Hardware Microkernels for
Heterogeneous Manycore Systems

A Play in Three Acts

“And now for something completely different”.....MP

David Andrews
Mullins Endowed Chair in Computer Engineering
University of Arkansas
dandrews@uark.edu
http://hthreads.csce.uark.edu

Computer Science &
Computer Engineering

il

UNIVERSITYZARKANSAS

®




Play Bill

(Todays Agenda)

*Enter Stage Left
—Hthreads for CPU/FPGA Hybrid Components

—Unified Programming Model for Custom R.T. Platforms
*Enter Stage Right
—The Manycore Movement
—Enabling Technologies
—Challenges
*The Final Act
—Fusing hthreads on Manycore Platforms

e Epilogue
— Moving the Hardware/Software Boundary
— Will it Catch On ?

UNIVI



Act 1: Original Hthreads

NSF Project Originally Developed as Unifying Programming Model
for CPU/FPGA Hybrid Embedded Systems

— Enable Programmers to Specify Computations that Seamlessly run
on CPU/FPGA

e Adopt Familiar Programming Models for hw/sw co-design

e Open up custom hardware design to Software
Engineers/Domain Scientists

— Pthreads Model Adopted

e Thread bodies synthesized and mapped into hardware
— VHDL or C->VHDL

— Also have used HandelC and Haskell-> VHDL
— Operating System is Unifying Framework

— Abstracts Interface

— Enables Uniform API Calls from hardware/software threads
UNIVERSITYZARKANSAS Computer Science &
=re=e Computer Engineering




Programmers Perspective:
Virtual CPU’s Ala Multithreading

e Programmer Currently Specify 1,000’s of Virtual CPU’s
— How Do We Turn Each VM (SIMD/MIMD) into Physical Circuits ?

e Migrate from Special Purpose towards GP

— Microblaze, SIMD-Microblaze, Extensible Processor

— Need Support for Overarching Asynch Concurrency

e OS/Middleware Define System Services
— Refinements Driven By Services
» Interconnect Networks
» Memory Hierarchies
» Synchronization/Control

Todays Key To Abstraction:
Synch, Control API’s, not
Pragmas in Sequential Language

computer dClernce

UNIVERSITY#ARKANSAS ' )
Computer Engineering

= 1871 =1

Wirtual CPU Wirtual CFU Wirtual CPU
Steck Memory Stack Memary Steck Mamary
Fegister Sat Register Sat Register Set
Stech Pomier Siack Pointer Steck Ponter
Program Counter|| ||Pragram Courter | ||Program Counter
e '\-.\_\‘ LS
/ / z

Fthreads Middisware Services

Operating Systam Services

Data Memary

Shared
armory

Instr. Memaory

threed 3

-
",

(

thread &

"'\-\.\l
_——




Multithreaded Programming Model

Asynchronous Concurrency

ReconQS

________________________________________________________

CPU Software e e . Software
Thread 1 Thread N

0OS Services

“ System

u Buc

I

UNIVERSITYZARKANSAS

= 1871 =1

| J

Computer Science &
Computer Engineering

HybridThreads

CPU
Sortware
Thread 1

Software Thread Interface (SWTI)

[

System
_ Y Bus -
= ' : ' =
OS Services
L Yy
Hardware Thread |[= = = | Hardware Thread
Interface (HWTI) Interface (HWTI)

________________________________________________________




Approach

microkernel

Explicit Messaging
f, f, f, f,
Local Local Local Local
Data Data Data Data
Structs Structs Structs Structs

Explicit Partition = f () + Data Structs
Explicit Messages = fast 1d/st single ops

il

UNIVERSITYZARKANSAS

= 1871 =1

HAL 0

HAL1 HAL 2
elnl) thread0 threadi
{ {
hthread_create(thread0)
hthread_create(thread1) } S } SO
—
Messaging Netwark ]—‘
Thread Thread Synchronization
Management Scheduler Manager
‘ Kernel Servers Kernel Clients
Key

Functions off Application Processors
Hw/Sw Codesign

1. Performance
2. Heterogeneity

3. Scalability
Computer Science &

Computer Engineering




Original hthreads System

LA Hardware Hardware
Software Interface Interface Interface
Loitware Sathware Wi WA
Thraad Thread
l f i
_Evaiam Bus L ¥ 1 -
- & r & kA & "
L L L | | L
r ™ S —
Syneh, Conditional | Thread |_| Thread Shared
. Manager | Variables Manager Lehadular | Kemary |

e Separate Cores Form Microkernel

— Breaks up Monolithic Kernel Bottleneck
e Fast lightweight messaging between cores (load/store)
— Breaks up Global Data Structures
— Allows Parallel Operations
— Resolves Heterogeneity

UNIVERSITY?ARKANSAS ~ Computer Science &
= e Computer Engineering




Thread Manager

] o Y

*Thread State Migrated Into FPGA (BRAM Key)
Parallel State Machines Allow Fast, Concurrency
Interface to all “System” Threads Eliminates cara thread
HCCEES Itk
Lrnsrs

[ icin_trrozd

Brrisr corirol [+
Grner period [+

Interrupt Invocations (Jitter & Overhead)
*All operations in 12 or Less Clock Cycles

*All Operations Single Read or Write for
Synchronization Between HW/SW Components

I
|' cLgibe
[

access
winlations

5

|—) nor-coit sl

Hilime FIC |4

L—acﬂtcalan?eﬁﬁpz
syelsm contral iU pt
| soft stop —— S0FT _STOR
¥ =off reset —— SOFT RESETSD Q)
¥ st =larl

il

Computer Science &

UNIVERSITYZARKANSAS ) )
= e Computer Engineering




Thread API Execution

hthread create () Atomic Hardware Operations
{
if( attr—->detached )
threadStatus = create thread detached; = | if( thread unavailable ) return 0 + ERR_BIT

thd’s status=used, ~exited, ~qusuad, ~Jjoined, detached
thd’'s pid = 0

alse return thread’s ID

threadStatus = create thread joinable; = | if( thread unavailable ) return 0 + ERR_BIT

thd’s status=used, ~exited, ~queued, ~Jjoined, ~detached

thd’s pid = current_thread

if( 'hasError (threadStatus) ) { return thread’s ID
threadID = extractID(threadStatus);
update software data structures
addStatus = add_thread(threadID); = | if{ threadID->status=used, ~exited, ~queued ) {

threadID—->status = gueued
add threadID to RZR_QUEUE
update RZR_QUEUE

return 0;

if( hasError (addStatus )
( ¢ > } else return threadID->pid,status,ERR_BIT

i

clrStatus = clear thread(threadID); == if( threadID->pid == current_thread ) |
threadID->status = ~used, ~exited, ~queusd,

update software data structures ~joined, ~detached

return RUN_QUEUE_FULL;
} else
thread->1id = threadID

threadID->pid = 0;
return 0;
} 2lse return threadID->pid, status,ERR_BIT

} else
return NO_THREADS AVATILABLE;

return SUCCESS;

UNIVERSITY?ARKANSAS ~ Computer Science &
= e Computer Engineering




API Timings

Operation Time (clock cycles)
Add_Thread 10 + ENQ
Clear_Thread 10
Create_Thread Joinable 3
Create_Thread Detached 8
Current_Thread 3
Detach_Thread 10
Exit_Thread 17
Join_Thread 10
Next Thread 10 + DEQ
Yield _Thread

10 + ENQ + DEQ

UNIVERSITYYARKANSAS

= 1871 =1

Computer Engineering

DRAM Access Takes 17+ Clock Cycles

Computer Science &




Classic Synchronization

11

bne R, again

Classic SMP Synchronization Using LL/SC Atomic Pairs
R, .lock

4
t, 11 Ry, lock
t, bne R, again sc R lock
t, sc R,.lock Beq R, again
ts beq R, again
PPC PPC
—_

il

UNIVERSITYZARKANSAS
E 18711 =)

4

Updat
Invalidate LR

TR 1
t
L- [0} /_ﬁ 1 Cache Miss
e Loc Update LR

Computer Science &
Computer Engineering



Synchronization Manager

e Accepted “Atomic” Implementations are “pull” then “push”
— Read semaphore variable (into CPU)
— Conditionally write (based on active memory coherency circuits)
— Appropriate for SMP’s with smart CPU’s/Snoopy Caches
— Mechanisms on Access order of Variable Address, Not Thread Id

New Method 1s Single Load Instruction “push + pull”
— Mechanism on Thread_id, not access order of Variable Address

e Thread 1d Encoded in Address
e Return of Load Provides Id of Owner

— Eliminates need for Snoop Cache Protocols
* Will be important for scalability !

Computer Science &
Computer Engineering

il

UNIVERSITYZARKANSAS




Semaphore Mechanisms

Thread_id

Semaphore #

Core Base

*Thread Id Encoded into Address

*Request register virtual: Address Range
*Can Implement Atomic “Swap” in single Read
*Accessible by any ISA with “Load” Instr.

*Only 1 IP Module for all locks
*Use BRAM To store owner thread id

*No Reliance On Cache Coherency

\ 4

Owner registers

Thread 7

Thread 1

Data Bus

4>| Controller

Address bus:

6 lines for spin lock id
9 lines for thread id
2 lines for operation code

Computer Science &
Computer Engineering

il

UNIVERSITYZARKANSAS
=m=o




Hthreads in Action

cPu G
Software Interface HWTI HWTI
10: 3 I0: 4 10: 7 ID: 8 10: 8
Saftwara Software Saftwara Hardwara Hardwara
Thread Thread Thraad Thraad Thraad
1

I & &

I —
) | |
' Sysiam Bus |

c ,; | | '

l‘I'" L r r ' v
[ Mulexes | [ Conditional Thread Sehadular CHIS (" Shared |
[ Cusue | ariables Manager Feagy Memary
& 4
i
LY A LY A

—"*D E
A: Softeare thread 3 unlocks mutex M2 by calling hthread mutex_unlockiM2),
which sends signal to Mutex Manager,
B: Mutex Manager inspects M2's gueue and decides 1D 6 will own mutex next.
C: Mutex Manager sends add_thread(8) to Thread Manager.
D: Thread Manager gives ID & 1o Scheduler to add to Ready 1o Run gueue.
E: Scheduler knows ID & is a hardware thread, does not add 1D 6 to queue.
F: Scheduler instead sends RUN command to 1D 6's HWTIL
G: Hardware thread 6 resumes execution, now owner of mutex M2,

UNIVERSITYZARKANGAS ~ Computer Science &

A= Computer Engineering



Mutex Timings

UNIVERSITY4ARKANSAS

= 1871 =1

TABLE W
HW TidING OF SYNCHRONIZATION OPERATIONS

(peration Time (cycles)
Lock Mutex
Unlock Mutex
Try Lock Mutex
Cret Mutex Owner
Get Mutex Count
GetSet Mutex Kind

1ad] | Lad| Lad| L o

TABLE VI
INTEGRATED TIMING OF SYNCHRONIZATION OPERATIONS

(peration | Avg Time (ns) | Std. Dev. (ns)
Lock Mutex 152454 32.19
Unlock Mutex 107,63 27.33

Computer Science &

Computer Engineering



Scheduler

e Existing semantics
(Overhead)

— Timer Interrupt Expires, Thread Unblocked on Semaphore
— Automatic Context Switch to Scheduler (Overhead)
— Check for New Thread (Jitter + Overhead)
e Variable Search Times in Scheduler Queue
* May or may not choose different thread
(Overhead)

— Context Switch to New Thread
Hthreads: All Scheduling Requests to HW Scheduler

— External: Timer, Unblocked Semaphores, Interrupt Requests
— Internal: Thread join, suspend, terminate, change priority

— Scheduler runs in parallel with current thread
e Will Only Generate Context Switch if Appropriate
— Timer expiring may/may not cause context switch
— Unblocked thread may/may not cause context switch
— Change in a thread priority may/may not cause context switch

Scheduler Decision Function 12 clock cycle Fixed Time
* Independent of # Threads For Scalability

UNIVERSITY?ARKANSAS ~ Computer Science &
= e Computer Engineering

il




Scheduler Timings

Operation Time (clock cycles)
Enqueue(SWthread) 28
Enqueue(HWthread) 20 + (1 Bus Transaction)
Dequeue 24
Get_Entry 10
Is _Queued 10
Is_Empty 10
Set_Idle-Thread 10
Get_Sched_Param 10
Check_Sched_Param 10
Set_Sched Param(NotQueued) 10
Set_Sched Param(Queued) 50

UNIVERSITYZARKANGAS ~ Computer Science &

== Computer Engineering



CBIS

0 Thread_ID
Thread_ID
Bus Interface 0
a
[n] Thread_|D
&

Change Semantics of External Interrupts

Bring within Schedulers Envelope
Register User Thread with Modified PIC

Intr Rgst Causes Thread Scheduling Event to

Finite State Machine Controller

F

Thread Manager -> Scheduler

Global
Enable/
Disahle .
o Priority
Encoder
'

F

Y
Pending Latches

Accept/ignore

Computer Science &
Computer Engineering

il

UNIVERSITYZARKANSAS
=m=o




Act 2: Dawn of the Manycores
“Groundhog Day” Back to Parallelism Once Again

I.

Dynamic ILP Run It’s Course

e Performance Scaling Ebbing

e  Not Much Juice to Be Squeezed in ILP
e High Transistor Costs for Small Return
Power + Memory Wall = Brick Wall (View from Berkeley)
2. Manycore Architectures Following Moore’s Law ?
e  Multiple Simple CPU’s for Parallelism

e MIMD/SIMD Heterogeneity

Better Use of Dense Interconnect
Will This Break Memory Wall ?

Manycores Good News for Real Time Embedded Systems
4. Parallelism + Power 1st Class Design Issues

3.

B

Computer Science &
E 1871 =9

....It’s Deja Vous All Over Again...Rebirth of Parallel Processing
UNIVERSITY#ARKANSAS
Computer Engineering




Manycore Status

e Paradigm Shift Occurred Without Considering Software
Infrastructure

e Concerning as Prior Efforts a Failure
— We did not Resolve Parallel Programming Models
— We did not Resolve Run Time Systems

 New Considerations
— Magnitude of Parallelism Will Be Greater
— Heterogeneity of New Applications

e Complete Technology Infrastructure Riding on Success

.....and We Are Not Quite Ready

UNIVERSITY?ARKANSAS ~ Computer Science &
= e Computer Engineering




Parallel Processing Era: Lots of Fun !
The war of the machines

AR

it 48
| R ol
Peak Performers, Usually Vector/SIMD Data Parallelism
-Hard to Program

-Expensive

el -‘l:l-:':.".';;'l-' I"-J-I'r'i'-‘ ; l.

UNIVERSITYZARKANSAS =~ Computer Science &
=w=e Computer Engineering

Images from Wikipedia



Which PP Won ?

(Economics & Usablhty)
Video Killed the Radio Star The Buggles 1979 (First MTV Video)

Economics := Commodity
Nodes
Interconnects
Sequential Languages
Operating Systems

Usability := Familiarity
MIMD Parallelism
Linux
Middleware

Victim of Our Own Success:

Side Effect was Broad Research in OS’s Ebbed
Research on Vaneered Middleware Layers

UNIVERSITYZARKANSAS ~ Computer Science & - .
Sm=e Computer Engineering mage Irom wikipedia




Thesis: Classic Monolithic OS May be Retired Along with
Power Hungry Dynamic ILP Processors

000
&
|
S E
GNLY =, | Systern Call Interface | C T
Linux I A E o o
Kernel L R (6] )
| A 0 0 0
L Archecture-Dependen Kemel Cod B G
Hardware Platform I E 000
L N
! E
) I
Y T
Y
Seq to Parallel
_ Chasm
o Computer Science &
UNIVERSITY#ARKANSAS Image from Wlklpe dia

= e Computer Engineering



Obvious Scalability Issues

000
s i
Thread_create() | e
\\\ JOln() (} Space
>,
GNUY < = Systern Call Interface £
(o) (0) \tﬂLK | I l
0 h T Kernel
chan_attr tex() omel ol
mutex : -
[
Archiech apanden Karrel Cod ‘
I-\-\_ — _,-'{
Hardware Flatform

000

1)Wasteful if large image replicated in memory hierarchy
2) Shared data structures enforce sequentiality,

Implications on Contention, Latency,Caches
3) Scheduler focused on time and not space multiplexing
Image from Wikipedia

Computer Science &
Computer Engineering

il

UNIVERSITYZARKANSAS
=m=o




Scalability Brings Efficiency Issues
(A Little Scary to Me !)

0S

/; app

0S app

app

A

app
0S ﬁ !

3 | app Lo F:)s

1| app

/
(OO0

95}

\ OO

app [

dual multi
> — >

il

1
Amdahl = ;
(1-f) +§
f => #threads > #Cores
_ __app
OSesr app + OS «—_ 0S
increasing
O O O []
1,000 O
man
—=5% 0 cores [
O O O []

UNIVERSITYZARKANSAS =~ Computer Science &
© Computer Engineering




Heterogeneity Issues

 Amdahls law also pointing to heterogeneous cores
— Scalar cores for threaded data processing
— SIMD cores for audio/video/signal processing

* Heterogeneity Issues permeate abstractions
— Unifying Programming Languages/Models

* Not just Heterogeneous Accelerators

— Run Time Systems
e Scheduling, Synchronization, Thread Management
e All Resources Under OS Scheduler Control

— Compilation

e Closely Related but Not Today

UNIVERSITYZARKANSAS =~ Computer Science &
© Computer Engineering




Heterogeneous Synchronization
LL/Sc Test-and-Set
PCl1 ? PC2
lock—Y

Issues:
Different ISA’s Collide
-LL/Sc versus TAS
Reliance on Snoopy Cache Protocol
-Doesn’t Support Hetero Semantics
-Doesn’t Scale Well
-May not Even Be in System (ala Cell)

Computer Science &
Computer Engineering

il

UNIVERSITYZARKANSAS




Thread Management Issues

Proc Proc
Q b
thread_create(arg,func attr) »func
Who’s Reg Set, PC, flags ?
create context < : . >
alloc stack < Who’s Stack .
sch func < Who’s (Relative) Address ? .
< Where is Return Value ? g
thread_join(id, return) Where is Parent/child ? exit(result)
< >

il

UNIVERSITYZARKANSAS =~ Computer Science &
© Computer Engineering




Some Paths Followed So Far...

EXO-Skeleton
{SHF‘ED o delegated SPE_thread
{ {
=codel= Cell Application pe_run{SPE_program0); exec(SPE_program0O);
}
pthread_create(delec 0);
pthread_create(delegate1);
¥ delegate SPE_thread
{ {
pe_run(SPE_program1); exec{SPE_program1);
}

EXOCHI Application
{

#pragma x3000

=codel=

/ !
EXO-Skeleton
Linux Kermnel
(Kernel)

#EL%%T& *3000
} = =
CHI Run-Time System —" ?HHZD11
(Kernel) ¥ - } seedst=
D Key D ‘ B DN Key E'FEC]IEFIS ‘
EXOCHI CELL
pthreads delegate thread
SPE Thread Synchronous
RPC for OS Calls

OpenMP Threaded Model
Application Managed Exosequencers

RPC for VM, Exception Handlers
Main OS Not Unifying Abstraction

Picks at Heterogeneity Issues

Not Addressing Scalability Issues

Computer Science &
Computer Engineering

il

UNIVERSITYZARKANSAS
=m=o




So Far....

Good Efforts at Bridging Abstractions
Bringing in Heterocomponents Under thread Programming Model

Some Bending/Breaking of Model

Efforts Represent Hierarchical (Subordinate) Operating Systems
Not Yet Single Abstraction Most Familiar to Programmer
Separate Scheduling Models

Can This Even Be done ?

I.
2.

Efforts Not Addressing Scalability Issues
1,000’s of Threads will Kill Performance

Computer Science &
Computer Engineering

il

UNIVERSITYZARKANSAS
=m=o




Act 3: Fusing hthreads with Manycores

Can We Use Hthreads as Unifying Framework ?

1) Already Abstracts Heterogeneous Differences
1) Programmer Shouldn’t Need to Know

2) Uncouple Synchronization Primitives from ISA’s
1) Do Not Rely on LL/SC, test&set

2) Seamlessly Scales
e No RPC Mechanisms

e  Minimal OS Overhead
e Does Not Rely on Snoopy Cache Protocol

3) No Hetero Accelerator Model

e Scheduler Treats All Resources First Class Schedulable
Objects

UNIVERSITY?ARKANSAS ~ Computer Science &
© Computer Engineering




hthreads for Heterogeneous Manycores

e Difference is largely within Computational Units
— Substitute Processors for Custom Circuits

e Hthreads OS Cores Serve as Unifying Framework
— Cores did not change !
— Back to linkable libraries in place of FSM I’face
e Cores Interesting Enabling Technology
— Resolves Heterogeneity (well almost...)
— Provides Scalable Low Latency OS Services
— Breaks up Monolithic Bottlenecks

UNIVERSITYZARKANSAS =~ Computer Science &
© Computer Engineering




Keeping a Unified Thread Model

Single Source Program

hthread P2(...)
hthread P3(...)

hthread P4(...)

A
Eliminate Subordinate OS Model ;’E%'S%igéda' r i TR
eScheduler Controls All Processors P | | ivess
Single Program B S— R T
eScalable to 1,000’s Cores - ! —

eMaintain RT Performance . I _______ o I _______ R I e I _______ _ '
EUCRR R il B el S B
s
— R2RQ R2RQ
Computer Science &

UNIVERSITY#ARKANSAS ' )
= e Computer Engineering




Need New Heterogeneous Compilation Framework
Our Experimental Ad Hoc Approach

waid * thread O (woid = arghd

et L= Ty
waid * thread N (woid * argi{

e es- 3

imT rmaEir g 4

= oocles=
hthread creats(thread, ... };

hithread create(threadid, . )
= e

returm O
T
"' -
Heterogenaeous .
Cormpileris) @
‘
| el e Operating Sysherm
(Type Oy Saervices
w

Thread

Manager | | S-::he-r_:ll_.-ler]

Swrech.

Condition
Pl amager

wariables

|I

Host S J

Hetaerno. GF'L.!__]
(Twpe M) J

Computer Science &

UNIVERSITYYARKANSAS

= 1871 =1

Computer Engineering



Code Snipet

int main(){
sortarg_t arg;
int mutexnum = 0;
int condnum = 0;
hthread t tid[NUM_THREADS];
hthread attr_t attr[NUM THREADS];
/] Fhrkkkkkkkk
extern unsigned char intermediatel[];
extern unsigned int mbox handle offset;
unsigned int mbox handle = (mbox handle offset) + (unsigned int) (&intermediate);
// kkhkkhkkhkkhkhhkkhkkhkhhkkhkkhhhkkhkhhhkkhhhkk dhhkkhkdhhkkhdhhkkhkk,khkkhkkikkkik,*x*%x
// Initialize thread argument and mailboxes
arg.num_elements = CHUNK SIZE;
mailbox init no globals(mutexnum++,condnum++, &arg.mb start, NUM CHUNKS);
mailbox init no globals(mutexnum++,condnum++, &arg.mb done, NUM CHUNKS );

int i = 0;
// Create threads
for (i = 0; i < NUM THREADS; i++) {

// Initialize attributes

hthread attr init( &attr[i] );

hthread attr sethardware( &attr[i], (void*)base array[i] );
// Spawn thread

#ifdef USE_HW_ THREAD hthread create( &tid[i], &attr[i], (void*)mbox handle, (void*)&arg );
#else hthread create( &tid[i], NULL, mbox_ thread, (void*)&arg );
#endif

}

UNIVERSITY?ARKANSAS ~ Computer Science &
= e Computer Engineering




Creating A Heterogeneous Thread

SN Hetero CPL ﬁgl.rg
Soltware Interdace “'HWT_I HAL .
ID: 3 1D: Idle I: 4 Custom
Softwars Snitware Hardware
Thread Thread Thread Thread
I
L &
A
~ r Syatem Bus + L
- & ﬁ & L i i o
w L r L w
[ Muilexes | Thread Schedular Conditional | | Shared |
Managear Aeady Variables Memary
E TID Stack F.]
4,5.6
LY - - _ LS -
4’_
c D.E

A: Thread 3 calls pthread _create which interacts with the Thread Manager.
B: Thread manager allocates a fresh thread identifier (TID 4).

C: Thread manager submits an ENC request of TID 4 to the scheduler

D Scheduler handles ENQ reguest by querying the attributes for TID 4.

E: Scheduler finds that ID 4 is a heterogeneous thread, and prepares 1o signal
F: Scheduler sends a SIGNAL to TID 4's V-HWTI.
G Heterogeneous thread begins execution

UNIVERSITY2ARKANGAS ~ Computer Science &

= e Computer Engineering



Mutex Unlock

CPU

Softwars Interface
10 3 10 4 ID: 7

Haetera CPL

V-HWTI HAL
1D: B

Haiera
Thraad

Helera CPU

V-HWTI HAL
10: B

Haiera
Thraad

ﬁ
Thraad Thread Thread
i
A

| F |
Syatem Bus + +

F 3
¥

] ] [ [

C ‘

r r L
B Mulexes Trhiread Sehedular Conditional Ehared
W2 Oueue Manager Ready | Variables Memary
& 4

¥

—_—
D E

A: Thread 3 unlocks mutex M2 by calling hthread _mutex_unlock({M2), which
sends signal to Mutex Manager.
B: Mutex Manager inspects M2's gueue and decides 1D 6 will own mutex next.
G Mutex Manager sends add_thread(8) to Thread Manager.
D: Thread Manager gives ID 6 to Scheduler to add to Ready to Run gqueue.
E: Scheduler finds that ID 6 is a hetero. thread, does not add 1D 6 10 gueue,
F: Scheduler instead sends SIGNAL command to 1D 6's W-HWTI.
G: Hetero thread 6 resumes execution, now owner of mutex M2,

Computer Science &

UNIVERSITY4ARKANSAS ' )
Computer Engineering

= 1871 =1




Mutex LLock

D

EEU Hetero CPL Hetera CPL

Sottwara Intardace V-H\EI:AL

ID 3 ID A -
Th ~emad Th ead Thread

Syatem Bus

v v .
& L [ i -
v
L r L L d
Mulexes Thread Sehedular Conditional Shared
K2 Queus Manager RAeady | Wariables b amary

-]
3

4

ﬁ
= G

: Thread 3 locks mutex M2 by calling hthread  mutexunlocki{M2), which
sends signal to Mutex Manager.

! Mutex Manager inspects M2's gueue, sees that ID 6 owns the mutex,

! Mutex Manager blocks TID 3 by placing it in M2's blocked gueue, and
returns blocked status to the caller.

: Software interface receives blocked status, must now context switch.

! Software interface asks for the next thread from Thread Manager.

: Thread Manager reguests a DEQ operation from the Scheduler.

: Scheduler tells Thread Manager that TID 4 should run next.

: Software Interface receives the next thread, context switches 1o TID 4.

Iommg 0@

UNIVERSITY?ARKANSAS Computer Science &

A= Computer Engineering



RPC/hthread Core Comparisons

System Call Execution Execution Execution
Time (from | Time (from | Time
HW) PPC) (Blaze)
create 160us * 40.8 us 12.5us
join 1300us * 65.7us 13.9us
mutex_lock 0.36us 12.0us 2. Tus
mutex_unlock | 0.36us 11.9us 3.0us

e RPC Call from Custom Circuit to OS on PPC

— create_thread( )

e 160usec versus 40.8usec PPC & 12.5 usec MBlaze
— Jjoin( )
e 130usec versus 65.7 usec PPC & 13.9 usec MBlaze

UNIVERSITY?ARKANSAS ~ Computer Science &
= e Computer Engineering




Current Work

e Thread Manager/Scheduler

[J CCCC (][] o]
— Generic Thread Create s Y
* New Sequence of OS Messages ;

e Return Values

— > 2 Generic Processor Group Scheduling
* O(1) on each Group

Preemption!

return block

UNIVERSITY2ARKANGAS ~ Computer Science &
e

Computer Engineering




Epilogue: Will 1t Catch On ?

(Probably not with this Audience :-) !

* Does Require Moving the Hw/Sw Boundary

— Targets Appropriate PP not Scalar Core Abstractions
e Historical Precedence
— Early Days

e Floating Point, Function Calls, Stacks
— More Recently

* VT Technology for Virtual Machines
e EXOCGI -> Pangaea

* Programmers Will NEED Efficient Methods
— Will Happen When Demand Dictates

UNIVERSITYYARKANSAS Computer Science &

© Computer Engineering



