
Computer Science &
Computer Engineering

Hardware Microkernels for
Heterogeneous Manycore Systems

David Andrews
Mullins Endowed Chair in Computer Engineering

University of Arkansas
dandrews@uark.edu

http://hthreads.csce.uark.edu

A Play in Three Acts

“And now for something completely different”…..MP

Computer Science &
Computer Engineering

Play Bill
(Todays Agenda)

• Epilogue
– Moving the Hardware/Software Boundary
– Will it Catch On ?

•Enter Stage Left
–Hthreads for CPU/FPGA Hybrid Components
–Unified Programming Model for Custom R.T. Platforms

•Enter Stage Right
–The Manycore Movement
–Enabling Technologies
–Challenges

•The Final Act
–Fusing hthreads on Manycore Platforms

Computer Science &
Computer Engineering

Act 1: Original Hthreads

• NSF Project Originally Developed as Unifying Programming Model
for CPU/FPGA Hybrid Embedded Systems
– Enable Programmers to Specify Computations that Seamlessly run

on CPU/FPGA
• Adopt Familiar Programming Models for hw/sw co-design
• Open up custom hardware design to Software

Engineers/Domain Scientists
– Pthreads Model Adopted

• Thread bodies synthesized and mapped into hardware
– VHDL or C->VHDL
– Also have used HandelC and Haskell-> VHDL

– Operating System is Unifying Framework
– Abstracts Interface
– Enables Uniform API Calls from hardware/software threads

Computer Science &
Computer Engineering

Programmers Perspective:
Virtual CPU’s Ala Multithreading

• Programmer Currently Specify 1,000’s of Virtual CPU’s
– How Do We Turn Each VM (SIMD/MIMD) into Physical Circuits ?

• Migrate from Special Purpose towards GP
– Microblaze, SIMD-Microblaze, Extensible Processor

– Need Support for Overarching Asynch Concurrency
• OS/Middleware Define System Services

– Refinements Driven By Services
» Interconnect Networks
» Memory Hierarchies
» Synchronization/Control

Todays Key To Abstraction:
Synch, Control API’s, not
Pragmas in Sequential Language

Computer Science &
Computer Engineering

Multithreaded Programming Model
Asynchronous Concurrency

Computer Science &
Computer Engineering

Approach

microkernel

Explicit Messaging

Local
Data
Structs

f1

Local
Data
Structs

f2

Local
Data
Structs

f3

Local
Data
Structs

f4

Explicit Partition = fx() + Data Structs
Explicit Messages = fast ld/st single ops

Functions off Application Processors
Hw/Sw Codesign

1. Performance
2. Heterogeneity
3. Scalability

Computer Science &
Computer Engineering

Original hthreads System

• Separate Cores Form Microkernel
– Breaks up Monolithic Kernel Bottleneck

• Fast lightweight messaging between cores (load/store)
– Breaks up Global Data Structures
– Allows Parallel Operations
– Resolves Heterogeneity

Computer Science &
Computer Engineering

Thread Manager

•Thread State Migrated Into FPGA (BRAM Key)
•Parallel State Machines Allow Fast, Concurrency
•Interface to all “System” Threads Eliminates
 Interrupt Invocations (Jitter & Overhead)
•All operations in 12 or Less Clock Cycles
•All Operations Single Read or Write for
 Synchronization Between HW/SW Components

Computer Science &
Computer Engineering

Thread API Execution

Atomic Hardware Operations

Computer Science &
Computer Engineering

API Timings

DRAM Access Takes 17+ Clock Cycles

Computer Science &
Computer Engineering

Classic Synchronization
Classic SMP Synchronization Using LL/SC Atomic Pairs

t1 ll Rx,lock
t2 ll Ry, lock bne Rx,again
t3 bne Ry, again sc Rx,lock
t4 sc Ry,lock Beq Rx, again
t5 beq Ry, again

LR LR

0lock

PPC PPC
t2

t1 Cache Miss
Update LR

t3
Update Lock
Invalidate LR

1

Computer Science &
Computer Engineering

Synchronization Manager
• Accepted “Atomic” Implementations are “pull” then “push”

– Read semaphore variable (into CPU)
– Conditionally write (based on active memory coherency circuits)
– Appropriate for SMP’s with smart CPU’s/Snoopy Caches
– Mechanisms on Access order of Variable Address, Not Thread Id

• New Method is Single Load Instruction “push + pull”
– Mechanism on Thread_id, not access order of Variable Address

• Thread_id Encoded in Address
• Return of Load Provides Id of Owner

– Eliminates need for Snoop Cache Protocols
• Will be important for scalability !

Computer Science &
Computer Engineering

Semaphore Mechanisms

Controller

Thread_1

Thread_7

Owner registers

Address bus:
 6 lines for spin lock id
 9 lines for thread id
 2 lines for operation code

Data Bus

•Thread Id Encoded into Address
•Request register virtual: Address Range
•Can Implement Atomic “Swap” in single Read
•Accessible by any ISA with “Load” Instr.

•Only 1 IP Module for all locks
•Use BRAM To store owner thread_id

•No Reliance On Cache Coherency

Thread_idSemaphore # OpCore Base

Computer Science &
Computer Engineering

Hthreads in Action

Computer Science &
Computer Engineering

Mutex Timings

Computer Science &
Computer Engineering

Scheduler
• Existing semantics

– Timer Interrupt Expires, Thread Unblocked on Semaphore (Overhead)
– Automatic Context Switch to Scheduler (Overhead)
– Check for New Thread (Jitter + Overhead)

• Variable Search Times in Scheduler Queue
• May or may not choose different thread

– Context Switch to New Thread (Overhead)
• Hthreads: All Scheduling Requests to HW Scheduler

– External: Timer, Unblocked Semaphores, Interrupt Requests
– Internal: Thread join, suspend, terminate, change priority
– Scheduler runs in parallel with current thread

• Will Only Generate Context Switch if Appropriate
– Timer expiring may/may not cause context switch
– Unblocked thread may/may not cause context switch
– Change in a thread priority may/may not cause context switch

• Scheduler Decision Function 12 clock cycle Fixed Time
• Independent of # Threads For Scalability

Computer Science &
Computer Engineering

Scheduler Timings

Computer Science &
Computer Engineering

CBIS

Change Semantics of External Interrupts
Bring within Schedulers Envelope
 Register User Thread with Modified PIC
 Intr Rqst Causes Thread Scheduling Event to
 Thread Manager -> Scheduler

Computer Science &
Computer Engineering

Act 2: Dawn of the Manycores
“Groundhog Day” Back to Parallelism Once Again

1. Dynamic ILP Run It’s Course
• Performance Scaling Ebbing

• Not Much Juice to Be Squeezed in ILP
• High Transistor Costs for Small Return

• Power + Memory Wall = Brick Wall (View from Berkeley)
2. Manycore Architectures Following Moore’s Law ?

• Multiple Simple CPU’s for Parallelism
• MIMD/SIMD Heterogeneity

• Better Use of Dense Interconnect
• Will This Break Memory Wall ?

3. Manycores Good News for Real Time Embedded Systems
4. Parallelism + Power 1st Class Design Issues

Also….It’s Deja Vous All Over Again…Rebirth of Parallel Processing

Computer Science &
Computer Engineering

Manycore Status
• Paradigm Shift Occurred Without Considering Software

Infrastructure
• Concerning as Prior Efforts a Failure

– We did not Resolve Parallel Programming Models
– We did not Resolve Run Time Systems

• New Considerations
– Magnitude of Parallelism Will Be Greater
– Heterogeneity of New Applications

• Complete Technology Infrastructure Riding on Success

…..and We Are Not Quite Ready

Computer Science &
Computer Engineering

Parallel Processing Era: Lots of Fun !
The war of the machines

Peak Performers, Usually Vector/SIMD Data Parallelism
 -Hard to Program
 -Expensive

Images from Wikipedia

Computer Science &
Computer Engineering

Which PP Won ?
(Economics & Usability) Video Killed the Radio Star The Buggles 1979 (First MTV Video)

Economics := Commodity
Nodes
Interconnects
Sequential Languages
Operating Systems

Usability := Familiarity
MIMD Parallelism
Linux
Middleware

Victim of Our Own Success:
Side Effect was Broad Research in OS’s Ebbed

Research on Vaneered Middleware Layers

Image from Wikipedia

Computer Science &
Computer Engineering

Thesis: Classic Monolithic OS May be Retired Along with
Power Hungry Dynamic ILP Processors

 ooo

 ooo

o
o
o

o
o
o

Seq to Parallel
Chasm

S
C
A
L
A
B
I
L
I
T
Y

H
E
T
E
R
O
G
E
N
E
I
T
Y

Image from Wikipedia

Computer Science &
Computer Engineering

Obvious Scalability Issues

 ooo

 ooo

o
o
o

o
o
o

1)Wasteful if large image replicated in memory hierarchy
2) Shared data structures enforce sequentiality,

Implications on Contention, Latency,Caches
3) Scheduler focused on time and not space multiplexing

Thread_create()

mutex()

Join()

chan_attr()

Image from Wikipedia

Computer Science &
Computer Engineering

Scalability Brings Efficiency Issues
(A Little Scary to Me !)

os

app

os
app

Sp

Amdahl =
1

(1-f) f+

f => #threads > #Cores

app

app

1,000
cores

os

O
O
O

O
O
O

os
app

os
app

os
app

os

os

os

6

1

3

1

1

1

1

1

1

1

1

1

1

1

3

dual multi many

app
OSeff

=
app + OS OS

 increasing

Computer Science &
Computer Engineering

Heterogeneity Issues

• Amdahls law also pointing to heterogeneous cores
– Scalar cores for threaded data processing
– SIMD cores for audio/video/signal processing

• Heterogeneity Issues permeate abstractions
– Unifying Programming Languages/Models

• Not just Heterogeneous Accelerators
– Run Time Systems

• Scheduling, Synchronization, Thread Management
• All Resources Under OS Scheduler Control

– Compilation
• Closely Related but Not Today

Computer Science &
Computer Engineering

Heterogeneous Synchronization

LR

0lock

PC1 PC2

LL/Sc Test-and-Set

?

Issues:
Different ISA’s Collide

-LL/Sc versus TAS
Reliance on Snoopy Cache Protocol

-Doesn’t Support Hetero Semantics
-Doesn’t Scale Well
-May not Even Be in System (ala Cell)

Computer Science &
Computer Engineering

Thread Management Issues

thread_create(arg,func,attr)

create context
alloc stack
sch func

func
Who’s Reg Set, PC, flags ?

Who’s Stack ?
Who’s (Relative) Address ?

thread_join(id, return) exit(result)
Where is Return Value ?
Where is Parent/child ?

Proc
α

Proc
β

Computer Science &
Computer Engineering

Some Paths Followed So Far…
Client Server OS Models

EXOCHI CELL
OpenMP Threaded Model
Application Managed Exosequencers
RPC for VM, Exception Handlers

pthreads delegate thread
SPE Thread Synchronous
RPC for OS Calls

Main OS Not Unifying Abstraction
 Picks at Heterogeneity Issues
 Not Addressing Scalability Issues

Computer Science &
Computer Engineering

So Far….

Good Efforts at Bridging Abstractions
• Bringing in Heterocomponents Under thread Programming Model
• Some Bending/Breaking of Model

Efforts Represent Hierarchical (Subordinate) Operating Systems
• Not Yet Single Abstraction Most Familiar to Programmer

1. Separate Scheduling Models
2. Can This Even Be done ?

Efforts Not Addressing Scalability Issues
• 1,000’s of Threads will Kill Performance

Computer Science &
Computer Engineering

Act 3: Fusing hthreads with Manycores

Can We Use Hthreads as Unifying Framework ?
1) Already Abstracts Heterogeneous Differences

1) Programmer Shouldn’t Need to Know
2) Uncouple Synchronization Primitives from ISA’s

1) Do Not Rely on LL/SC, test&set
2) Seamlessly Scales

• No RPC Mechanisms
• Minimal OS Overhead
• Does Not Rely on Snoopy Cache Protocol

3) No Hetero Accelerator Model
• Scheduler Treats All Resources First Class Schedulable

Objects

Computer Science &
Computer Engineering

hthreads for Heterogeneous Manycores

• Difference is largely within Computational Units
– Substitute Processors for Custom Circuits

• Hthreads OS Cores Serve as Unifying Framework
– Cores did not change !
– Back to linkable libraries in place of FSM I’face

• Cores Interesting Enabling Technology
– Resolves Heterogeneity (well almost…)
– Provides Scalable Low Latency OS Services
– Breaks up Monolithic Bottlenecks

Computer Science &
Computer Engineering

Keeping a Unified Thread Model

Eliminate Subordinate OS Model
•Scheduler Controls All Processors
•Single Program
•Scalable to 1,000’s Cores

•Maintain RT Performance

Computer Science &
Computer Engineering

Need New Heterogeneous Compilation Framework
Our Experimental Ad Hoc Approach

Computer Science &
Computer Engineering

Code Snipet
int main(){
 sortarg_t arg;
 int mutexnum = 0;
 int condnum = 0;
 hthread_t tid[NUM_THREADS];
 hthread_attr_t attr[NUM_THREADS];
 // **********
 extern unsigned char intermediate[];
 extern unsigned int mbox_handle_offset;
 unsigned int mbox_handle = (mbox_handle_offset) + (unsigned int)(&intermediate);
 // **
 // Initialize thread argument and mailboxes
 arg.num_elements = CHUNK_SIZE;
 mailbox_init_no_globals(mutexnum++,condnum++, &arg.mb_start, NUM_CHUNKS);
 mailbox_init_no_globals(mutexnum++,condnum++, &arg.mb_done, NUM_CHUNKS);
 int i = 0;
 // Create threads
 for (i = 0; i < NUM_THREADS; i++) {
 // Initialize attributes
 hthread_attr_init(&attr[i]);
 hthread_attr_sethardware(&attr[i], (void*)base_array[i]);
 // Spawn thread
#ifdef USE_HW_THREAD hthread_create(&tid[i], &attr[i], (void*)mbox_handle, (void*)&arg);
#else hthread_create(&tid[i], NULL, mbox_thread, (void*)&arg);
#endif

}

Computer Science &
Computer Engineering

Creating A Heterogeneous Thread

Computer Science &
Computer Engineering

Mutex Unlock

Computer Science &
Computer Engineering

Mutex Lock

Computer Science &
Computer Engineering

RPC/hthread Core Comparisons

• RPC Call from Custom Circuit to OS on PPC
– create_thread()

• 160usec versus 40.8usec PPC & 12.5 usec MBlaze
– join()

• 130usec versus 65.7 usec PPC & 13.9 usec MBlaze

Computer Science &
Computer Engineering

Current Work

• Thread Manager/Scheduler
– Generic Thread Create

• New Sequence of OS Messages
• Return Values

– > 2 Generic Processor Group Scheduling
• O(1) on each Group

Computer Science &
Computer Engineering

Epilogue: Will it Catch On ?
(Probably not with this Audience :-) !

• Does Require Moving the Hw/Sw Boundary
– Targets Appropriate PP not Scalar Core Abstractions

• Historical Precedence
– Early Days

• Floating Point, Function Calls, Stacks
– More Recently

• VT Technology for Virtual Machines
• EXOCGI -> Pangaea

• Programmers Will NEED Efficient Methods
– Will Happen When Demand Dictates

