 for Lauterbach Trace32

support forsupport for
• basic (with stack sharing) / extended tasks
• resources
• events
• hooks
• alarms

112



erika enterprisep

currently available for 

availability

• Microchip dsPIC
• ARM7TDMI (Samsung KS32C50100, UniBo MPARM)

AVR• AVR
• Nios II (with multicore support)
also available foralso available for
• ARM7TDMI (Triscend A7, ST Janus, ST STA2051)
• Tricore 1
• PPC 5xx (PPC 566EVB)
• Hitachi H8 (RCX/Lego Mindstorms)
• C167/ST10 (Ertec EVA 167, tiny/large mem. model)

113



erika enterprise – licensing and RT-Druidp g

ERIKA is distributed under the GPL with linking exception 
license (also known as GNU Crosstool license)

ERIKA Enterprise is available together with the RT-Druid 
IDE code generator

• integrated into Eclipse
• code generation for ERIKA Enterprise

114



comparisonp

*CC* FP, EDF, FRSH
Conformance classes
• BCC1, BCC2, 

ECC1 ECC2
• FP (similar to BCC2,  

or ECC2 if multistack), EDF, 
FRSHECC1, ECC2

Startup /Shutdown

FRSH

• StartOS, application modes, 
StartupHook, autostartSystem 
Shutdown

• No, the main is already the 
main thread!

Shutdown
• ShutdownOS and 

ShutdownHook
• No

115



comparison (2)p ( )

Error Handling and Hooks
d t d d d N• error codes, standard and 

extended status 
• support for ErrorHook and 

• No

• No
macros

PreTaskHook / PostTaskHook
• Support for PreTaskHook and 

PostTaskHook / nothing
• No

ORTI
• Yes (Nios II) • Yes (FRSH on Nios II)

116



comparison (3)p ( )

Task
• TerminateTask and ChainTask

Informations on tasks

• No (less RAM!)

Informations on tasks
• GetTaskID and GetTaskState • No (monostack does not have 

a task state!)

Basic / extended tasks
• Basic and Extended Tasks • blocking primitives to be called 

within tasks with a privatewithin tasks with a private 
stack

117



comparison (4)p ( )

Number of pending activations
• BCC1 and ECC1 = only one 

pending activation.
BCC2 and ECC2 = more than 

• the number of pending 
activations as an integer value, 
maximum value is 

one (in OIL file), activations of 
tasks with same priorities in 
FIFO order

implementation dependent. No 
FIFO order. 

FIFO order

Events
• Yes, in ECC1 and ECC2 • No

118



comparison (5)p ( )

Blocking / non-blocking 
hsemaphores

• ECC1/ECC2 Blocking and non 
blocking semaphores 

• Semaphore primitives only in 
multistack configuration.g p

• BCC1/BCC2 non blocking 
semaphores

g
• Synchronization objects 

available for FRSH

Primitives for disabling interrupts
• Yes • NoYes No

119



erika enterprisep
• OSEK BCC1, monostack, 2 Tasks, 1 resource, dsPIC

Code footprint (24-bit instructions): 379 (1137 bytes)
• ISR2 stub (for each IRQ) 27

IRQ d 36• IRQ end 36
• kernel global functions 99
• ActivateTask 57
• GetResource 12
• ReleaseResource 41
• StartOS 26StartOS 26
• Task end (TerminateTask) 81

Data footprint (bytes)Data footprint (bytes)
• ROM 18
• RAM 52

120



erika enterprisep

• FP kernel, monostack, 4 tasks, 1 resource, dsPIC

Code footprint (24-bit instructions): 244 (732 bytes)
• ISR2 stub (for each IRQ) 24ISR2 stub (for each IRQ) 24
• IRQ end 23
• kernel global functions 67
• ActivateTask 43
• GetResource + ReleaseResource 42
• Task end 45• Task end 45

Data footprint (bytes)
• ROM 26
• RAM 42

121



board support for dsPICpp

ERIKA Enterprise supports the following boards:
• Evidence / Embedded Solutions FLEX board

supported devices: LEDs, various external devices using add-on 
b dboards

• Microchip Explorer 16
both PIC33 and PIC24both PIC33 and PIC24
supported devices: LEDs, Buttons, LCD, Analog

• Microchip dsPICDEM 1 1 PlusMicrochip dsPICDEM 1.1 Plus
supported devices: LEDs, Buttons, LCD, Analog, 

Audio (tbd)

122



OIL for EE

• the OIL presented in the following slides is a subset of 
the OSEK OIL standard

• it is a quick tutorial to the OIL definition which can be 
d f ERIKA E t i th Mi hi d PIC ®used for ERIKA Enterprise on the Microchip dsPIC ® 

DSC
two columns• two columns
– the first column contains the definition
– the second column contains examplesthe second column contains examples

• it does not include EDF or FRSH OIL details

123



OIL (OS object)( j )
definition example

OIL_VERSION = "2.4";
IMPLEMENTATION ee {
OS {

CPU mySystem {

OS myOs {
STRING EE_OPT[];
STRING CFLAGS[];
STRING ASFLAGS[];

EE_OPT = "DEBUG";
EE_OPT = “MYDEFINE”;

STRING LDFLAGS[];
STRING LDDEPS[];
STRING LIBS[];
BOOLEAN USERESSCHEDULER

CFLAGS = 
"-IC:/…/scicos";

USERESSCHEDULER = FALSE;BOOLEAN USERESSCHEDULER = 
TRUE;
[…]

USERESSCHEDULER = FALSE;

124



OIL (OS object : CPU data)( j )

ENUM [

definition example
ENUM [
[…]
PIC30 {
STRING APP_SRC[];
BOOLEAN [

CPU_DATA = PIC30 {
APP_SRC = "code.c";
MULTI_STACK = FALSE;
ICD2 = TRUE;BOOLEAN [

TRUE {
BOOLEAN [
TRUE {
UINT32 SYS SIZE;

};

CPU_DATA = PIC30 {UINT32 SYS_SIZE;
},
FALSE

] IRQ_STACK;
},

APP_SRC = "code.c";
MULTI_STACK = TRUE {
IRQ_STACK = TRUE {
SYS_SIZE=64;},

FALSE
] MULTI_STACK = FALSE;
BOOLEAN ICD2 = FALSE;
BOOLEAN ENABLE SPLIM = TRUE;

};
};
ICD2 = TRUE;
ENABLE_SPLIM = TRUE;BOOLEAN ENABLE_SPLIM  TRUE;

},
] CPU_DATA[];

};

125



OIL (OS object : MCU data)( j )
ENUM [
PIC30 {

MCU_DATA = PIC30 {
MODEL = PIC33FJ256GP710;PIC30 {

ENUM [
CUSTOM {
STRING MODEL;

;
};

MCU DATA PIC30 {
STRING LINKERSCRIPT;
STRING DEV_LIB;
STRING INCLUDE_C;

MCU_DATA = PIC30 {
MODEL = CUSTOM {

LINKERSCRIPT = 
"p33FJ256GP710.gld";

STRING INCLUDE_S;
},
PIC24FJ128GA006,

DEV_LIB = 
"libp33FJ256GP710-elf.a";

INCLUDE_C = 
"p33FJ256GP710.h";

PIC24FJ128GA008,
[…]

] MODEL;
}

p33 J 56G 0. ;
INCLUDE_S = 
"p33FJ256GP710.inc";

};
};}

] MCU_DATA;
};

126



OIL (OS Object: board data)( j )
ENUM [
NO_BOARD,

BOARD_DATA =
MICROCHIP_EXPLORER16 {

EE_FLEX {
BOOLEAN USELEDS;

},
MICROCHIP_EXPLORER16 {

USELEDS = TRUE;
USEBUTTONS = TRUE;
USELCD = TRUE;
USEANALOG = TRUE;

BOOLEAN USELEDS;
BOOLEAN USEBUTTONS;
BOOLEAN USELCD;
BOOLEAN USEANALOG;

};

BOARD_DATA = EE_FLEX {
USELEDS = TRUE;

}
MICROCHIP_DSPICDEM11PLUS {
BOOLEAN USELEDS;
BOOLEAN USEBUTTONS;

};

BOARD_DATA =
MICROCHIP_DSPICDEM11PLUS {

BOOLEAN USELCD;
BOOLEAN USEANALOG;
BOOLEAN USEAUDIO;

}

USELEDS = TRUE;
USEBUTTONS = TRUE;
USELCD = TRUE;

};
…

] BOARD_DATA = NO_BOARD;

127



OIL (OS Object: libraries and kernel type)( j yp )
ENUM [

ENABLE {
LIB = ENABLE {

NAME = SCICOS;
definition example

{
STRING NAME;

}
] LIB;

;
};

KERNEL_TYPE = FP;
}

ENUM [
FP {

BOOLEAN NESTED IRQ;

};

_ Q
},
BCC1,
BCC2,
ECC1ECC1,
ECC2

] KERNEL_TYPE;
};

128



OIL (tasks)( )
TASK {
UINT32 PRIORITY;

TASK TaskFlash {
PRIORITY = 1;;

UINT32 ACTIVATION = 1;
ENUM [NON, FULL] SCHEDULE;
TYPE RESOURCE[];
ENUM [

;
STACK = SHARED;
SCHEDULE = FULL;

};
ENUM [

SHARED,
PRIVATE {

UINT32 SYS SIZE;

TASK Producer {
PRIORITY = 2;
STACK = PRIVATE {_

}
] STACK = SHARED;

};

{
SYS_SIZE = 64;

};
SCHEDULE = FULL;

}};

129



OIL (resources)( )
RESOURCE {
ENUM [

TASK LowTask {
RESOURCE = "myResource";ENUM [

STANDARD {
STRING APP_SRC[];

},

RESOURCE  myResource ;
[…]

};
},
[…]

] RESOURCEPROPERTY;
};

RESOURCE myResource {
RESOURCEPROPERTY=STANDARD; 

};

130



OIL (counters and alarms)( )
COUNTER {

[…]
COUNTER myCounter;

[ ]
};
ALARM {

COUNTER_TYPE COUNTER;
ENUM [

ALARM AlarmFlash {
COUNTER = "myCounter";
ACTION = ACTIVATETASK {

TASK "T kFl h"ENUM [
ACTIVATETASK {
TASK_TYPE TASK;

},

TASK = "TaskFlash"; 
};

};
},
[…]
ALARMCALLBACK {
STRING
ALARMCALLBACKNAME;ALARMCALLBACKNAME;

}
] ACTION;

};
};

131



the end

Questions ?Ques o s

132



OSEK Standard and experiments on 
microcontroller devicesmicrocontroller devices

P l G iPaolo Gai
Evidence Srl

pj@evidence eu compj@evidence.eu.com

Evidence Srl - info@evidence.eu.com – 2008



the hardware

the evaluation board used is a FLEX board (Light or Full) 
with a Demo Daughter boardwith a Demo Daughter board

during the examples, we’ll use the following devices:during the examples, we ll use the following devices:
the DSPIC MCU
1 timer
a button

used to generate interrupts when pressed or released
also used as external inputalso used as external input

leds
16x2 LCD

Evidence Srl - info@evidence.eu.com – 2008



Example 1 – Tasks and ISR2

The demo shows the usage of the following primitives:
DeclareTask ActivateTask TerminateTask ScheduleDeclareTask – ActivateTask – TerminateTask - Schedule

Demo structureDemo structure
The demo is consists of two tasks, Task1 and Task2.
Task1 repeatedly puts on and off a sequence of LEDsTask1 repeatedly puts on and off a sequence of LEDs
Task2 simply turns on and off a LED, and

is activated by the press of a button. Task2 is de facto a disturbing 
t k th t d di th fi ti ttask that, depending on the configuration parameters,
may preempt Task1

Evidence Srl - info@evidence.eu.com – 2008



Ex. 1 Configuration 1: Full preemptive

This configuration is characterized by the following 
properties:properties:

periodic interrupt Task1 activation LED 0 to 5 blink
button Task2 activation Task2 always preempts Task1, blinks 
LED 6/7 and prints a message

Notes:
Task2 is automatically activated by StartOS

AUTOSTART=TRUE

Conformance Class is BCC1 
l t ti ti if th b tt d t f t!lost activations if the button pressed too fast!

Evidence Srl - info@evidence.eu.com – 2008



Ex. 1 Configuration 2: Non preemptive

Task1 is NON preemptive
Task2 runs only when Task1 does not runTask2 runs only when Task1 does not run

LEDs 6 and 7 does not interrupt the ChristmasTree

IRQs are not lost but task activations may beIRQs are not lost, but task activations may be

Evidence Srl - info@evidence.eu.com – 2008



Ex. 1 Configuration 3: Preemption points

Task1 calls Schedule in the middle of the Christmas tree

Result:
Task2 can now preempt Task1 in the middle of the Christmas treeTask2 can now preempt Task1 in the middle of the Christmas tree 

Evidence Srl - info@evidence.eu.com – 2008



Ex. 4 Configuration 4: Multiple Activations.

BCC2 Conformance class
Task2 can now store pending activations which areTask2 can now store pending activations, which are 
executed whenever possible

Evidence Srl - info@evidence.eu.com – 2008



Example 2 - Resources and App. modes

The demo shows the usage of the following primitives:
GetActiveApplicationMode GetResource ReleaseResourceGetActiveApplicationMode, GetResource, ReleaseResource

Demo structureDemo structure
Two tasks, LowTask and HighTask. They share a resource.
LowTask is a periodic low priority task, activated by a timer, with aLowTask is a periodic low priority task, activated by a timer, with a 
long execution time. 
Almost all its execution time is spent inside a critical section. LED 0 
i t d h L T k i i id th iti l tiis turned on when LowTask is inside the critical section.
HighTask is a high priority task that increments (decrements) a 
counter depending on the application mode being ModeIncrement p g pp g
(ModeDecrement). The task is aperiodic, and is activated by the 
ISR linked to the button. 

Evidence Srl - info@evidence.eu.com – 2008



Example 2 - Resources and App. modes (2)

Application Modes are used to implement a task behavior 
dependent on a startup condition
(ERIKA specific) HighTask and LowTask are configured to share 
the same stack by setting the following line inside the OIL task 
properties:properties:
STACK = SHARED;

Evidence Srl - info@evidence.eu.com – 2008



Example 3 - Event and Alarm API Example

The demo shows the usage of the following primitives:
WaitEvent Getevent ClearEvent SetEvent ErrorHookWaitEvent, Getevent, ClearEvent, SetEvent, ErrorHook, 
StartupHook, SetRelAlarm, CounterTick

Demo structure:
The demo consists of two tasks, Task1 and Task2.The demo consists of two tasks, Task1 and Task2.
Task1 is an extended task. Extended tasks are tasks that:

can call blocking primitives (WaitEvent)
must have a separate stack

A task is considered an Extended Task when the OIL file includes 
events inside the task properties.events inside the task properties. 
Task1 waits for two events:

Timer CounterTick AlarmTask1 TimerEvent LED 1

Evidence Srl - info@evidence.eu.com – 2008

Button IRQ SetEvent(ButtonEvent) LED 2



Example 3 - Event and Alarm API Example (2)

Button press ISR2 SetRelAlarm(AlarmTask2) Task2 
activation LED 3 on.
ErrorHook when the button is pressed rapidly twice

SetRelAlarm primitive called by the Button IRQ on an already armed 
alarmalarm 

The alarm support is basically a wakeup mechanism that can be 
attached to application or external events (such as timer 
i t t ) b lli C t Ti k t i l t hinterrupts) by calling CounterTick to implement an asynchronous 
notification. 
(ERIKA Enterprise specific) Task1 needs a separate stack because ( p p ) p
it uses WaitEvent.

Evidence Srl - info@evidence.eu.com – 2008



Example 3 - Event and Alarm API Example (3)

Running the example
Timer Interrupt Counter1 incrementedTimer Interrupt Counter1 incremented.
AlarmTask1 TimerEvent event set on Task1 Task1 wakes up, 
get the event, and blinks LED 1. 
The visible result is that LED 1 periodically blinks on the board.

b T k1 d LED 3 d ffbutton press Task1 runs and LED 3 goes on and off
rapid button press ErrorHook due to multiple calls of 
SetRelAlarmSetRelAlarm

ORTI Informations are available for this demo

Evidence Srl - info@evidence.eu.com – 2008


